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Abstract

The fundamental principles of bidders’ behaviors and preferences in the simulta-
neous ascending auction are identified and justified empirically. With the restrictions
imposed on the bidders’ behaviors, an econometric model of disequilibrium structural
equations constructed by Plott and Salmon (2004) is implemented to estimate param-
eters that determine bidders’ values of various items being auctioned. After bidders’
values are identified, winners, final winning prices, and number of rounds can be fore-
cast. This set of information can be obtained not only after the auction is over, but
also during the auction. Using only information from the earlier rounds results in
predictive power of the model. The information obtained is useful for participating
bidders in modifying their strategies as the auction progresses. Compared to the re-
sults from Plott and Salmon (2004), the model predicts more accurately winners of the
UK Third-Generation Auction in 2000 by using partial data set. Estimated bidders’
values can be improved when combined with outside information.
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1 Introduction

Auction theory is one of the most successful applications of game theory. Auctions in drilling

rights, timbers, and artworks, for example, have been applauded by the media, government,

and private sectors alike. Auctions are popular because they generate great revenues for

sellers, achieve efficient allocations of resources for social planners, and elicit bidders’ true

valuations with appropriate mechanism design.

In this paper, we focus on applications of auctions to sales of spectrum rights. In

the United States, before Federal Communications Commission (FCC), under guidance of

economists McAfee, Milgrom and Wilson, introduced auctions for sales of Personal Com-

munications Services (PCS) licenses in 1994, outcomes of allocations have ranged from un-

satisfactory to bizarre. For example, the rights of using certain regional frequencies were

appropriated to six dentists by lottery (Milgrom 2004). The externalities associated with

delays to desirable allocation, including transaction costs and litigation fees, were enormous

and unnecessary.

Since 1994, simultaneous ascending auction (SAA) has been the most popular format for

sale of the spectrum licenses (Cramton 2002). Due to its complex and dynamic nature in

contrast to the simple and standard Dutch or first-price auctions, interest arises for both

theoretical and empirical purposes. Though theory of auctions has been fairly developed

beyond simple models in classic works like Milgrom and Weber (1982) and Myerson (1981),

SAA is not as developed1.

Main features of the SAA include simultaneous bids of multiple distinctive objects, mul-

tiple rounds, and ceasing auction only when no bid is submitted to any item. SAA is widely

used because it is more likely to achieve efficiency than simultaneous sealed-bid auctions. In

sealed-bid auctions, the bidder with higher value may bid lower than his value to generate

some positive profit from obtaining the item, thus giving inferior bidder a chance to win,

resulting in inefficient allocation. Since it achieves good results for bidders who value the

item at higher price, SAA may deter entries from smaller bidders. However, the disadvantage

is not significant empirically (Klemperer 2004).

The 2000-2001 European auctions of third-generation (3G) mobile telecommunication

(UTMS) licenses were some of the largest in history, and wide range of results from different

countries are of interest and importance. Revenues differed from 20 euros per capita in

Switzerland to 650 euros per capita in the United Kingdom, though the values per capita

should be similar given the similarities in geographic location, social status, and economic

well-being. Poor auction designs and unfortunate timing at the dawn of technology and

1For a theoretical treatment, refer to Milgrom (2000).
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telecommunication bubble, however, resulted in the enormous differences. In 2000, UK,

Netherlands, Italy, and Switzerland conducted similar simple ascending auctions but except

UK, the other three ranged from bad (Italy, Netherlands) to worse (Switzerland) judged by

Klemperer (2004). Similarities in geographical, chronological, and socioeconomic settings

but differences in the results make the data suitable for empirical research of factors that

affect outcomes and values of the auctions. The UK data is particularly suitable as described

in Section 3.

Ability to obtain information during the bidding period of a SAA which lasts at least a few

weeks is crucial. If bidders can infer about the possible strategies or values of competitors,

then they can change their strategies or quit participating in a hopeless auction to save time

and reduce cost. Plott and Salmon (2004) developed a model of the bidders’ behaviors in

simultaneous ascending auctions based on two principles: principles of surplus maximization

and of bid minimization. These principles, tested from field experiments, led to “models of

both price dynamics and equilibration, leading to disequilibrium structural equations that

can be used for estimating bidder values”. When bidders’ values are estimated, winners of

the auction, winning prices, and number of rounds can be forecast. The values of bidders

can be obtained only using partial data. The partial information is particularly helpful for

firms and governments.

Valuations of bidders in SAA are rare in literature though empirical models of auctions

are developing quickly and investigated extensively by Athey and Haile (2006). Hong and

Shum (2003) and Plott and Salmon (2004) are the only two I can find. Hong and Shum

(2003), however, has a set of restrictions inapplicable to the estimation of UK3G auction. I

therefore adopt Plott and Salmon’s estimation model with a different set of parameters to

represent the the values of the bidders by differentiating paired and unpaired spectra.

I proceed as follows. First, the basic rules of SAA are introduced to facilitate reading. In

Section 3, I describe in detail the British 3G auction, including procedures, bidding patterns,

and notations. In Section 4, features of the SAA are elaborated, and the underlying economic

theory and principles follow naturally. Econometric models are described in order to estimate

the values of the parameters that lead to estimations of bidders’ values. Results follow and

discussions on validity and improvement of the model conclude.

2 Rules of the Simultaneous Ascending Auction

By the name of the auction format, it can be inferred immediately that it consists of multiple

rounds and considerable duration with several objects sold at the same time. Each auction,

SAA in particular, has its own variation to achieve satisfactory goals such as efficiency, trans-
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parency, entry, and competition (Klemperer 2004). A variety of auctions can be classified

into one category based on several fundamental properties. In this section, I outline the few

rules that distinguish SAA (Cramton 2002; Plott and Salmon 2004).

• Objects auctioned. The objects are usually those with highly interdependent values

and functions. For example, the radio frequencies are used for the same purposes of

telecommunication by mobile phones, with licenses of similar sizes valuing similarly.

• Progress of auction. Some SAA are conducted by continuous time process, with

bids submitted at any time. The British 3G auction is a discrete version. Bids by all

bidders are submitted to the agency in a fixed period of time, and then winners of the

round for each object are simultaneously announced.

