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Chapter 1 Human Capital Investments and the Marriage

Market

Abstract: I provide a dynamic equilibrium framework to simultaneously study human

capital investments and the marriage market. A set of variables is endogenously determined:

investments, income, marriage-age, marriage matching, and the division of marriage surplus.

I prove equilibrium existence with Glicksberg and Arzelà-Ascoli theorems and show the

wide applicability of the techniques to other papers. I provide a marriage-market-based

explanation to the college gender gap puzzle: more women than men go to college although

women’s tradeoff between career and fertility lowers their incentive for college. I also derive

a set of other new implications including the relationships between marriage-age and income.

Keywords: investment-and-matching models, equilibrium existence, the college gender gap

puzzle, marriage-age patterns

JEL: C78, D10, J12
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1.1 Introduction

Although human capital investments (Becker, 1964) and the marriage market (Becker, 1991)

have been extensively studied, they have rarely been studied simultaneously. Yet, an indi-

vidual’s investments and marriage decisions depend on each other as well as other people’s

decisions. To fill this gap, I construct in this paper a dynamic equilibrium framework to

derive a set of new implications about the labor market and the marriage market.

A set of variables is endogenously determined: college and career investment decisions,

distributions of income and marriage-age, and the matching and the division of surplus in

the marriage market. The equilibrium is easily characterized with cutoff strategies and non-

assortative matching. The main technical difficulty is to prove equilibrium existence. I apply

Glicksberg’s fixed-point theorem and the Arzelà-Ascoli theorem to tackle this difficulty and

show the wide applicability of the techniques to other papers in the literature. Previous

existence proofs have hinged on such restrictions as the single dimensionality of the marriage

characteristics, discrete support of the marriage characteristics, and supermodularity of the

marriage surplus function. The current approach renders these restrictions unnecessary.

The framework explains in a unified manner a set of observations in the labor market

and the marriage market, with the simultaneous determination of many important variables

and the key assumption of gender difference in reproductive fitness: women are more likely

to become reproductively fit after thirty1. First, I provide a new marriage-market-based

explanation to the college gender gap puzzle, i.e., more women than men go to college al-

though their tradeoff between career and fertility supposedly lowers their incentive for college

(Section 1.5.1). Then, I explain the gender-specific, changing, non-monotonic relationships

between marriage-age and personal income (Sections 1.5.2 and 1.5.3), and the changing rela-
1The assumption is based on the biological fact that the risk of poor birth outcome increases significantly

with mother’s age. For example, according to the U.S. Department of Health and Human Services, about
one-third of couples in which the wife is over thirty-five have encountered fertility problems.
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tionships between a woman’s marriage-age and her husband’s income (Section 1.5.4). Finally,

I discover a new marriage-delaying factor: people delay marriage when they are uncertain

about their labor market prospects (Section 1.5.5).

The paper contributes to the theoretical literature as well as several strands of the applied

literature. The theoretical framework adds repeated investments with uncertain returns to

previous papers that only consider agents who live for two periods and make investments

with deterministic returns (Iyigun and Walsh, 2007; Chiappori et al., 2009; Low, 2015; Chiap-

pori et al., 2015b), and, more importantly, introduces new equilibrium existence techniques

applicable to all the previous papers. Whereas a sizable theoretical literature focuses on

the social efficiency of the premarital investments (Cole et al., 2001b,a; Peters and Siow,

2002; Iyigun and Walsh, 2007; Chiappori et al., 2009; Dizdar, 2013; Hatfield et al., 2014;

Nöldeke and Samuelson, 2014), this paper provides a unifying theory to address a set of

applied questions. First, this paper offers a new marriage-market-based explanation of the

college gender gap puzzle (Goldin et al., 2006; Mulligan and Rubinstein, 2008; Becker et

al., 2010b,a; ?) and calls for more attention to investigate the marriage market returns to

college (Chiappori et al., 2009, 2015a; Bruze, 2015). Second, the paper fully explains the

gender-specific changing relationships between marriage-age and personal income, unifying

and extending the previous literature (Becker, 1973; Keeley, 1974, 1977, 1979; Bergstrom

and Bagnoli, 1993; Bergstrom and Schoeni, 1996). Finally, the paper stresses the biological

gender difference in reproductive fitness and examines the changing marriage prospects of

highly educated women, an issue of increasing importance as more women progress in the

labor market but delay marriage and childbearing (Siow, 1998; Low, 2015; Bertrand et al.,

2010; Chiappori et al., 2012; Díaz-Gimémenez and Giolito, 2013; Goldin, 2014).

The rest of the paper is organized as follows. Section 1.2 sets up the general theoreti-

cal framework. Section 1.3 characterizes the equilibrium and proves equilibrium existence.

Section 1.4 presents a simplified version of the framework and proves equilibrium unique-

3



ness. Section 1.5 derives implications of the model about the labor market and the marriage

market. Section 1.6 concludes. Appendix 1.7 presents proofs of lemmas, theorems and

propositions. Appendix 1.8 describes data and includes additional figures.

1.2 The General Theoretical Framework

My analysis is based on the following framework. Each period, a new generation of men

and women reach adulthood. They have heterogenous income-earning abilities and decide

whether or not to go to college. A college investment improves a person’s income with

uncertainty. Depending on the income prospects of the job after college, a college graduate

can make what I call a career investment to change the income prospects. Examples of a

career investment include choosing a different career, searching for a new job, or additional

schooling. People marry when they finish investments. Each period, overlapping generations

of men and women participate in a frictionless transferable-utilities marriage market, and

match and bargain over the division of their marriage surplus until no one can benefit from

choosing a different partner; the marriage market reaches a stable outcome. A couple’s

marriage surplus depends on the husband’s income, the wife’s income, and her reproductive

fitness. Whereas men stay reproductively fit, women may become less reproductively fit in

their thirties. The reproductive fitness is the only gender difference in our analysis.

Let me formally introduce the theoretical framework. There are an infinite number of

discrete periods. At the beginning of each period, unit masses of men and women reach

adulthood and become eligible for the labor market and the marriage market. They are

endowed with heterogeneous income-earning abilities indexed by θm and θw. The abilities

are distributed according to continuous and strictly increasing distributions Fm and Fw on

[0, 1]. Agents each live for three periods, which can be thought as ages 20-25, 25-30, and

30-35. They are risk-neutral and discount each period by δ. The agents derive utilities from

4



the labor market income Y and the marriage market payoff V , and dis-utilities from any

costs C paid for human capital investments.

