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The paper presents the basic von Neumann’s two-player zero-sum poker model with independent and identically
distributed uniform hands, and extends it by allowing Player Il to re-raise. The analysis shows that both models
favor the player who initially raises, but re-raising option cuts in Player I's advantage, reducing his expected payoff.
“Payoff square”, a square diagram that indicates the payoffs under different hands and strategies, is introduced and
used to derive players’ payoffs. Extensions to multiple and infinite rounds of betting are discussed, and optimal
strategies are conjectured. Related models are reviewed along the way.

Introduction

Poker is a complex multi-player game of chance and de-
ception. In order to gain insight into different aspects of the
game, mathematical and psychological alike, we construct
simple models of poker by making assumptions about their
hands and restricting rules. Two-player zero-sum poker
models with independent uniform hands are the simplest
non-trivial ones. Von Neumann (1953) discusses his model
in Theory of Games and Economic Behaviors (von Neu-
mann & Morgenstern, 1953).

In this paper, in addition to presentation of the original
model, it is extended to allow an additional round of raise by
the second player. This modication makes the model closer
and more applicable to real poker (Texas Hold’em), and pro-
vides more information on optimal players by both players
in a more complicated situation. In addition, discussion on
allowing multiple rounds follows.

von Neumann’s Model

This section presents the basic model of von Neumann,
and denitions and lemmas that are applicable in general. Two
players each contribute an ante of $1, and are dealt “hands”
x, and x,, respectively independent and identically distrib-
uted as U(0,1). Player I can check or bet a predetermined
amount B, and player II can call or fold if player I bets. The
only available information for each player is his own hand
and the game structure. Strategies for two players are

Player I: s : x, = {check, bet};

Player II: s, : x, x 5,(x,) = {call, fold}.

A player’s payoft is dependent of x ; x; 5, (x,); s,(x,). Exten-
sive form of the game and optimal strategies are presented in
Figure 1 with player I's payofts shown (their reciprocals are
player II’s because the game is zero-sum).

We want to investigate how players play in equilibrium.
They are going to play a pair of optimal strategies as de-
scribed below. A strategy is optimal if given any hand and
the other player’s strategy, there is no incentive to deviate to
any other strategy.

Denition 2.1. For player i, a strategy s* is optimal if given
any other strategy s’ and other player’s strategy S5

/ ui(xi, xj, 85 (x:), 85(5))dw; 2/ wi (s, 5, 85 (23), 85 (x;))dr; Vo1 € (0,1).

T Jzj

Figure 1: Extensive
form of von Neu-
mann’s game, where
u=1 ifx1 > x,=-1
otherwise.

For two similar hands, payoff from an optimal strategy
should be the same. Otherwise, there is an incentive to de-
viate to the strategy played if given the other hand. There-
fore, hands slightly bigger and slightly smaller yield similar
payoffs. This idea is embodied in the indifference condition
(IC). For example in the optimal strategy above, player II is
indifferent between folding and calling when he is dealt c.

Lemma 2.2 (IC). For s ¥, as € >0,

/ wi (@5, %5, 87 (xi — €), ;) —>/. wi (@5, 25,87 (xi +€),2;)  Vai. (2.1)
j

@

Theorem 2.3. An equilibrium strategy of von Neumann’s
game is presented as follows. Player I checks when a x1 b
and bets amount B otherwise; in case of raise, player II calls
if x2 > c and folds otherwise, where

B B? 4+ 4B +2

N . B(B +3)
T (B+)B+4 T (B+r)B+4)

¢ T BB

Two players’ optimal strategies are illustrated in Figure 2.

Player IO bet(bluff) check bet

Player 11 I fold c

¢

call

Figure 2: Optimal strategies of both players

Proof. Optimal strategies are found by backward induc-
tion. Player II’s optimal strategy is found first. When Player
I raises, Player II calls if his expected payoft is greater than
—1, which is his payoff from folding. Since his payoff depends
piecewise-linearly on his hand strength x,, u,(x, x,), player
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I’s payoff, is a monotonic function of x, if he calls. There-
fore, player II's optimal strategy is to call when x, > c and to
fold otherwise.