• Minimum bid requirement. Since all bids are denoted in money value, for large

values of objects in millions of dollars, bidding one more cent in each new round would

be a slow and ridiculous process. Therefore, usually a percent increment from the

previous bids with a rounding to ten thousands or million dollars is implemented to

speed up the auction. For instance, the British 3G auction sets an initial percent

increment to be 5%, and gradually decreased to 1.5% by the end of auction. Setting

a reasonable percent increment is important because a small one makes the progress

slow, but a large one deters entry and causes inefficiency.

• Restrictions on Biddings. Restrictions, including how many or which items each

bidder can bid, are placed on bidders. In the British 3G auction, each bidder can place

a bid on at most one item in each round, and incumbent firms cannot bid on item A.

• Activity Rules. Actions are needed from each bidder in order to spur activity and

diminish bidders’ incentive to wait until the end to bid low. Therefore, in the UK 3G

auction, unless each bidder is either a leader, or requests waiver, it must bid on one

of the five items. Otherwise, the bidder drops out of the race immediately. In the

continuous time auctions, actions are prompted to take action by the possibility of the

ending of the auction if no one else bids.

• Stopping Rule. In a continuous time process, a clock is used to countdown to, for

example, five minutes, that is reset after a new bid is placed. In the UK auction,

the entire auction ends when no new bids are placed on ANY of the items. This

stopping rule is important to enable arbitrage among substitutes, because a bidder

may become interested in bidding on one license only after the price of a substitute

has risen significantly.
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3 UK3G Auction Data Description

The first in a wave of 3G spectrum auctions, the British auction in spring 2000 achieved

glamorous success and optimism for subsequent ones. It was heralded by the British media

as the “biggest auction ever”, generating 23 billion pounds from selling five licenses of 140

MHz of radio wave length in total.

The auction is the most suitable among all for four reasons according Börgers and Dust-

mann (2005). First, because it was an auction with gigantic money values involved, firms

are serious about each bid they make. Second, all information of bidders and bids is pub-

licized after each round, including each bidder’s action, current leader, current price, and

minimum bid. Third, each firm is restricted to bid and win only one license, so the problems

like synergies (package valuations) and collusions are not present, so that simple model can

be used to have great predictive power (Ausubel et al. 1997; Cramton and Schwartz 2000;

Cramton and Schwartz 2002). Finally, the licenses, though few in number, were not iden-

tical. This property makes possible the key econometric identity by bounding parameter

estimates. Without differences of types of licenses, analysis that is based on the switching

behavior both deterministically and probabilistically is impossible.

UK3G Auction took place between March 6, 2000 and April 27, 2000. During the one and

half months intermittent with recessions in weekends and holidays, there were 150 rounds

during which thirteen bidders bid for five licenses.

Spectra that compose the licenses are either paired or unpaired. Paired spectra provide

separate frequencies for communication from the base station to the mobile phone and from

the mobile phone to the base station, while the unpaired spectrum uses the same frequency

for both directions. The paired spectrum composes of a bit of spectrum in the lower frequency

and a bit of spectrum in a higher frequency band, so that is enables duplex, a situation that

mobile phones allow simultaneous two-way transfer of data. It is often denoted as 2 × 10

MHz, meaning 10MHz from lower and 10 MHz from upper frequency bands.

Five licenses are categorized into three types in terms of its spectrum composition. Li-

cense A consists of 2×15 MHz of paired spectrum and 5 MHz of unpaired; B consists of 2×15

MHz of paired spectrum. Licenses C to E are identical with 2× 10 MHz of paired spectrum

plus 5 MHz of unpaired spectrum. License A was reserved for a new entrant into the market,

which in turn excluded 2G incumbents Vodafone (37.3%), Cellnet (BT3G) (30.1%), Orange

(17.2%), and One2One (15.4%) from bidding2. Because of the restrictions imposed, final

price of item B was higher than that of item A, which has five additional unpaired spectrum.

2percentages in parentheses are their market shares in the second-generation market according to Roth-
schild and Sons (1999)
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Each license was set an opening price on March 6. Each round, every non-leader bidder

who has not dropped out of the auction is eligible to bid for at most one item, with a

minimum based on current leading price. 5% initially, the minimum increment percentage

was dropped to 1.5% by the end of auction. A bidder is allowed to pass at most three rounds

by requesting waivers. If the bidder’s bid for a license is the highest, the bidder becomes the

price leader for the license and automatically ineligible to bid for next round but stays the

price leader if no new bid was submitted. At the same time, its bid amount becomes the

current price for the license.

Descriptive Statistics of Bids

Company A B C D E C-E Jump
Bids

Incre-
ment∗

Total Leader Waiver Round
With-
drawn

TIW 12 5 17 20 15 52 23 4.6% 69 81 0 A
Vodafone - 43 0 0 0 0 2 1.2% 43 107 0 B

BT3G - 33 24 33 17 74 0 - 107 43 0 C
One2One - 0 37 44 24 105 3 0.9% 105 45 0 D
Orange - 18 0 1 26 27 40 2.1% 45 105 0 E

NTL 25 0 14 15 4 33 19 1.9% 58 91 0 150
Telefonica 6 1 14 23 6 43 36 1.2% 50 80 2∗∗ 133
Worldcom 5 0 23 24 10 57 26 1.2% 62 58 0 121
One.Tel 2 0 29 34 16 79 4 2.3% 81 16 3 100
Epsilon 0 0 25 21 12 58 29 0.7% 58 36 3 98

Spectrumco 21 5 8 10 4 22 1 4.5% 48 47 1 97
3GUK 4 0 22 24 14 60 21 0.7% 64 27 3 95

Crescent 0 0 31 37 14 82 2 2.8% 82 8 3 94
TOTAL 75 105 244 286 162 692 206 1.7% 872 744

Table 1: Number of bids placed on each of the licenses by each bidder, and the number of round
that the bidders have withdrawn are shown above. ∗It is the average extra increment of jump bids
made by each bidder; ∗∗One recess day requested before Round 107.

Auction Results
License Paired

(MHz)
Unpaired
(MHz)

Company Opening
Prices (mil-
lions)

Winning
Prices (mil-
lion)

A 2× 15 5 TIW £ 1.25 £ 4, 384.70
B 2× 15 − Vodafone £ 1.07 £ 5, 964.00
C 2× 10 5 BT3G £ 0.89 £ 4, 030.10
D 2× 10 5 One2One £ 0.89 £ 4, 003.60
E 2× 10 5 Orange £ 0.89 £ 4, 095.00

Table 2: Amount of unpaired and paired spectrum contained in licenses, opening prices, eventual
winners for licenses, and winning bids.