1.2.1 College and Career Investments

Each age 1 agent chooses whether or not to make a college investment. An agent who does

not go to college enters the labor market and the marriage market, and realizes an income

Yi drawn from distribution Pi1, i = m,w. The income distributions can have continuous or

discrete supports. An agent who goes to college pays a cost Ci1, and delays entering the

labor market and the marriage market. Assume for now that it is infeasible to invest and to

enter the labor market and the marriage market in the same period.2

Each age 2 θi-ability college graduate receives an income Yi offer drawn from distribution

Pi2(·|θi). Assume that higher-ability agents receive better income offers; for i = m,w,

Pi2(·|θi) strictly first-order stochastically dominates Pi2(·|θ′i) if θi > θ′i. The agent decides

whether or not to accept the income offer. An agent who accepts the income offer earns

lifetime income Yi and enters the marriage market. An agent who rejects the income offer

makes a career investment costing Ci2, and skips the labor market and the marriage market in

the current period. The career investment can be working hard at the current job, spending

more effort searching for a better job offer, receiving more training, or additional schooling.

An age 3 θi-ability agent who has made the career investment receives an income offer Y

drawn from distribution Pi3(·|θi). Assume that higher ability agents receive better income

offers from career investments; for i = m,w, Pi3(·|θi) strictly first-order stochastically domi-

nates Pi3(·|θ′i) if θi > θ′i. An agent at this point has no choice but to enter the labor market

and the marriage market, and earns a lifetime income Yi.

Let σi1(θi) represent the probability a θi-ability agent makes a college investment and
2Section 1.5.5 relaxes this assumption and shows that investing and entering the marriage market in the

same period is dominated by investing and delaying marriage for a sufficiently patient agent.
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σi2(θi, Yi2) the probability a θi-ability agent makes a career investment after receiving an

income Yi2 offer. Let σm = (σm1(·), σm2(·, ·)) and σw = (σw1(·), θw1(·, ·)) respectively denote

men’s and women’s stationary and ability-symmetric strategies.

1.2.2 The Marriage Market

Whereas men of all ages and women who enter the marriage market at age 1 and age 2 stay

reproductively fit (R = RH), women who enter the marriage market at age 3 may have lower

reproductive fitness (R ≤ RH), distributed according to distribution Φ. The marriage surplus

S(Ym, Yw, R) a couple generates depends on the husband’s income Ym, the wife’s income Yw,

and her reproductive fitness R. Assume that S is non-negative, twice differentiable, and

strictly increasing in every argument, and that the singles’ marriage surplus is zero.

Because agents make different investment decisions and enter the marriage market at

different ages, there are overlapping generations of men and women in the marriage market in

each period. The stationary and symmetric strategies σm and σw induce stationary measures

µm on [YmL, YmH ] and µw on [YwL, YwH ] × [RL, RH ] which together describe the marriage

market.

Men’s income measure µm is induced as follows. The men who earn less than income Ym

include those who do not go to college and marry at age 1 with an income less than Ym,

those who accept an offer of income less than Ym and marry at age 2, and those who reject

an offer after college and receive an income less than Ym at age 3,

µm([YmL, Ym]) =

[ˆ
(1− σm1(θm))dFm(θm)

]
Pm1(Ym) +

ˆ ˆ Ym

YmL

[1− σm2(θm, Ym2)] dPm2(Ym2|θm)dFm(θm) +

ˆ ˆ
σm2(θm, Ym2)Pm3(Ym|θm)dPm2(Ym2|θm)dFm(θm).

Women’s marriage characteristics measure µw is similarly characterized. The women who
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earn less than income Yw and stay reproductively fit include those who do not go to college

and marry at age 1 with income less than Ym, those who go to college and accept an income

offer less than Yw at age 2, and those who make the career investment stay reproductively

fit and receive an income less than Yw in the third period,

µw([YwL, Yw]×RH) =

[ˆ
(1− σw1(θw))dFw(θw)

]
Pw1(Yw) +

ˆ ˆ Yw

YwL

[1− σw2(θw, Yw2)] dPw2(Yw2|θw)dFw(θw) +

ˆ ˆ
σw2(θw, Yw2)Pw3(Ym|θm)dPw2(Yw2|θw)dFw(θw)φ(RH)

where φ(RH) is the probability measure of being highly reproductive. All of R < RH women

have entered the marriage market at age 3,

µw([YwL, Yw]× [RL, R]) =

ˆ ˆ
σw2(θw, Yw2)Pw3(Yw|θw)dPw2(Yw2|θw)dFw(θw)Φ(R).

In a marriage market described by (µm, µw), men and women match and bargain over

their marriage surplus. A stable outcome of the marriage market (µm, µw) consists of a

matching described by a measure µ on [YmL, YmH ] × [YwL, YwH ] × [RL, RH ] with marginals

µm and µw, and marriage payoff functions Vm : [YmL, YmH ] → R and Vw : [YwL, YwH ]× [RL,

RH ] → R. µ(Ym × Yw ×R) denotes the mass of matches between men with characteristics

Ym ∈ Ym and women with characteristics (Yw, R) ∈ Yw×R. Stable marriage payoff functions

Vm and Vw satisfy the following stability conditions. First, every agent receives weakly more

than being single: Vm(Ym) ≥ 0 for all Ym and Vw(Yw, R) ≥ 0 for all (Yw, R). Second, every

matched couple divides the entire surplus: Vm(Ym) + Vw(Yw, R) = S(Ym, Yw, R) for all (Ym,

Yw, R) ∈ supp(µ). Third, no unmatched couple can feasibly prefer to match with each other:

Vm(Ym) + Vw(Yw, R) ≥ S(Ym, Yw, R) for all Ym ∈ supp(µm) and (Yw, R) ∈ supp(µw). In

words, in a stable outcome, no one is willing to leave his or her partner and form a new

matching with someone else, because the current marriage payoff cannot be improved upon.
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For any marriage market (µm, µw), a stable outcome (µ, Vm, Vw) exists (Gretsky et al.,

1992). For any stable matching µ, let Xm(Yw, R) = {Ym|(Ym, Yw, R) ∈ supp(µ)} denote

the set of men with which a (Yw, R) woman is matched, and Xw(Ym) = {(Yw, R)|(Ym, Yw,

R) ∈ supp(µ)} the set of women with which a Ym man is matched. The stability conditions

imply that for any Ym,

Vm(Ym) = S(Ym, Yw, R)− Vw(Yw, R) ∀(Yw, R) ∈ Xm(Ym)

and

Vm(Ym) ≥ S(Ym, Yw, R)− Vw(Yw, R) ∀(Yw, R) ∈ supp(µw).

The two conditions together imply

Vm(Ym) = max
(Yw,R)∈supp(µw)

[S(Ym, Yw, R)− Vw(Yw, R)] .

In words, the partner with which any agent is matched gives the agent the highest payoff

possible. The similar condition holds for women,

Vw(Yw, R) = max
Ym∈supp(µm)

[S(Ym, Yw, R)− Vm(Ym)] .