Given player II’s optimal strategy, player I should bet if
his expected payoff of betting is greater than of checking
(Tie situations need not be considered because the density
function is non-atomic). Player I's payoff given x,

« from checking is (+1) - (x, = 0) + (1) - (1 — x) = 2x,
-1.
o from betting is

/C(+1)dx2 + /1(—1 —B)dza=c+(-1-B)(1-¢)=(B+2)c—B-1, x1<c,
0 c
c a1 1
/ (+1)d12+/ (1+B)drz+/ (=1=B)dzs = (B+1)(2z1 — 1) — Be, =1 >c.
0 c N

Then by IC in Equation 2.1,

2.’1}1—1 =
2£L‘1—1 =

2c+Bc—B -1,
(B+1)(2z1—c—1)+¢

(2.2)
(2.3)

Since Player I's payoff is also piecewise linear with respect
to x, Player I's optimal strategy is to bet if x, < a or x, > b,
and to checkifa < x, < b. Then x, < cin Equation 2.2, and X,
> cin Equation 2.3,

20 —1 =
2b—1

2c+Bc—B-1
(B+1)(2b—c—1)+¢

(2.4)
(2.5)

Player II's optimal strategy should obey the indierence
condition,

[a(1 L B)+(1-b)(—1— B)]/(a—i— 1- b) =1 (2.6)

Solving Equations 2.4 and 2.5 gives values a and b and
substituting into Equation 2.6, c = B(B + 3)/[(B + 1)(B + 4)].
a and b as functions of B are obtained by re-substitution.

Payofts of both players can be determined. Given that
Player I determines his bet amount before hands are as-
signed, the optimal B that maximizes the expected payoft is
of interest. First, payoff squares that describe strategies and
corresponding payofts of players are introduced.

Definition 2.4. A payoff square is a two-dimensional
square diagram with hands of player I in x-axis, and player
IT’s in y-axis. A point in the square indicates a hand pair (x,,
x,), and the payoff, u (x, x,, s,(x, x,), s,(x, x,)), indicated at
the point is resulted from the strategies played corresponding
to the hands.

Remark 2.5. Payoffs of any strategy set can be depicted by
the payoff square. It can also be generalized to n-dimension,
which is equivalent to taking multiple integrals of n variables
(Besides the payoff square, only a payoff “cube” depicting a
three-player game is beneficial).
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(2.4)

Corollary 2.6. Given that both players follow the optimal
strategies described in Theorem 2.3, Player I's payoff is u,(x,,
X, S, 5,) = a. Optimal bet amount is B* = 2.

Proof. Expected payoft from player I checking all hands
is 0, +1 below x, = x, and -1 above x, = x,. Equivalently, the
payoff differential from this strategy is illustrated and ex-
pected payoff would be the same overall, so we add 1 above
X, = x,, subtract 1, and cancel out a square region on the top
of +B and —B to get the resulting square on the right. The
original, complete payoff square as well as its geometric and
algebraic manipulation are shown in Figure 3.

X, X,
= ———_———— ob———————=—===
a8 | |
| |
1 | |
18 | b B |
P Bl
| ¢ |
c | |
| |
+1 | +2 |
+1 | |
| |
0 L L I C L L I
a b 1 X, a b 1 X

Figure 3: Illustration of Player I's payoff by payoff square.

Expected payoff of Player I is

Maximizing u (B) with respect to B, (4-B?)/[(B+1)*(B+4)’]
=0;B*=2:u,(2) = 1195 a = 1/9; b =7/9; c = 5.

The result deserves some discussion. Player I's payoff,
B/(B*+5B +4) is positive for all B> 0, and it achieves its maxi-
mum at B* = 2, the pot size. This means that the game favors
player I who is given the chance to raise, and he maximizes
his payoff to be 1/9 by betting pot size every time. Player I
has an advantage because he can bluff with his worst hands.
More importantly, for real poker perhaps, he must bluff with
his worst but not mediocre hands.

In contrast to von Neumann’s model in which the bet
amount is pre-determined and fixed, Donald Newman pres-
ents a model that has the same game structure but allows
any bet amount (Newman, 1959). Set & = 2/(B + 2). The opti-
mal strategy is that Player I checks when 1/7 < x, < 4/7, bets
B with hands (1 — 38§ + 28%)/7, or 1 — 3§%/7; Player II calls if
and only if x, > 1 —6&/7. In this game, Player I's value is 1/7
because Player I blufts 1/7 of time. Optimality of the strategy
is proven by showing that the given pure strategy is a saddle
point of all strategies.

Extension: Re-raise by player Il

The key extension to the previous model is allowing Play-
er II to re-raise B, after calling Player I's bet B,, and Player
I either calls or folds. This model is discussed in Ferguson’s
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works (Ferguson & Ferguson, 2003, Ferguson et al., 2007).
The strategies given hands x , x, ~ U(0, 1), are

Player I: s, : x, x 5,(s,) > {check, bet B} x {fold, call} = {bet-fold,
bet-raise, check},
Player II: s, : x, x {check, bet} > {bet B,, check, fold}.