After 150 rounds, 872 bids (75 on A, 105 on B, 692 on C-E), and more than 300 lead

changes, eventual winners were TIW for license A, Vodafone for B, BT3G for C, One2One
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The graph shows the current leading 
prices of licenses round by round. A 
perfectlylinear portion indicates that 
bidders bid the minimum price for 
each round. A horizontal line 
indicates that no bidder placed a bid 
on the item.

Figure 1: Evolution of leading prices

for D, and Orange for E. Table 1 lists the number of bids placed on each license by each

bidder, jump bids submitted, average extra increment of the jump bids, total number of bids,

number of rounds in which the bidder is a leader thus ineligible to bid, number of waivers

requested, and round number in which the bidder withdraws completely from the auction.

The firm who were incumbents in Second Generation market are bold. Table 2 lists amount

of unpaired and paired spectrum contained in licenses, opening prices, eventual winners for

licenses, and winning bids.

Evolution of current prices is shown in Figure 1. The graph shows the current leading

prices of licenses A, B, and CDE which represents the largest of prices of C, D, and E. A

perfectly linear portion indicates that bidders bid the minimum price in those rounds, and

a horizontal line indicates that no bidder has placed a bid on the item.

All information on the data set is obtained from the official website created and main-

tained by the Radiocommunications Agency, the branch of UK government that oversaw the

entire auction in 2000, http://www.ofcom.org.uk/static/archive/spectrumauctions/

auction/auction_index.htm. The dataset includes rules of the auction and round by round

summaries that are subdivided into pre-round and end-round reports. They contain infor-

mation such as current price, minimum bid amount, current price leader, number of waivers

requested by each bidder, duration of the bid, eligible bidders, bids posted by each bidder

in a round, and tie bids. Detailed analyses of the jump bids are done by the author.
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4 Theory

This section describes some of the fundamental rules that a risk-neutral, profit-maximizing

bidder should abide to in a simultaneous ascending auction. These rules are obvious and

self-explanatory in some sense, but they are nevertheless essential to the econometric set-up

that follows.

4.1 Bidders’ Behaviors

Every firm i is assumed to have a privately held, independent value vi(k) for each of the K

objects being auctioned. We may incorporate a time value t, with t representing round of

bids or simply time in continuous bidding models, but here for simplicity and assumption

that bidder’s valuation on each object does not vary when bidding is taking place, variable

t is not considered, thus vi(k) = vi(k, t) for all t.

Definition 4.1. In the beginning of each round, current leading prices are denoted by

p(k, t). Minimum percentage increment m(k, t) for each round is announced 3. Then

the minimum bidding on object k in round t is

b(k, t) = p(k, t)(1 +m(k, t)). (4.1)

Definition 4.2. Suppose the bidder bids bi(k, t) in round t, then its surplus or value if he

becomes the leader and eventually wins the auction with the bid, is

πi(k, t) = vi(k)− bi(k, t). (4.2)

From the observation of thirteen firms’ behaviors, Cramton (2001) reports to the National

Audit Office that “Most of the bidders pursued a strategy of bidding on the license that rep-

resented the best value.” Therefore, the first principle that a risk-neutral, profit-maximizing

company should adhere to is

Proposition 1 (Principle of Surplus Maximization). Given for each object k, current leading

prices pi(k, t) and minimum bids bi(k, t), a firm should bid on the object k∗(t) that yields the

highest surplus. That is,

k∗(t) = arg max
k

πi(k, t). (4.3)

3The minimum percentage increments can differ by items, but in the UK auction, the minimum increment
remained identical for different items.
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A utility-maximizing firm should choose to bid on the item with the highest value. How-

ever, there is argument that since the licenses’ sizes are proportional and firms are investors

or need to attract investments, they choose to bid on the item with the highest rate of

return. Though the argument is not completely invalid, since the decision is treated as a

utility-maximizing problem instead of financial one, Proposition 4.3 is a good starting point.

Thereafter, in order to maximize πi(k) with vi(k) fixed, bi(k) needs to be minimized.

There is no upper bound for a bid bi(k), but a rational, risk-neutral bidder tries to maximize

his surplus by Proposition 1. In other words, for a firm that follows Proposition 1, it should

make a decision on which item to bid by assuming its bidding a minimum amount required

and bid that amount thereafter. This brings to our second fundamental principle.

Proposition 2 (Principle of Minimum Bid). When a bidder makes a bid on object k in

round t , it bids the minimum bi(k, t). In discrete price auctions, in order to avoid ties,

a bidder may bid an amount “ε” greater than bt(k), where ε could be thousands of dollars

depending on pi(k, t). The optimal bid b∗i (k, t) is then defined as

b∗i (k
∗(t), t) ≡ b(k∗(t), t) + ε, (4.4)

where bt(k
∗) is as defined in equation 4.1, k∗ in equation 4.3 and ε→ 0+.

The principle is justified in the British 3G auction process. In the earlier rounds, many

firms bid $10, 000 higher than minimum required in order to avoid three- or four-way ties.

However, after several bidders withdrew from the auction, even such small deviation from

minimum bid is no longer evident. Most absurdly, One2One made a jump bid of £121.21

million to signify the company’s name. In addition, as shown in Table 1, number of jump

bids made are small compared to the total number of bids made. The average percentage

increment is minimal, comparably zero for many firms. The biggest percentage increment is

4.6% made by TIW’s 23 jump bids. However, if we examine the data more closely, we find

that TIW made some huge bids in the early rounds to speed up the auction and stay as the

leader of one of the items C, D, and E, possibly for media attention. Avery (1998) among

others argues that firms do use jump bids for signaling in auction, but such claims are not

evident in this auction data. Therefore, in this paper, we make the following assumption:

Remark 4.3. Jump bids in the British 3G auction were made by the bidders only to avoid

ties, speed up the auction, or catch media’s attention, but do not serve any means of signaling,

colluding or threatening.

Therefore, it is clear that a rational bidder would bid the minimum price required on the

item that yields the highest value to him. However, when should it stop bidding, that is,
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waive, or withdraw entirely from the auction? This brings another principle for bidder.