The stability conditions above do not restrict Vm(Ym) or Vw(Yw, R) for out-of-support

marriage characteristics. We make the assumption that agents have rational expectations,

and know the stable marriage payoffs and partners if they enter the marriage market with

out-of-support marriage characteristics. Define for Ym ̸∈ supp(µm),

Vm(Ym) ≡ max
(Yw,R)∈supp(µw)

[S(Ym, Yw, R)− Vw(Yw, R)],

Xw(Ym) ≡ argmax
(Yw,R)∈supp(µw)

[S(Ym, Yw, R)− Vw(Yw, R)],
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and for (Yw, R) ̸∈ supp(µw),

Vw(Yw, R) ≡ max
Ym∈supp(µm)

[S(Ym, Yw, R)− Vm(Ym)],

Xm(Yw, R) ≡ argmax
Ym∈supp(µm)

[S(Ym, Yw, R)− Vm(Ym)].

1.3 Equilibrium

An equilibrium consists of men’s and women’s investment strategies σ∗
m and σ∗

w, distributions

of marriage characteristics µ∗
m and µ∗

w, a matching µ∗, and marriage payoff functions V ∗
m

and V ∗
w . In equilibrium, agents choose the investments that maximize their utilities, the

utility-maximizing investments induce distributions of income and reproductive fitness in

the marriage market, and the matching and the marriage payoff functions on which the

agents base their decisions form a stable outcome of the induced marriage market.

Definition 1. (σ∗
m, σ

∗
w, µ

∗
m, µ

∗
w, µ

∗, V ∗
m, V

∗
w) is an equilibrium if

1. Investment strategy σ∗
m(θm) = (σ∗

m1(θm), σ
∗
m2(θm, ·)) maximizes each θm−ability man’s

expected utility when men’s marriage payoff function is V ∗
m, and the investment strategy

σ∗
w(θw) = (σ∗

w1(θm), σ
∗
w2(θm, ·)) maximizes each θw−ability woman’s expected utility

when women’s marriage payoff function is V ∗
w ,

2. Men’s investment strategy σ∗
m induces men’s marriage characteristics measure µ∗

m, and

women’s investment strategy σ∗
w induces women’s marriage characteristics measure µ∗

w,

and

3. (µ∗, V ∗
m, V

∗
w) is a stable outcome of the marriage market (µ∗

m, µ
∗
w).

I characterize equilibrium components in the following order: investments (Section 1.3.1),

distributions of marriage characteristics (Section 1.3.2), matching (Section 1.3.3), and mar-

riage payoff functions (Section 1.3.4). Finally, I prove equilibrium existence (Section 1.3.5).
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1.3.1 College and Career Investments

Suppose that agents make their investment decisions with respect to stable marriage payoff

functions Vm and Vw. The marriage payoff functions are continuous and strictly increasing

in marriage characteristics, in particular in incomes and reproductive fitness (Gretsky et al.,

1992). Because the marriage payoff functions are increasing in incomes and a higher-ability

agent receives better income offers than a lower-ability agent making the same investment

in the first-order stochastic sense, a higher-ability agent receives a higher expected marriage

payoff from an investment than a lower-ability agent who makes the same investment. There-

fore, an agent makes a college investment if and only if his or her ability is sufficiently high,

and makes a career investment if and only if the income sufficiently low. Simple ability cut-

offs θm1 and θw1 characterize optimal college investment strategies and reservation incomes

Ym2(θm) and Yw2(θw) characterize optimal career investment strategies: for all θi and Yi2,

i = m,w,

σ∗
i1(θi) =

⎧
⎪⎪⎨

⎪⎪⎩

1 θi ≥ θi1

0 θi < θi1

, σ∗
i2(θi, Yi2) =

⎧
⎪⎪⎨

⎪⎪⎩

0 Yi2 ≥ Yi2(θi)

1 Yi2 < Yi2(θi)

.

1.3.1.1 Men’s Investments

By the Principle of Optimality, men’s optimal investment strategy σ∗
m = (σ∗

m1, σ
∗
m2) can

be solved by backward induction. We first solve men’s optimal career investment strategy

σ∗
m2. Suppose that an age 2 θm-ability man who has made the college investment receives

an income offer Ym2. If he accepts the offer, his utility is

Ym2 + Vm(Ym2).
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If he rejects the offer and makes a career investment, his utility is

−Cm2 + δE[Ym3 + Vm(Ym3)|θm].

Therefore, he makes a career investment if and only if

−Cm2 + δE[Ym3 + Vm(Ym3)|θm] ≥ Ym2 + Vm(Ym2).

With rearrangement,

δ [E(Ym3|θm)− Ym2]︸ ︷︷ ︸
labor market gain

+ δ [E(Vm(Ym3)|θm)− Vm(Ym2)]︸ ︷︷ ︸
marriage market gain

≥ (1− δ) [Ym2 + Vm(Ym2)]︸ ︷︷ ︸
cost of delay

+ Cm2︸︷︷︸
investment cost

where the left-hand side represents the benefits of the labor market gain and the marriage

market gain, and the right-hand side represents the cost of delay and the cost of investment.

There is a reservation income Ym2(θm) for each θm such that an ability θm agent only accepts

an income offer exceeding Ym2(θm). Ym2(θm) satisfies

−Cm2 + δE[Ym3 + Vm(Ym3)|θm] = Ym2(θm) + Vm(Ym2(θm)).

Ym2(θm) ∈ (−∞, YmH ] is unique and is increasing in θm since δE[Ym3 + Vm(Ym3)|θm] and

Vm(·) are continuous and increasing in θm.

We can solve for the optimal college investment strategy given the optimal career invest-

ment strategy. A θm-ability man who does not go to college gets expected utility

E [Ym1 + Vm(Ym1)] .

If he goes to college, his expected utility is

−Cm1 + δE
[
max

{
Ym2 + Vm(Ym2),−Cm2 + δE[Ym3 + Vm(Ym3)|θm]

}
|θm
]
.

The expected utility of the college investment increases with θm, because Pm2 and Pm3 are
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first-order stochastically ranked by θm. Therefore, an agent goes to college only if he is above

ability θm1, the smallest solution to

−Cm1 + δE[max{Ym2 + Vm(Ym2),

−Cm2 + δE[Ym3 + Vm(Ym3)|θm1]|θm1}] ≥ E [Ym1 + Vm(Ym1)] .

Since the expected utility of going to college strictly increases with ability, the cutoff θm1 is

unique. Without any restrictions on the parameters, it is possible that every man invests or

no man invests (θm1 = 0 or θm1 = 1).

1.3.1.2 Women’s Investments

Women’s optimal investment strategy can also be solved by backward induction. Suppose

that a θw-ability woman receives an income offer of Yw2. If she accepts the offer, her utility

is

Yw2 + Vw(Yw2, RH).

If she rejects the offer and makes a career investment, her utility is

−Cw2 + δEYw3,R[Yw3 + Vw(Yw3, R)|θw].