-(1+B1)

(1+B1+B2)u
Figure 4: Extensive form of the two players with Player I's payoffs.

Theorem 3.1. Player I bet-folds when x, € (0, a] U (b, c],
checks when x1 € (a, b], and bet-calls when x, > c. Player Il
folds when x, < d, calls when x2 € (e, f], and re-raises when x1
€d,eJU(f10<sa<ses<b=<c<f<land0<d<e(dcan
be larger or smaller than a), where

. _ BeT2B+B) | 24B | 2Bi2+B)(2+2B1+By)
= aA+Bna 0~ B “°T A
Bi +2a By B1(2+Bl)(2+231+32)
= = — =1
d 218, "1+ ©f A

where A=B,(4+B)(2+2B,+B,\ + (1 +B)2+ B)B,. The
optimal strategies are illustrated in Figure 5.

PlayerI  betfold check b betfold betcall
a c

0 — — ‘ ‘ 11
d e f
fold raise call

Figure 5: Optimal Strategies of both players.

Player II

Proof. First, apply the ICs for
 lata:-2a+(2-B)d=B;

« Tlath:2Bb+(2+B)d+ (2B ~2e=B;

o Tlate:(2-2B -B,)d+(2+2B +B,)e+Bf=B;

o Ilatd:2+B)a-(2+B)b+(2+2B +B,)c=B+B;
o Ilate:(-2-2B)b+(2+2B,+B)c=B,;

o« Ilatfi-c+2f=1.

Solving six linearly independent equations of six un-
knowns, we get results as presented in the theorem. Now
suppose we ignore the antes contributed by the players by
treating them as sunk costs. Given that Player II uses the
conjectured optimal strategy, and Player I has hand x,, I's
“gain”

+ from checking is 2x,.

o from bet-folding is 2a if 0 < x < e; 2a + 2(1 + B)(x — ¢)

ife<x<fand2a+2(1+B)(f-eiff<x<l

+ from bet-callingis 2a —2(1 + B, + B,)(e - d) if 0 < x <

d;2a-2(1+B,+B)e~-x)ifd<x<e;2a+2(1+B)
(x—e)ife<x<fiand2a+2(1 +B)(f-e) + 2(1 + B,
+B)x—fiff<x<l.

)

We can verify that at every critical point, the payofts from
two strategies are equal. Then noting that the payoff func-
tion is piecewise linear, we verify that Player Is strategy is
optimal. Similarly given Player I's optimal strategy and Play-
er IT’s hand x,, Player II's expected payoff from

o foldingis0if0<y<a,2(y—a)ifa<y<b,and 2(b -

a)ifb<y<l.

o callingis 2(1+B)a-y)if0<y<a;2(y—a)ifa<y

<bjand2(b-a)+2(1+B)(y-b)ifb<y<1.

o raisingis0if0<y<a,2(y—a)ifa<y<b;2(b-a)if

b<y<cand2(b-a)+(1+B +B)(y-cifc<y<l

Then with II's boundary conditions verified, player II is
proven to play an optimal strategy as well. Complicated op-
erations were done by Maple 11.

Corollary 3.2. Expected payoff of Player I is a. Optimal
bet for Player I, B = I + V13/3. Optimal bet for I is B, = 2B,
+2=4+2V133.

Proof. Applying the modied payoff square as illustrated
in Figure 6,

ur =

Bi[-a(l—d)—(c—b)e—d)+ (1—c)e—d)+ (L —b)(b—e)] +
2[(2d — a)(a/2) — (¢~ b)(e — )] + Ba[(1 — S)(e — d) — (f —)(1 — f)]

= Bf/{(l +B1)[Bi(d+ B1) + (1 + B1)(2 + B1)*B2/(2 + 2B1 + B2)*]} = a.

X
2 ~(1+B1+B2) %
L = we1+B2 1l .
¢ 481 | £ B2 |
81 | |
c | c |
181 El | B1 |
b 1Bl b |
B1
| |
e I e I
ABL 412 281 plep2
d | d :
|
+1
al L . | al 2 |
| |
| |
0 a d e b ¢ f 1 x 0 a d e b ¢ f 1

Figure 6: Payoff of Player | by payoff square.