Proposition 3 (Principle of Withdrawing). A bidder stops bidding when its surplus from

bidding on all available objects is lower than that of its alternative opportunity, or outside

option, Πi. Mathematically, a firm waives or withdraws,

k∗(t) = 0 when πi(k, t) < πi ∀ k. (4.5)

Generally, πi ≥ 0. For a general enough theoretical models, we can allow πi ∈ [−∞,+∞),

but for empirical and practical purposes, a firm should stop bidding when it expects negative

profit from winning any of the items in the bids though it is possible that a firm withdraws

when there is negligible profit or certain profit lower than engaging in alternative project.

In the UK3G auction, it can be assumed that πi = 0 for all firms i as there is no evidence

that a firm has alternative option. In addition, waivers and requests for recess days are

distinguished from withdrawals.

Remark 4.4. Waivers and recess days are used by firms to aggregate fundings for deposit.

Requesting waiver does not necessarily imply that a firm has πi(k, t) < πi, ∀k ∈ {1, ..., K}.

Notice that there are possibly different reasons of waiver from withdrawals. Though

all bidders except one (Telefonica) withdrew in the immediate round after exhausting three

waivers, waivers could be used differently from withdrawal. First, since the payment involved

is huge, deposit was requested during the auction. Firms need time to aggregate the fundings

required, so waivers serve as a time “buffer”. Budget constraint is a major problem in the

auction. Börgers and Dustmann (2005) attribute the cluster of withdrawals occurred between

rounds 94 and 100 to budget constraints of the firms. In addition, bidding behavior by BT3G

suggests that it is trying to attract investors by maximizing its rate of return.

4.2 Bidders’ Values

Each object consists of certain distinctive properties that differentiate the products. Each

characteristic has its relative importance. Therefore, an object with characteristics j ∈
{1, ...,M}, with mj amount of each character with different values cj per unit, has a total

value of

vi(k) =
M∑
j=1

cjmj(x). (4.6)

In the British auction, compositions of the objects only differ by their spectrum length

and distinctions whether they are paired or unpaired. Because of the strong diminished
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marginal values present in the three types of items, a three-parameter model of γi, αi and βi

can be introduced to estimate values of firms on objects. Values of the three different items

(licenses C, D, and E are identical) are

vi(A) = 20γi + 10αi + 5βi,

vi(B) = 20γi + 10αi,

vi(C) = 20γi + 5βi, (4.7)

where γi denotes value of the common paired spectrum per MHz, αi value of extra paired

spectrum per MHz, present in items A and B, and βi value of unpaired spectrum per MHz.

There are reports that claim at least 15 − 20 MHz is required, but 25 MHz is more than

sufficient to set up the necessary network, so we observe a sharp diminishing marginal utility

in the extra spectrum length. Therefore, the common spectrum has different values from

the differentiated parts.

In contrast, Plott and Salmon (2004) specified the parameters as

vi(A) = 25γi + 10αi,

vi(B) = 25γi + 5αi,

vi(C) = 25γi, (4.8)

The advantage of my set-up is the ability to distinguish all three types of licenses. With just

two parameters, it is not easy to see infer from the result that the spectrum lengths are the

only determining factors, as licenses A and B only differ by the amount of “αi-type” spectra.

4.3 Maximum Number of Bids

The three fundamental principles lead naturally to prediction of auction duration based on

opening prices and minimum bid increment.

p(k, T ) = (1 +mt)
bkp(k, 0),

bk =
(

ln pk(T )− ln pk(0)
)/(

1 +mt

)
,

b̄ = max
k
bk (4.9)

where p(k, T ) is the predicted equilibrium price, or the estimation of the maximum valuation

from all bidders. Since mt(k), the minimum percentage increment, changes during most

auctions, the estimation does not correspond to the actual number of bids perfectly.
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5 Econometric Application

According to the three Propositions, whenever there is positive surplus, the bidder should

bid on the item k∗ with the highest surplus in the current round, with the minimum price

bt(k
∗). The mechanism through which the model can identify the values a bidder has is

through the observed “switching” behaviors . However, when surpluses of items are similar,

bidders tend to make errors and do not optimize their winnings. Therefore, a probabilistic

function depending on surpluses of items by a bidder, is constructed. Since many rounds are

observed, estimations of the parameters are based on as much as information as possible.

Therefore, aggregate loss functions derived from the probabilistic functions are implemented

to obtain the parameters γi, αi, and βi.

5.1 Bounds on γi, αi, and βi

When different items are chosen, we can infer the bounds on valuations of items by bidders,

and in turn bounds on the parameter estimates. We illustrate how the bounds can be

achieved through a hypothetical bid profile of bidder i. Observe the bid history of few

rounds of this theoretical auction setting in Table 3.

Round Item Bid on pt(A) pt(B) pt(A)− pt(B)

1 A 1000 850 150
3 A 1200 1050 150
6 B 1300 1100 200
10 A 1500 1400 100

Table 3: Hypothetical bid profiles.

When the bidder bids on A in Round t, it indicates that

πi(A, t) = vi(A)− pi(A, t) ≥ πi(B, t) = vi(B)− pi(B, t). (5.1)

Rearranging, we have

vi(A)− vi(B) ≥ pi(A, t)− pi(B, t). (5.2)

This is true for every round that the bidder has bid on A. So vA − vB ≥ 150. On the other

hand, when the bidder chooses B, the inequality is reversed. Therefore, vA − vB ≤ 200.

Together, item A is worth 150 to 200 more than item B. Then substitute in the parameter

representation of the items’ values, we obtain the parameter bounds. For a firm in the British
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3G auction,

A is chosen: 5β ≥ pA − pB,

10α ≥ pA − pB, (5.3)

B is chosen: 5β ≤ pA − pB,

10α− 5β ≥ pB − pC , (5.4)

C is chosen: 10α ≤ pA − pC ,

10α− 5β ≤ pB − pC . (5.5)

5.2 Estimations of γi, αi, βi, and the Bidders’ Values

In the previous subsection, procedures in restricting bounds for parameters are described.