She makes a career investment if and only if

δ[E(Yw3|θw)− Y2]︸ ︷︷ ︸
labor market gain

+ δ[E(Vw(Yw3, RH)|θw)− Vw(Yw2, RH)]︸ ︷︷ ︸
marriage market gain

≥ (1− δ)[Yw2 + Vw(Yw2, RH)]︸ ︷︷ ︸
cost of delay

+ Cw2︸︷︷︸
investment cost

+ δE[Vw(Yw3, RH)− Vw(Yw3, R)|θw]︸ ︷︷ ︸
fitness cost

.

Women face a fitness cost in addition to the same benefits and costs men face. A woman

expects to gain in the income dimension of the marriage payoff with a career investment but

expects to lose in the fitness dimension. A θw-ability woman’s optimal career investment
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strategy is characterized by a reservation income Yw2(θw), which is the unique solution to

Yw2(θw) + Vw(Yw2(θw), RH) = −Cw2 + δEYw3,R[Yw3 + Vw(Yw3, R)|θw].

Given the optimal career investment, we can then solve the optimal college investment.

A θw-ability woman who does not go to college gets

E[Yw1 + Vw(Yw1, RH)].

A θw-ability woman who goes to college gets

−Cw1 + δE[max{Yw2 + Vw(Yw2, RH),−Cw2 + δE[Yw3 + Vw(Yw3, R)|θw]}|θw].

All women above cutoff ability θw1 go to college, where θw1 ∈ [0, 1] is the smallest solution

to

−Cw1 + δE[max{Yw2 + Vw(Yw2, RH),

−Cw2 + δE[Yw3 + Vw(Yw3, R)|θw1]}|θw1] ≥ E[Yw1 + Vw(Yw1, RH)].

1.3.2 Distributions of Marriage Characteristics

Equal unit masses of men and women are in the marriage market. Men above ability θm1

go to college, and among them, those who receive an income offer above Ym2(θm) accept the

offer and enter the marriage market at age 2, and those who receive an income offer below

Ym2(θm) make the career investment and enter the marriage market at age 3. The measure

of men’s marriage characteristics induced by the optimal strategy is

µm([YmL, Ym]) = Fm(θm1)Pm1(Ym) +ˆ 1

θm1

Pm2(min{Ym, Ym2(θm)}|θm)dFm(θm) +

ˆ 1

θm1

[1− Pm2(Ym2(θm)|θm)]Pm3(Ym|θm)dFm(θm).
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The measure of women’s characteristics is similarly derived.

µw([YwL, Yw]×RH) = Fw(θw1)Pw1(Yw) +ˆ 1

θm1

Pw2(min{Yw, Yw2(θw)}|θw)dFw(θw) +

ˆ 1

θw1

[1− Pw2(Yw2(θw)|θw)]Pw3(Yw|θw)dFw(θw)φ(RH).

For R < RH ,

µw([YwL, Yw]× [RL, R]) =

ˆ 1

θw1

[1− Pw2(Yw2(θw)|θw)]Pw3(Yw|θw)dFw(θw)Φ(R).

1.3.3 Marriage Matching

By Gretsky et al. (1992), stable matching µ exists and solves the primal linear program

PP(µm, µw)

max
µ̃

ˆ
Sdµ̃ s.t. µ̃ has marginals µm and µw.

That is, stable matching maximizes the total surplus of the marriage market (µm, µw). To

further characterize the stable matching pattern, we need to impose additional restrictions

on the marriage surplus function.

Lemma 1. Suppose that the marriage surplus function is strictly supermodular (submodular)

in incomes, that is, for all Y ′
m > Ym and Y ′

w > Yw, S(Y ′
m, Y

′
w, R) + S(Ym, Yw, R) > (<)S(Y ′

m,

Yw, R) + S(Ym, Y ′
w, R). Men and women of a fixed fitness level are positive-assortatively

(negative-assortatively) matched: for almost all (Y ′
m, Y

′
w, R) and (Ym, Yw, R) in the support

of µ, Y ′
m > Ym if and only if Y ′

w > (<)Yw.

Let me characterize the stable matching with continuous incomes and two fitness levels RL

and RH and the surplus function strictly supermodular in Ym and Yw and in Ym and R.3

3See Chiappori et al. (2012) and Low (2015) for similar matching models with a continuous income
characteristic and a second binary characteristic.
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The key complication compared to the basic one-dimensional setting of Becker (1973) is

that agents of identical characteristics may be matched with partners of different marriage

characteristics. In this particular setting, a man may be indifferent between a high-income

less-fit woman and a low-income fit woman. Top-income men are matched to top-income fit

women, and bottom-income men are matched to bottom-income fit women. The complica-

tion is that some middle-income men may be matched to a lower-income fit woman with or

a higher-income less-fit woman. The matching can be divided into two scenarios depending

on whether or not there exists a positive mass of the middle-income men. The importance

of fitness plays a key role in the distinction of the two cases. When fitness is an important

consideration in marriage, less-fit women cannot compensate their lower fitness with higher

income to marry a top-income man. In this case, higher-income men marry fit women and

lower-income men marry less-fit women. When the fitness is less important so that a woman

can compensate her fitness loss with income gain to attract a top-income man, a positive

mass of middle-income men is matched to either a high-income less-fit woman or a low-

income fit woman. Figure 1.1 illustrates the two cases of equilibrium matching. The exact

condition that formalizes the importance of the fitness and the stable matching patterns are

delineated in the following lemma.

Lemma 2. Suppose that S(Ym, Yw, R) is twice differentiable, and strictly supermodular in Ym

and Yw, and in Ym and R, and that the marriage market is described by marriage characteris-

tics measures µm with support on [YmL, YmH ] and µw with support on [YwL, YwH ]×{RL, RH}.

Define income distributions Gm(Ym) = µm([YmL, Ym]), GwL(Yw) = µw([YwL, Yw] × RL) and

GwH(Yw) = µw([YwL, Yw] × RH), and cutoff income Y ∗
m = G−1

m (GwL(YwH)). Consider the

following condition

S(Y ∗
m, G

−1
wH(Gm(Ym)−GwL(YwH)), RH) + S(Y ∗

m, YwH , RL)

≥ S(Y ∗
m, G

−1
wH(Gm(Ym)−GwL(YwH)), RH) + S(Ym, YwH , RL) ∀Ym ≥ Y ∗

m (1.1)
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Y ∗
m

Xm(Yw, RH)

Xm(Yw, RL)

YwHYwL

YmH

YmL

top

bottom

(1) pure matching

Y +
m

Y −
m

Xm(Yw, RH)

Xm(Yw, RL)

YwHYwL

YmH

YmL

top

middle

bottom

(2) mixed matching

Figure 1.1: Two stable matching patterns. The left panel illustrates the pure matching that
arises when fitness is important. The right panel illustrates the mixed matching that arises
when fitness is less important.