Minimizing u, with respect to B, while B, is fixed, is
equivalent to maximizing B,= (2 + 2B, +B,),

(2B1 4+ 2+ B2) — 2Bs

@+2B 1 By T BB

Substitute in, u, = 8B/ [(1+B)(9B> + 36B, +4)]. Then
maximizing ul with respect to B, yields 9B — 40B, — 8 = 0.
Three roots are B, = -2, 1 + V13/3, 1 - V13/3. Clearly,

Bf =1+V13/3~2202, Bj =4+ 2V13/3 ~ 6.404

Substituting in B," and B,’, a = 0.0955; b = 0.8178; ¢ =
0.909; d = 0.569; e = 0.592; f = 0.954.

Though the game still favors Player I, its payof (0.0955) is
lower than that in the original von Neumann model (1/9).
This shows that allowing Player II to re-raise restricts Player
I’s audacity of bluffing, thus decreasing his advantage and
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prot. Player I always has advantage given that he makes a
voluntary decision first because he can always check to yield
an expected payoft of 0. Also note that Player I's optimal bet
is a little over the pot size, and Player II is little under the
added pot size, however very close. This gives some insight
and justification to bet by pot size in real poker.

In addition, Player II can bluff with his “good” hands.
This is justified as follows. Player I will fold his worst hands
because he is caught bluffing, and fold some of his good
hands because Player IT will also raise with his best hands.
However, if Player II simply calls, he has higher chance of
losing to the good hands that Player I has raised with. Fold-
ing is even more disastrous as he is bluffed by the worst
hands of Player I.

In both models, payoffs for Player I are both a which cor-
responds to the initial bluff region by Player I in the first
round. This fact needs to be further investigated in order
to determine whether value of Player I is always a allowing
additional re-raises.

Multiple Re-raises

The game tree allowing two raises by each player is illus-
trated in Figure 7, and model of more raises can be extended
by adding more “branches”.

7
P P , P P — _ —_ check/all

fold
[T I T T bet

Figure 7: Game tree of two raises.

By forward induction, we conjectured the optimal strate-
gies for both players to be as follows. For player i, i = 1, 2,
in round j, let f, be the folding threshhold, ¢, the calling
threshold, and 7, the raising threshold. f,. < ¢, < r; <Ldi-
viding the hands into four intervals. Then player i in round
jwill

fold if 2 € (0, fi )]
raise if 5 € (fi5,¢,5]
call/check if x; € (cs,5,74,5]
raise if x; € (74,5, 1]

fi, = 0 in this model because no hand will be folded by
PlayerI Furthermore, 0 < fl 5 6o 1y < f for all J > j, pro-
ducing strictly smaller interval of rema1n1ng hands. Rela-
tionship of inequalities between two players’ folding, call-
ing and raising thresholds needs to be investigated. We can
apply indifference conditions to each of the thresholds and
solve for equilibrium conditions, but it will be complicated
algebraically.

If the bet amount is restricted to be pot size, with un-
limited number of bets and forbidding check-raises, Cutler
solves an equilibrium using recursion (Cutler, 1975). Recur-
sion is feasible because each time a player pays the same ra-
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tio to win an equivalent amount when he calls.

Conclusion

We investigated von Neumann’s model to see that bluff-
ing is an important strategy to gain advantage. Giving Play-
er II’s option to re-raise, thus option to bluff after possible
bluff after Player I, eliminates some of Player I's advantage.

Findings in this paper may be applied to real poker. The
paper shows that in optimal strategies, a player should bluff
with their worst hands, but not mediocre hands, because
there is slim hope of winning with their worst hands. How-
ever, when one raises with a mediocre hand, the opponent is
likely to call with a better hand and fold worse hands. Thus
raising by the first player magnifies his loss by losing more
from inferior hands and gaining none from the other player
folding worse hand. In addition, if the player is re-raised,
he would have a hard time deciding whether to fold or call
with a mediocre hand, because he could falsely think that
the opponent is bluffing him. However, calling would result
in even bigger loss. Checking in the beginning could avoid
such a situation.

Since unlimited number of raises are allowed in real
poker, extension to more rounds is important too. The ex-
tensions can help us to conclude about players’ optimal
strategies corresponding to different regions of cards, and
whether Player I's expected payoft from optimal strategy is
always a, the proportion of hands he has bluffed in initial
raise. In addition, it gains insight whether there is a better
equilibrium play for either player. The paper also introduces
the payoff square, which could be of important use for more
complicated hand distributions in games of two or three
players because of its straightforward presentation of pay-
offs.
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