Though the argument and bounds that can be obtained look attractive to zone in the actual

values of the parameters, it cannot be implemented deterministically because bidders tend

to err or to make arbitrary decision when faced with small surplus difference. In addition,

bidders may choose to bid on the item with second highest value surplus in earlier rounds

to avoid ties or even other items for strategic reason. Consequently, a probabilistic choice

rule is defined in Equation 5.6 below, with f+ = max{f, 0} and λi represents the bidder’s

propensity to respond. When there is some profit in some items in round t, the probability

of bidder i to bid on item k in that round is defined as

ρi(k, t) ≡
(
πi(k, t)

+
)λi∑K

1

(
πi(k, t)+

)λi , k ∈ {1, · · · , K} (5.6)

Notice that as the surplus of an item k grows relative to other items, the probability of choos-

ing k rises proportionally. By this specification, item with a negative surplus is automatically

assigned zero probability of being placed a bid on.

Common logit specification ρi(k, t) = e(πi(k,t))
/ ∑

1≤k≤K

e(πi(k,t)) which could solve this prob-

lem, however, does not apply because the probabilities would be invariant to the addition of

constants. That is, suppose there are only two items, such set up predicts that the proba-

bility of bidding on the item with surplus $100 as compared to $200 equals the probability

of bidding on the item with surplus $8, 100 as opposed to the item with surplus of $8, 200.

Instead of trying to incorporate the possibility of bidding on items with negative sur-

pluses, focus is placed on distinguishing more sharply the items with positive profits. λi, the

bidder’s propensity to respond, is introduced. The bigger is λi, less likely the bidder will

make a mistake. The probabilities assigned to bidding $100 and $200 surpluses equal those

12



when facing the choice between $10, 000 and $20, 000, respectively.

Extend the probabilistic choice rule as defined in Equation 5.6 by incorporating the choice

of withdrawal as if bidding on item k = 0 with surplus πi, the alternative profit as defined

in equation 4.5. For k = 0, · · · 5, with f+ ≡ max{f, 0}, if maxπi(k, t) > πi,

ρi(k, t) =


(
π+
i (k, t)

)λi/[
πλii +

5∑
j=1

(
π+
i (j, t)

)λi]
, 1 ≤ k ≤ 5

1−
K∑
j=1

ρi(j, t) k = 0

(5.7)

Otherwise when maxπi(k, t) < πi, by Proposition 3, the bidder should withdraw; so, ρk = 0

for each of k = 1, · · · , 5, and ρ0 = 1. Since in UK3G auction, it is assumed that πi = 0,

so that π+
i (j, t) = max{ max

k={1,...,5}
πi(k, t), πi}, and there are five items, the equation can be

simply represented as

ρi(k, t) =


(
π+
i (k, t)

)λi/ 5∑
j=1

1i(j, t) ·
(
π+
i (j, t)

)λi
, 1 ≤ k ≤ 5

1−
5∑
l=1

ρi(k, t) else

(5.8)

The indicator function 1i(k, t) is introduced to indicate a bidder i’s restraint from placing

bid on object k. It can be also used when there is belief that a firm would not bid on any

item it is eligible to bid on. For example, in British 3G auction, four incumbents of 2G

network were forbidden from bidding on the largest item in terms of spectrum, object A.

Therefore, 1i(A, t) = 0 for the four 2G incumbent firm in all periods t; after several rounds,

we can infer certain small firms will not bid on the licenses with more spectrum length.

A quadratic loss function is used in order to avoid hypersensitivity (Friedman 1983),

which is problematic in the case when many of the predicted probabilities will be close 0 or

1. Log-likelihood function is not used here because it will induce strange results because of

its separate treatment of high and low prediction events, as well as its treatment of events

with zero probability. The loss function of bidder i in round t from bidding on item k is

defined as

LFi(k, t) = 2ρi(k, t)−
5∑
j=0

ρ2j(t), t ∈ Ti(t∗) (5.9)

where Ti(t
∗) is a subset of {1, · · ·T}, where an element in the subset represents the round
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in which bidder i is eligible to bid up to round t∗. Full information set is Ti(T ). For a

particular t in Ti(t
∗), the loss function takes range [−1, 1], with −1 represents the situation

when the bidder bids on an item he should not have bid at all when there is only one item

he should have bid on, and +1 represents the situation when the bidder bids on the only

item he should have bid on. Values that range in between represent all bidding situations.

The equation specifies the algorithm from which the parameters of γ, α, β are obtained.

γ∗i , α
∗
i , β

∗
i = argmax

γi,αi,βi

∑
t∈Ti(x)

fi(t)LFi(k̃, t)

= argmax
γi,αi,βi

∑
t∈Ti(x)

fi(t)
[
2ρi(k̃, t)−

5∑
j=0

ρ2j(t)
]
, (5.10)

where k̃ indicates the item that the bidder is observed to bid on, so ρi(k̂, t) is the predicted

probability of the item on which the bidder actually bids in period t. For full data estimate,

x = T , the number of rounds in the auction so that all behaviors observed are included in

the estimation. When partial data is needed x is set to be a smaller number than T .

fi(t) indicates the different weights that can be put on each round that the bidder to

eligible for, in order to most closely reflect the seriousness of the bidders. In the runs

presented below, fi(t) = 1; that is, equal weight is assigned to each round of decision.

Therefore, an equal weighted sum of each round’s loss function is adopted. The function

aggregates all the decisions made by a particular firm. A firm should behave according to

the above-mentioned principles as much as possible. Therefore, γi, αi, βi are adjusted to

maximize the aggregated loss functions. Ideally, λi should be subject to change because it is

indeed a variable, but since with three variables the global surface is hard to find an absolute

maximum, including a power term would result in extreme difficulty of accurate estimation.

Another strong assumption about the behaviors of the bidders is independence by rounds.

Since the bidders try to obtain the item with highest present-value profit, its action is

only dependent on his evaluations in each current round, but not based on history of past

surpluses. Then by Equations 4.7, bidders’ private values on each objects are derived after

γi, αi, βi are estimated. Thereafter, an estimated efficient outcome can be derived with

equilibrium price. Then the estimated number of rounds can be estimated by equation 4.9.

5.3 Estimation of the Number of Rounds

The parameter estimation procedure identified above is the same as the one used by Plott

and Salmon (2004) in essence. However, because of modifications and extensions of their

model including the introduction of the indicator functions, the addition of weighting factor
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according to rounds, consideration of alternative profit as part of the probabilistic choice

function, the estimation model is more full-fledged and generalized to be more widely applied

to simultaneous ascending bids.