1. (Pure Matching) If and only if Condition 1.1 holds, almost all income Ym ≥ Y ∗
m men

marry RH women and almost all income Ym ≤ Y ∗
m men marry RL women.

2. (Mixed Matching) If and only if Condition 1.1 does not hold, there exist Y −
m and Y +

m

such that almost all income Ym ≥ Y +
m men marry RH women, almost all income

Ym ≤ Y −
m men marry RL women, and almost all income Ym ∈ [Y −

m , Y +
m ] men marry

either a RL or RH woman with positive probability.

Condition 1.1 is the “twisted-buyer” condition (Chiappori et al., 2010) specialized to the

setting with binary fitness. The general stable matching pattern is more complicated to

characterize and depends on more assumptions about the distributions of marriage charac-

teristics as well as the marriage surplus function.

1.3.4 Marriage Payoffs

By Gretsky et al. (1992), stable marriage payoff functions Vm and Vw exist and solve the

dual linear problem DP(µm, µw)

min
Ṽm,Ṽw

ˆ
Ṽmdµm +

ˆ
Ṽwdµw
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s.t. Ṽ m(Ym) ≥ 0, Ṽw(Yw, R) ≥ 0, Ṽm(Ym) + Ṽw(Yw, R) ≥ S(Ym, Yw, R) ∀(Ym, Yw, R).

Furthermore, if the marriage surplus function is twice differentiable and strictly increasing,

then stable marriage payoff functions are twice differentiable and strictly increasing. A

person is matched to the partner who gives him or her the highest possible marriage payoff,

Vw(Yw, R) = max
Ym∈supp(µm)

[S(Ym, Yw, R)− Vm(Ym)].

By the Envelope Theorem, for any (Yw, R) and Ym ∈ Xm(Yw, R),

∂Vw(Yw, R)

∂Yw
= S2(Ym, Yw, R).

By integration, women’s stable marriage payoff function satisfies

Vw(Yw, R)− Vw(YwL, R) =

ˆ Yw

YwL

S2(Ỹm, Ỹw, R)dỸw Ỹm ∈ Xm(Ỹw, R).

Similarly, men’s stable marriage payoff function satisfies4

Vm(Ym)− Vm(YmL) =

ˆ Ym

YmL

S1(Ỹm, Ỹw, R̃) dR dỸm (Ỹw, R̃) ∈ Xw(Ỹm).

1.3.5 Equilibrium Existence

Theorem 1. An equilibrium (σ∗
m, σ

∗
w, µ

∗
m, µ

∗
w, µ

∗, V ∗
m, V

∗
w) exists.

In order to establish equilibrium existence, first fix a pair of marriage payoff functions (Vm,

Vw). We have characterized the optimal investment strategy (σm, σw) = Γσ(Vm, Vw) with

respect to (Vm, Vw) in Section 1.3.1, the pair of marriage characteristics measures (µm, µw) =

Γµ(Γσ(Vm, Vw)) induced by the optimal strategy Γσ(Vm, Vw) in Section 1.3.2, and the set

of stable marriage payoff functions ΓV (Γµ(Γσ(Vm, Vw))) of the marriage market Γµ(Γσ(Vm,

4In order for the above equations to be well-defined, we must have S1(Ym, Yw, R) to be equal for all (Yw,
R) ∈ Xw(Ym) for any given Ym. This is warranted because for (Yw, R), (Y ′

w, R
′) ∈ Xw(Ym), Vm(Ym) = S(Ym,

Yw, R) − Vw(Yw, R) = S(Ym, Y ′
w, R

′) − Vw(Y ′
w, R

′). Using the Envelope Theorem, V ′
m(Ym) = S1(Ym, Yw,

R) = S1(Ym, Y ′
w, R

′).
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Vw)) in Section 1.3.4. (Vm, Vw), Γσ(Vm, Vw), and Γµ(Γσ(Vm, Vw)) compose an equilibrium if

(Vm, Vw) ∈ ΓV (Γµ(Γσ(Vm, Vw))). Therefore, an equilibrium exists if the composite mapping

ΓV ◦ Γµ ◦ Γσ : (Vm, Vw) ! (Vm, Vw) has a fixed point. We can apply Glicksberg (1952) fixed-

point theorem to show equilibrium. By Glicksberg, it suffices to show that the set of stable

marriage payoff functions is nonempty, convex, and compact, the correspondence ΓV ◦Γµ◦Γσ

is upper-hemicontinuous, and ΓV ◦ Γµ ◦ Γσ(Vm, Vw) is nonempty, convex, and compact for

each (Vm, Vw).

The primary difficulty is to show the compactness of the set of stable marriage payoff

functions. The stability conditions and the Arzelà-Ascoli theorem imply compactness. By

the Arzelà-Ascoli theorem, the set of stable marriage payoff functions is compact if and only

if a sequence of stable marriage payoff functions is uniformly bounded and equicontinuous.

Uniform boundedness follows directly from the boundedness of the surplus function. The

equicontinuity relies on the stability condition. Take any stable marriage payoff functions

Vm and Vw. Take a Ym man who is matched to a (Yw, R) woman. The stable marriage payoff

functions satisfy Vm(Ym) = S(Ym, Yw, R)− Vw(Yw, R). Any Y ′
m < Ym man’s marriage payoff

Vm(Y ′
m) = max(Y ′

w,R′)∈supp(µw)[S(Y ′
m, Y

′
w, R

′) − Vw(Y ′
w, R

′)]. The difference Vm(Ym) − Vm(Y ′
m)

is

[S(Ym, Yw, R)− Vw(Yw, R)]− max
(Y ′

w,R′)∈supp(µw)
[S(Y ′

m, Y
′
w, R

′)− Vw(Y
′
w, R

′)]

which is smaller than

[S(Ym, Yw, R)− Vw(Yw, R)]− [S(Y ′
m, Yw, R)− Vw(Yw, R)] = S(Ym, Yw, R)− S(Y ′

m, Yw, R).

Since the difference Vm(Ym)−Vm(Y ′
m) only depends on the surplus function S, it is equicon-

tinuous.

The proof techniques can be adapted to any investments-and-matching model that uses

the Becker-Shapley-Shubik matching model. Equilibrium can be shown to exist with these

18



techniques in the models of Low (2015) and Chiappori et al. (2015b) that lack an equilibrium

existence proof. Furthermore, note that the current proof only relies on the stability condi-

tions of the marriage market, and does not rely on restrictions previous papers have hinged

on, such as the dimensionality of the marriage characteristics, discreteness or continuity of

the marriage characteristics support and supermodularity of the marriage surplus function.

Let me show two examples in which the existence proofs can be simplified by the current

proof techniques. In Iyigun and Walsh (2007), men and women are endowed with asset.

They can choose to divide up the endowment into current consumption and investment that

enriches future consumption. Men and women are characterized by their investments in the

marriage market and then match and bargain over the surplus exactly as in this setting.

Equilibrium was shown to exist under an unnatural condition that cannot be easily verified.

With our proof techniques, we can show that an equilibrium always exists. Construct the

composite mapping from stable marriage payoff functions to the investment strategies to

the distribution of marriage characteristics back to the space of marriage functions. We can

apply Glicksberg’s fixed-point theorem on the mapping to show existence, and the Arzelà-

Ascoli theorem to take care of the compactness. In Chiappori et al. (2009), men and women

born with heterogenous costs of education decide whether or not to go to college. Going to

college delays entering the marriage market but makes a person an educated type. Agents are

matched based on their education types and match-specific shocks. The authors explicitly

characterize a quadruple of stable marriage payoffs of an educated/uneducated man/woman

and the induced distributions of education and show equilibrium existence under different

parameters. Instead, we can apply Glicksberg’s fixed-point theorem as done here without

the explicit characterization.
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1.4 A Simple Model

I present a simplified version of the general framework in this section. Assume no discounting:

δ = 1. Let Pi1 be degenerate: any agent without a college investment gets a low income

YiL. Let Pi2(·|θi) = Pi3(·|θi) with supports on YiL and YiH : after either investment, an agent

gets a high-income offer with probability θi and a low-income offer with probability 1 − θi.

Equate investment costs too: Ci = Ci1 = Ci2. Since an age 2 agent always accepts the high-

income offer, agents’ two decisions can be simply characterized by σi1(θi) the probability

of making a college investment and σi2(θi) the probability of a career investment at age 2

conditional on receiving a low-income offer. Assume that it is a strictly dominant strategy

for the highest ability agents to invest.5 The women who enter the marriage market in the

first period or the second period stay fit, but the women who enter the marriage market in

the third period stay fit with probability φH and become less fit (RL < RH) with probability

φL = 1−φH . Stationary and symmetric strategies σm and σw induce stationary measures µm

on {YmL, YmH} and µw on {YwL, YwH} × {RL, RH}. Furthermore, assume that the surplus

function is strictly supermodular in Ym and Yw and in Ym and R.

Let us characterize the equilibrium. The optimal investments can be characterized by

simple ability cutoffs. A θm-ability man makes a career investment if and only if

θm[YmH − YmL]︸ ︷︷ ︸
labor market gain

+ θm[Vm(YmH)− Vm(YmL)]︸ ︷︷ ︸
marriage market gain

− Cm︸︷︷︸
investment cost

≥ 0.

A man makes a career investment if his ability exceeds

θm2 =
Cm

YmH − YmL + Vm(YmH)− Vm(YmL)
.

5The conditions that guarantee the strict dominance are Cm < YmH −YmL +S(YmH , YwL, RL)−S(YmL,
YwL, RL) and Cw+φL[S(YmL, YwL, RH)−S(YmL, YwH , RL)] < YwH −YwL+φH [S(YmL, YwH , RH)−S(YmL,
YwL, RH)].
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A θm-ability man makes a college investment if and only if

θm[YmH − YmL]︸ ︷︷ ︸
labor market gain

+ θm[Vm(YmH)− Vm(YmL)]︸ ︷︷ ︸
marriage market gain

− Cm︸︷︷︸
investment cost

+(1− θm)1θm≥θm2 [θm(YmH − YmL + Vm(YmH)− Vm(YmL))− Cm]︸ ︷︷ ︸
net gain from a career investment

≥ 0.

A θm-ability man makes a college investment if and only if

θm[YmH − YmL] + θm[Vm(YmH)− Vm(YmL)]− Cm ≥ 0.

Therefore, a man makes a college investment if his ability exceeds

θm1 =
Cm

YmH − YmL + Vm(YmH)− Vm(YmL)
,

the same as the career investment cutoff θm2. Let θ∗m ≡ θm1 = θm2. In summary, ability

θm ≤ θ∗m men do not make any investment, and ability θm ≥ θ∗m men make the college

investment and make the career investment if they receive a low-income offer after the college

investment.

Women’s optimal investments can be similarly characterized. An ability θw woman makes

a career investment if and only if

θw[YwH − YwL]︸ ︷︷ ︸
labor market gain

+ θw[Vw(YwH , RH)− Vw(YwL, RH)]︸ ︷︷ ︸
marriage market gain

− Cw︸︷︷︸
investment cost

−φL[θw(Vw(YwH , RH)− Vw(YwH , RL)) + (1− θw)(Vw(YwL, RH)− Vw(YwL, RL))]︸ ︷︷ ︸
fitness cost

≥ 0.

When a woman makes a career investment, she pays not only an investment cost but also

a fitness cost. With probability φL, she has lower fitness thus lower gain in the marriage

market. A woman makes a career investment if and only if her ability exceeds

θw2 =
Cw + φL(Vw(YwL, RH)− Vw(YwL, RL))

YwH − YwL + φHVw(YwH , RH) + φLVw(YwH , RL)− φHVw(YwL, RH)− φLVw(YwL, RL)
.
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Figure 1.2: Men’s and women’s equilibrium strategy, marriage-age, and income.

A θw-ability woman’s college investment yields an expected utility gain of

−Cw + θw[YwH − YwL] + θw[Vw(YwH , RH)− Vw(YwL, RH)] + (1− θw)1θw≥θw2 ×

{−Cw + θw[YwH − YwL + Vw(YwH , RH)− Vw(YwL, RH)]− fitness cost}.

The marginal gain from a career investment is strictly smaller than the marginal gain from a

college investment. Therefore, a woman makes a college investment if and only if her ability

exceeds

θw1 =
Cw

YwH − YwL + Vw(YwH , RH)− Vw(YwL, RH)
.

Unlike men’s equal thresholds, women’s ability thresholds for the two investments are differ-

ent. In summary, ability θw < θw1 women never invest, ability θw1 ≤ θw < θw2 women make

the college investment but never make the career investment, and ability θw ≥ θw2 women

make the college investment as well as the career investment.

The marriage market (µm, µw) induced by these optimal investments is summarized by

six numbers: µm(YmL), µm(YmH), µw(YwL, RL), µw(YwH , RL), µw(YwL, RH), µw(YwH , RH).

Low-income men in the marriage market consist of those who do not go to college and those

who receive a low-income offer at age 3 after two unsuccessful investments,

µm(YmL) = Fm(θ
∗
m) +

ˆ 1

θ∗m

(1− θm)
2dFm(θm).
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High-income men consist of those who go to college and receive a high-income offer at age 2

and those who reject a low-income offer after college and receive a high income-offer at age

3,

µm(YmH) =

ˆ 1

θ∗m

[1− (1− θm)
2]dFm(θm).