Plott and Salmon (2004) indicates that their model is a reasonable parameter specifica-

tion given that the only characteristics distinguishing different objects, but since the mod-

ifications only improve upon theirs withou distorting basic properties, the model described

above is appropriate as well. Paired and unpaired spectrum types are treated separately.

Furthermore, using three parameters differentiating three types of the five items can help to

indicate any preference besides the difference of spectrum.

6 Results

In this section, estimation results, α̂i, β̂i, γ̂i, bidders’ values, predictions on final outcomes,

and predicted auction duration are presented and discussed. First, I use the full data set

to derive bidders’ value estimation to determine how reasonable they are compared to the

actual results. Then, partial data sets are used to test the predictive power of the model in

terms of evaluation and discrete predictions of winners.

The Solver function in Microsoft Office Excel 2007 is used to derive the following estimates

of α̂i, β̂i, γ̂i. Standard deviations were obtained by “jackknife” procedure in Plott and Salmon

(2004). I omit the procedure in this paper as the standard deviations do not differ much

from bidder to bidder and they do not serve any indication for the model. λi = 20 is chosen

simply for the reason that it implies a very strong degree of responding. αi, βi are both

assumed to have upper bound of £2000.0 million per MHz, and lower bound of £0 per MHz.

γi, in addition, is assumed to have a lower bound of £6 million per MHz because of the

starting price. Four complete sets of runs were performed with different combinations of

round numbers and λ, the propensity of bidders to respond to optimal strategy. Tables of

results and discussions follow.

Predictions and Estimations from different combinations of rounds and λ
Licenses Actual λ = 1,

Rd 150
λ = 20
Rd 150

λ = 20,
Rd 75

λ = 20,
Rd 100

Actual
Values

Full Es-
timates

A TIW TIW NTL NTL TIW £4,384.70 £4495.80

B Vodafone Vodafone Vodafone Vodafone Vodafone £5,964.00 £6102.59

C BT3G BT3G BT3G Epsilon BT3G £4,030.10 £4030.10

C One2One One2One TIW One2One One2One £4,003.60 £4003.60

C Orange Orange Orange Orange Orange £4,095.00 £4393.15

Table 4: Predicted and Actual winner of four runs, and estimated values from full data set are
presented. Bold items are wrong predictions.
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6.1 Full Data Set Estimates

The first set of results is on the full data estimate with λi = 1 and λi = 20 for all firms (I

should denote all propensity of bidder to respond as λ, because all bidders are assumed to

have the same value). The first one results in a linear response probabilistic function and

the second a high propensity of bidder’s response with λ = 20. The results are shown in

Tables 5 and 6, respectively.

In Table 5, we have estimates of the three parameters and values of each bidder, their

highest actual bids on items. Since items C, D, and E are identical, there is no reason

to believe that they differ in values because no firm should have preference over any one

particular license, so vc in the table represents the values of bidders on items C to E. “Percent”

shows the percentage of correct predictions of actual behaviors by the model, and P&S is

the correct prediction made by the full data set estimate in Plott and Salmon (2004) with

λ = 20. Result shows that

Full data set estimates with λ = 1
Bidders γ̂i α̂i β̂i v̂A v̂B v̂C ṽA ṽB ṽC−E Percent P&S∗

TIW 105 73 334 4496 2827 3765 4385 330 3590 63.8% 16.0%

Vodafone 175 261 38 6292 6103 3685 NA 5964 - 100.0% 100.0%

BT3G 178 237 96 6405 5927 4030 NA 5799 4030 36.4% 77.0%

OneTwoOne 133 132 268 5323 3981 4004 NA - 4004 99.0% 99.0%

Orange 168 251 208 6902 5860 4393 NA 1583 4095 40.0% 42.0%

NTL 178 52 80 4494 4092 3971 4278 - 3971 48.3% 46.0%

Telefonica 166 19 37 3684 3498 3498 3003 113 3668 65.4% 53.0%

Worldcom 158 0 0 3170 3168 3168 3774 - 3173 87.7% 87.0%

One.Tel 59 0 203 2188 1175 2188 1788 - 2181 94.0% 96.0%

Epsilon 59 0 178 2080 1188 2080 - - 2072 75.4% 73.0%

Spectrum Co. 65 151 300 4312 2812 2800 2101 1378 2100 55.1% 59.0%

3GUK 60 0 183 2116 1201 2116 2001 - 1650 82.1% 80.0%

Crescent 91 0 0 1819 1819 1819 - - 1819 100.0% 99.0%

Table 5: Estimates of γi, αi, βi, estimated values of licenses v̂A, v̂B, v̂C are presented. Observed
values of highest actual bids v∗A, v∗B, v∗C−E are also included. Percentages of correct predictions of
decisions are compared to those in Plott and Salmon (2004) (indicated as P&S) in the table.

Conclusion 6.1. The model with λ = 1,

1. has no serious bound violation for the 13 bidders.

2. accurately predicts winners and final prices.

3. accurately predicts 72.5% of the actual choices made, not far from the 78% predicted

by Plott and Salmon (2004) with λ = 20.
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Since true values of γi, αi, and βi are not known, we cannot measure how close these es-

timations come to true values. Therefore, a simple consistency check is to examine whether

the bidders follow Proposition 3, Principle of Withdrawal. Due to the nature of the max-

imization of linear probability sum, the estimated values of the bidders are close to the

highest value that the bidders have actually bid. The only fairly significant violation from

the actual bidding behavior is Telefonica. Value of Telefonica on item C is £3498 million,

whereas the latest bid is £3668. This difference in estimation is possibly caused by the fact

that Telefonica rejoined bids until Round 129, after requesting waivers twice in Rounds 105

and 106.

Next check if the estimated values can determine whether or not they match with the

final price and allocation results. The prediction results are combined in Table 4. The bound

violations do not influence the final outcomes in terms of the predictions of final prices and

winners. The full data set estimation model with λ = 1 predicts accurately the final winners

of all five items. The estimated final prices are the actual final prices during the real auction.

Plott and Salmon (2004) only accurately predicts three out of five licenses because of the

anomalous value estimation of NTL which is the last to drop out the auction. This a result

of the extra parameter used in this paper’s model.

However, the percent of actual choices abiding to Proposition 1 on page 7 is lower than

that predicted by Plott and Salmon (2004). This effect is due to the choice of parameter,

propensity to respond to be λ = 1. When λ = 1, the loss functions do not necessarily produce

big difference, so when the bidder does not choose the item with the highest surplus, loss

function does not punish the mistake harshly, resulting in possible sacrifice in accuracy for

bigger sum of overall probability.

Similarly, we examine the model’s estimations and predictive power in λ = 20 case. The

labels are the same as in Table 5.

Conclusion 6.2. Full data estimate model with λ = 20,

1. has all bidders except Vodafone satisfying the bound conditions.

2. predicts three out of five winners and inaccurate prices.

3. predicts 78.0% of the actual choices made, the same as Plott and Salmon (2004).

Vodafone’s bound violation is caused by the nature of the estimation method and lack

of switching behaviors. In order for the Solver function to maximize the likelihood function,

parameters that make up item B, α and γ are boosted and the parameter not associated

with item B, β is annealed, resulting in all three parameters to be pegged to upper and
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Full data set estimates with λ = 20
Bidders γ̂i α̂i β̂i v̂A v̂B v̂C Percent P&S∗

TIW 206.26 6.86 0 4193.82 4193.82 4125.2 63.8% 16.0%

Vodafone 2000 2000 0 60000 60000 40000 100.0% 100.0%

BT3G 139.98 156.85 246.08 5598.59 4368.18 4030.1 75.7% 77.0%

One2One 133.076 131.93 268.42 5322.94 3980.86 4003.6 99.0% 99.0%

Orange 336.55 144.78 164.46 9001.14 8178.84 7553.31 42.2% 42.0%

NTL 527.10 71.73 143.45 11976.6 11259.3 11259.3 44.8% 46.0%

Telefonica 166.64 18.62 33.12 3684.65 3519.03 3498.4 50.0% 53.0%

Worldcom 158.4 0 2.2 3179 3168 3179 88.7% 87.0%

One.Tel 105 0 0 2100 2100 2100 94.0% 96.0%

Epsilon 103.61 0 0 2072.2 2072.2 2072.2 75.4% 73.0%

Spectrumco 85.97 14.29 20 1962.34 1862.34 1819.4 55.1% 59.0%

3GUK 37.62 2.87 179.1 1676.49 781.196 1647.79 82.1% 80.0%

Crescent 90.97 0 0.01 1819.4 1819.35 1819.4 100.0% 99.0%

Table 6: γ̂i, β̂i, α̂i are estimated by setting λ = 20. Values of different items are derived from the
estimated parameters. P&S indicates the percentage of correct predictions of bidders’ behaviors
by Plott and Salmon (2004).

lower bounds, respectively. Consistency check on Proposition 3 is satisfied for lower bounds

of parameters.

The predictions of winners and final prices are not accurate, however. It is predicted that

NTL wins item A, and TIW is bumped to win one of C, D, and E (Table 4, page 15). This

is the result of setting λ to be 20, which gives estimate of higher values than final closing

prices. In particular, Orange and NTL are estimated to have a much higher valuation than

the closing price, partly because of their frequent switching behaviors. The model predicts

accurately more than 50% of the actual choices made by all firms except Orange (42.2%)

and NTL (44.8%). Orange’s inaccurate prediction is caused by its mysterious fondness for

item E. Out of the 27 times Orange bids on items C-E, it bids on item E 26 times, thus

violating assumption of identical valuation for C-E and Principle of Surplus Maximization.

The high precisions in prediction with λ = 1 and higher estimations of values compared

to the final prices lead us to conclude that

Conclusion 6.3. Model with λ = 1 can be used to verify the full data set estimates and

bidding behaviors whereas model with λ >> 1 can be used to have some predictive power.

Therefore, in the subsequent subsections, partial data set estimation models with λ = 20

are used instead of with λ = 1 in order to give closer prediction of valuations by bidders.
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Partial data estimates with λ = 20 in Rounds 75 and 100
Round 75 Round 100

Bidders γ̂i α̂i β̂i v̂A v̂B v̂C γ̂i α̂i β̂i v̂A v̂B v̂C
TIW 55 17 0 1273 1273 1105 59 0 232 2339 1181 2339

Vodafone 155 611 0 9217 9217 3108 155 611 0 9217 9217 3108

BT3G 40 56 49 1611 1364 1052 93 72 79 2976 2580 2253

One2One 40 49 62 1594 1286 1105 63 97 195 3202 2226 2228

Orange 78 98 115 3121 2545 2139 137 158 229 5462 4316 3879

NTL 64 41 397 3666 1682 3259 73 14 113 2157 1591 2017

Telefonica 51 0 0 1013 1013 1013 86 16 0 1877 1877 1716

Worldcom 55 0 0 1105 1105 1105 28 0 110 1105 553 1105

One.Tel 48 0 0 955 955 955 48 0 0 955 955 955

Epsilon 32 0 108 1179 638 1179 55 0 145 1819 1093 1819

Spectrumco 27 30 103 1348 832 1052 29 31 112 1448 889 1137

3GUK 24 8 125 1186 563 1105 42 3 162 1676 868 1648

Crescent 53 0 0 1052 1052 1052 74 0 0 1483 1483 1483

Table 7: γ̂i, α̂i, β̂i, all corresponding estimated using both 75- and 100- round data set.

6.2 Partial Data Set Estimates

The importance and effect of the model lie on its predictive power using only partial data

set. For estimates of values, an accurate prediction of magnitude of closing prices is enough,

and accurate prediction of final winners is preferred. In this section, results of partial data

estimations from Rounds 75 and 100 are presented. These two round estimates are chosen

because of the following reasons. First, Round 75 is chosen because it is exactly half way of

the total number of rounds, with all bidders remaining in the auction. Second, Round 100

is chosen because four bidders (Crescent, 3GUK, Spectrum Co., and Epsilon) have dropped

out of the auction. With nine bidders remaining, bidders become serious as possibility of

other bidders ceasing to bid altogether as happened during rounds 95-98 when bidders start

to waive or withdraw, becomes real. Therefore, behaviors can be regarded to closely reflect

bidders’ true strategies.