Fit low-income women include those who do not go to college, those who accept a low-income

offer at age 2 after college and those who receive a low-income offer at age 3 after a career

investment and stay fit,

µw(YwL, RH) = Fw(θw1) +

ˆ θw2

θw1

(1− θw)dFw(θw) + φH

ˆ 1

θw2

(1− θw)
2dFw(θw).

Fit high-income women include those who receive a high-income offer at age 2, and a high-

income offer at age 3 after a career investment and stay fit,

µw(YwH , RH) =

ˆ 1

θw1

θwdFw(θw) + φH

ˆ 1

θw2

(1− θw)θwdFw(θw)

Less-fit high-income women are those who receive a high-income offer at age 3 after a career

investment and become less-fit,

µw(YwH , RL) = φL

ˆ 1

θw2

[1− (1− θw)
2]dFw(θw).

Less-fit low-income women are those who receive a low-income offer at age 3 after a career

investment and become less-fit,

µw(YwL, RL) = φL

ˆ 1

θw2

(1− θw)
2dFw(θw).

Now let me describe the stable matching. Since the surplus function is strictly super-

modular in Ym and Yw and in Ym and R, by Lemma 1, almost all (YwH , RH) women marry

higher-income husbands than any other women, and (YwL, RL) women marry lower-income

husbands than any other women. However, whether (YwH , RL) or (YwL, RH) women marry
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higher-income husbands depends on whether the following condition holds:

S(YmH , YwL, RH) + S(YmL, YwH , RL) > S(YmH , YwH , RL) + S(YmL, YwL, RH), (1.2)

This is parallel to Condition 1.1 in the continuous case. Figure 1.3 illustrates the two possible

scenarios. The left panel illustrates the case when (YwL, RH) women marry higher-income

husbands than (YwH , RL) women, and the right panel illustrates the case when (YwH , RL)

women marry higher-income husbands than (YwH , RL). Say Xm(Y,R) ≥ Xm(Y ′, R′) if almost

all (Y,R) women marry higher-income husbands than (Y ′, R′) women.

YmH

YmL

(YwH , RH)

(YwL, RH)

(YwH , RL)

(YwL, RL)

Xm(YwL, RH) ≥ Xm(YwH , RL)

YmH

YmL

(YwH , RH)

(YwH , RL)

(YwL, RH)

(YwL, RL)

Xm(YwL, RH) ≤ Xm(YwH , RL)

Figure 1.3: Stable matchings when the marriage characteristics take binary values.

Finally, the stability conditions pin down the marriage payoffs. For example, in the left

panel of Figure 1.3, these conditions pin down the marriage payoff functions up to a constant,

Vm(YmH)− Vm(YmL) = S(YmH , YwH , RL)− S(YmL, YwH , RL),

Vw(YwH , RH)− Vw(YwL, RH) = S(YmH , YwH , RH)− S(YmH , YwL, RH),

Vw(YwH , RH)− Vw(YwH , RL) = S(YmH , YwH , RH)− S(YmH , YwH , RL),

Vw(YwH , RL)− Vw(YwL, RL) = S(YmL, YwH , RL)− S(YmL, YwL, RL).

Since agents base their investment decisions on marriage payoff difference between the high-

income and the low-income, despite of indeterminacy in marriage payoffs, investments are

unique.
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Theorem 2. An equilibrium (σ∗
m, σ

∗
w, µ

∗
m, µ

∗
w, µ

∗, V ∗
m, V

∗
w) exists uniquely, with the equilibrium

marriage payoffs unique up to a constant.

The proof explicitly shows that the equilibrium is unique under different parameters of the

model. The proof idea is that an increase in equilibrium µm(YmH) is accompanied by a

decrease in equilibrium marriage payoffs difference Vm(YmH) − Vm(YmL). The difference

between stable marriage payoffs Vm(YmH)− Vm(YmL) equals

λ[S(YmH , YwL, RL)−S(YmL, YwL, RL)]+(1−λ)[S(YmH , YwH , RH)−S(YmL, YwH , RH)] ≡ ∆(λ)

for some λ ∈ [0, 1]. When λ = 0, the stable marriage payoffs difference Vm(YmH)−Vm(YmL) =

S(YmH , YwH , RH)−S(YmL, YwH , RH), which is only satisfied when µm(YmH) < µw(YwH , RH);

when λ = 1, Vm(YmH) − Vm(YmL) = S(YmH , YwL, RL) − S(YmL, YwL, RL), which is only

satisfied when µm(YmH) > µw(YwH , RH) + µw(YwL, RH) + µw(YwH , RL). When µw(YwH ,

RH) ≤ µm(YmH) ≤ µw(YwH , RH)+µw(YwL, RH)+µw(YwH , RL), Vm(YmH)−Vm(YmL) = ∆(λ)

for some λ ∈ (0, 1), depending on the distributions of marriage characteristics. Each λ

corresponds to the marriage market in which Vm(YmH)−Vm(YmL) = ∆(λ); there are fourteen

possible marriage markets as enumerated in the proof.

Start with some λ. The stable marriage payoffs corresponding to λ induce optimal

investments, and the optimal investments induce marriage characteristics distributions (µ′
m,

µ′
w). The stable marriage payoffs difference V ′

m(YmH) − V ′
m(YmL) in the marriage market

(µ′
m, µ

′
w) equals ∆(η) for some η ∈ [0, 1]. η corresponds to the marriage market (µ′

m, µ
′
w).

For each λ, let η(λ) denote the marriage market induced by the marriage market λ. λ∗ is an

equilibrium if λ∗ = η(λ∗). If η(λ) is strictly decreasing in λ, then there is a unique solution

λ∗ to λ = η(λ) and there is a unique equilibrium.

The reasoning for decreasing η(λ) is as follows. When λ increases, Vm(YmH)− Vm(YmL)

decreases, and µm(YmH) increases: high-income men’s relative value decreases if and only

if high-income men become more abundant. When Vm(YmH) − Vm(YmL) decreases, men’s
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incentive to make investments decreases and the mass of men making investments decreases.

The mass of high-income men µ′
m(YmH) in the induced marriage market η(λ) decreases.

V ′
m(YmH)− V ′

m(YmL) = ∆(η(λ)) increases and η(λ) decreases.

1.5 Implications

1.5.1 The College Gender Gap Puzzle

More and more women are going to college around the world, both in absolute numbers

and in percentages. For example, in the United States, women’s college enrollment rate has

increased rapidly from 10% in 1970 to 45% in 2010. Several factors contribute to the rise.

The labor market returns to college increased as the demand for skilled workers rose, the

social norm for women to stay at home and take care of family has loosened as the home

production technology (e.g., domestic time-saving appliances) has improved. The home

production technology improvement has both freed women from the household to the work

force as well as demanded more knowledge and education for everyday chores.