The results are presented in Table 7. We can conclude that

Conclusion 6.4. Partial data set estimates

1. give inaccurate predictions of final winners in round 75, but very accurate predictions

of final winners in round 100, identical to the full data set estimate model with λ = 1.

2. result in underestimations of final prices, but can be modified to have great result based

on existing knowledge of auction.

The inaccuracies mainly arise from the following areas. First, the inaccuracies arise

mainly from bidders who show little switching behaviors. This results in unreliable estimates
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of many parameters associated with the items that bidders have not bid on. For example,

Vodafone has not switched to bid any item other than B, revealing nothing about its valuation

of γ or α, the paired spectrum. Second, because of the algorithm used, the value estimates of

each bidder are close to the highest bids they have placed on an item. In terms of parameter

estimates, the reason is an underestimation of γi for bidders who only bid on C, D, and E.

Estimates in round 100 are better because several such bidders dropped out.

Results obtained by setting λ = 20 and using three parameters instead of two are better

than those of Plott and Salmon (2004), though far from perfect. The problem of underesti-

mation for majority of bidders still exists. The predicted closing prices range from £1105.1 to

£3878 millions for items C-E, for example, lower than the actual final prices around £4100.

Plott and Salmon (2004) approach the problem of underestimation by making Orange the

price setter and adjusting other firms’ valuations according to Orange’s in an alternative

estimate. I do not agree with this approach because this modification is partially based on

observations in the final result.

6.3 Predictions versus Outcome

Predictions made by the four models presented are discussed in the two subsections above.

Here I simply reiterate some of the observations made earlier. The full data set estimate

model with λ = 1, as shown in the table below, shows very close estimation of values to

the actual final prices. This observation is encapsulated in Conclusion 6.3. Predictions by

full data set estimates with λ = 1 and partial data set estimate with λ = 20 are entirely

correct while the other two models mispredicted two items each. The main source of error

is NTL Mobile. Since it is the last to drop out of the race, there is reason to believe that

the estimation of NTL’s values on items is not greatly wrong, but the firm quit because of

other factors, such as budget constraint and management conflict.

6.4 Maximum Number of Bids

Conclusion 6.5. The predicted maximum number of bids is higher than the actual number

of new high bids in full data set, but lower in partial data estimate.

The actual number of new high bids observed in the auction was 355. If one takes the

prices predicted from the full period estimates, assuming a constant minimum increment

to the initial 5%, it is predicted to take 383 high bids to reach the closing prices. The

prediction made at the round 100 would be 326 according to the straight price predictions,

whereas the estimation from 75 rounds would predict a total of 258 new high bids. Existence
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of jump bids results in the inevitable overestimation of the maximum number of bids, and

under-prediction of bidders’ values in the partial data set results in the underestimation of

the maximum number of bids.

7 Discussions

7.1 Significance

The paper contributes to the field of estimation of bidders’ values in simultaneous ascending

auction by implementing an econometric model built upon several straightforward economic

principles. Principles of Surplus Maximization, of Bid Minimization, and of Withdrawal

are all fundamental assumptions. The econometric model utilizing a probabilistic decision

function and quadratic loss function is fairly easy to implement and understand in a basic

manner as well.

The paper follows the theoretical principles and econometric approach of Plott and

Salmon (2004) but differs from it the parameter specifications, and extends the model to be

more applicable to other data sets of the simultaneous ascending auction with independent

values of bidders.

The key of the paper lies in its importance in the ability to predict winners, final prices,

and number of rounds during an auction with multiple rounds, from the parameter estimates

based on the theoretical principles and econometric applications. The results obtained here

are promising to a possible accurate in-process estimation of eventual outcome of a simulta-

neous ascending auction.

7.2 Possible Improvements

As observed in the Results section, there is problem of underestimation of the final closing

price. Bidders may try to manipulate the estimation by making jump bids in earlier rounds,

to confuse and intentionally violate the rules of auction by making jump and arbitrary bids

when the bidders strongly believe the auction will not end soon so that he has low chance of

ending up with an item he does not like. Meanwhile, the bidder who prefers the item may

be so confused that he believes that his chance of winning is minimal, thus dropping out.

Though the model predicts fairly accurately results of the auction, the parameters do not

necessarily reflect the actual value per MHz of paired or unpaired spectra as they intend to

measure. For example, Vodafone has a high α estimate and places zero value to β. However,

surely, it will take the extra 10 MHz if given for free. Therefore, here we must interpret

his estimated valuations not because Vodafone wants the paired spectrum. Rather, the firm
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wants to sustain its market share and continue its position as the leading market player in

2G market with about 40% of market. Many estimates have shown zero value for either α

or β. Therefore, an alternative model should be in place for the existing one of piecewise

continuous function.

Shown from the estimates, there are no significant distinctions of preferences between

paired and unpaired spectra, frequency band width thus becomes the only distinguishable

factor of the three items. Since they are in numerical values with more bandwidths preferred

over fewer. Therefore, a model of the value of the bidders as a continuous function of

number of bandwidths can be implemented. For instance, the value of an item as a function

of number of spectrum x could be

vi(x) = C1 · ln(C2 · x+ 1). (7.1)

Moreover, Börgers and Dustmann (2005) argued that BT3G adopted such strategy from

Round 100 onward, because it sought to attract investors who would invest their funds in the

project with the highest rate of return. It is possible that Principle of Maximization Surplus

can be altered to or combined with Principle of Rate of Return Maximization, which

claims the bidder bids on the item with the biggest rate of return, where

ri(k) ≡ vi(k)

pi(k)
− 1. (7.2)

Finally, in the econometric model, an unequal weight of round can be used. Because

there is strong evidence that bidders become more serious about their decisions towards the

latter rounds, an equal weight put on Round 1 and Round 100 for example is not necessarily

appropriate. A good candidate of fi(t) in Equation 5.10 is t with linear growth of weight, or

eζt where adjusting ζ would produce different weights. In the paper, we use a special case

of fi(t) = eζt by setting ζ = 0.

7.3 Conclusion

From the analyses and discussions, we see that advantages and disadvantages co-exist for the

model of estimation. Overall, underlying principles and models are valid, but there is room

for improvement in both general models and estimation of the British Third-Generation

Auction data set. More complicated estimation models as well as theoretical assumptions

can be developed to incorporate more complex auction formats, such as those in the United

States with horizontal and vertical integration, and relaxation on number of items to bid on.
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