With so many factors contributing to the rise, it is not surprising to see that women’s

college enrollment rate has increased worldwide and has caught up with men’s. As costs of

investments, labor market opportunities, roles in the family converge for the two genders,

we would expect women’s college enrollment rate to converge to men’s. However, it is very

surprising to see that more women than men are going to college in most developed countries

today. In 2014, women constituted 57% of college freshmen in the United States, and 58% in

Canada. More women than men are in college in 30 out of 34 OECD countries.6 The reversal

of the college gender gap is indisputable by different measures such as entrance enrollment

rate, graduation rates from two-year and four-year colleges.7 It is not only surprising but
6Exceptions are Japan and Korea, and the two lowest-income countries Turkey and Mexico.
7See Goldin et al. (2006) for college education patterns of the United States over the last one hundred
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also puzzling because women’s labor market returns to college are not significantly higher

than men’s, and women on average still earn less than men in the workforce.

There have been many explanations for the reversal of the college gender gap. The most

natural explanation is the gender difference in labor market returns to college. However, em-

pirically the result is debatable (Dougherty, 2005; Mulligan and Rubinstein, 2008; Hubbard,

2011). If anything, men’s labor market returns to college are higher than women’s. Even

if the gender difference in labor market returns can explain for example the United States’

college gender gap, it is not likely that the labor markets across all developed countries are

organized in similar ways. There should be other inherent gender differences that contribute

to the reversal of the college gender gap. Goldin et al. (2006) and Becker et al. (2010a) argue

that the gender difference is in non-cognitive abilities. Men’s ability distribution is more

spread than women’s, but women have a higher average ability; therefore, when there are

few college students, only the top students, consisted of mostly men, go to college, but when

more people go to college, many more women of similar intermediate abilities go, causing the

reversal of the college gender gap. Their evidence was the difference in high school grades.

However, it is not always the case the college gender gap reverses at a certain enrollment

rate. Moreover, high school grades can be interpreted as measures of investment efforts by

parents instead of inherent abilities. There must be other factors that contribute to the

reversal of the college gender gap.

I stress the gender difference in the marriage market returns to college. The marriage

market returns to college have been found to be on the same order of magnitude as the

labor market returns to college (Bruze, 2015). Chiappori et al. (2009) and Chiappori et al.

(2015a) argue and present evidence for women’s higher marriage market returns to college in

the United States. The theoretical argument in Chiappori et al. (2009) can be further refined.

In their model, more women than men go to college only when women are advantageous in

years. See Becker et al. (2010a) for college education patterns around the world since World War II.
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some aspect: for example, women contribute more to the marriage surplus or earn more than

men in the labor market. In contrast, in my model it is always the case that more women

than men go to college even when men and women are the same except for that women face

the fertility loss disadvantage that tampers with their career investment incentives.

Proposition 1. Suppose that the setting is gender-symmetric except for the gender difference

in fitness: men and women have the same ability distribution (Fm = Fw = F ), have the

same investment cost (Cm = Cw = C), face the same labor market opportunities (PmH =

PwH = PH and PmL = PwL = PL), contribute to the marriage surplus symmetrically (S(Ym,

Yw, R) = S(Yw, Ym, R)), but women become less fit with positive probability (φL > 0). In

equilibrium, strictly more women than men go to college.

Let me explain the logic of the result. When the setting is totally gender-symmetric (φH = 1),

every man and woman above a certain ability goes to college and makes a career investment

after receiving a low-income offer. The same number of men and women go to college in

equilibrium. When women face reproductive fitness loss (φH < 1), men’s and women’s

investment strategies differ. Whereas every college man still makes a career investment after

receiving a low-income offer, not every college woman makes a career investment. As a result,

fewer women than men end up with high-income jobs. But remember, the same people are

also in the marriage market. The marriage payoffs are determined by supply and demand

of different marriage characteristics. High-income women, compared to high-income men,

are scarcer, and are therefore more valuable in the marriage market. The labor market gain

from a college investment is the same for men and women, and the marriage market gain

from a college investment is endogenously higher for women. A woman therefore gains more

from a college investment.

This model makes the college gender gap puzzle less puzzling. We present an equilibrium

model in which more women than men go to college but women still earn less than men
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on average. The gender difference in reproductive fitness and the marriage market play

important roles in the result. Women’s fitness cost in the third period directly discourages

women from making career investments, but through the endogenous division of surplus

in the marriage market the scarcity of high-income women indirectly encourages women to

make college investments.

Let me elaborate. Figure 1.4 illustrates the returns to college for men and women of

heterogeneous abilities. The highest-ability women has higher returns to college than the

highest-ability men

YH − YL + V ∗
w(YH , RH)− V ∗

w(YL, RH) > YH − YL + V ∗
m(YH)− V ∗

m(YL).

The highest-ability women have higher marriage market returns and they do not worry about

fitness constrain because they always succeed right out of college. All other intermediate-

ability women need to worry about the fitness cost. Because of the fitness cost, some of the

infra-marginal female college graduates with abilities between θ∗w1 and θ∗w2 have lower returns

to college than the male college graduates with the same ability. However, the marginal

θ∗w1−ability female college graduates always receive higher total returns to college than men

of the same ability. It crucial to distinguish infra-marginal and marginal college graduates’

returns to college with a model of heterogeneous agents. The fitness cost constrains the infra-

marginal female college graduates’ career investment incentives but does not affect directly

the marginal female college graduates’ investment incentives. In fact, the fitness cost makes

high-income women scarcer and through the endogenous determination of marriage payoffs

indirectly raises the marginal women’s college investment incentives.

The model with heterogeneous agents also calls for more care with estimating and inter-

preting average and marginal returns to college. Because some infra-marginal women have

lower returns to college than the men with the same income-earning ability, the average

marriage and labor market returns to college for women may be lower than for men even
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Figure 1.4: Equilibrium returns to college for men and women of heterogeneous abilities.

though the marginal returns to college are higher for women than for men, while more women

than men go to college. In addition, because different populations of men and women enter

college, the selection issue prevents us from simply estimating the average returns to college

as the difference between the incomes of those who go to college and of those who do not.

Finally, let us the importance of strict surplus supermodularity in incomes (∂2S/∂Ym∂Yw >

0) plays in Proposition 1. If the marriage surplus is modular in incomes (∂2S/∂Ym∂Yw = 0),

that is, there is no synergy between men and women in marriages, then always exactly

the same number of men and women go to college. If the marriage surplus is strictly sub-

modular in incomes (∂2S/∂Ym∂Yw < 0), weakly more women than men go to college in

equilibrium. The reversal of the college gender gap is unambiguous when the marriage sur-

plus function is strictly supermodular in incomes. Strict supermodularity in incomes implies

positive-assortative matching in incomes. The increase is empirically backed by the observed

increase in positive-assortative matching in incomes as well as in education. The increase

in positive-assortative matching is important to explain recent changes in marriage patterns

and in income inequality (Stevenson and Wolfers, 2007; Greenwood et al., 2014). In the

recent decades, as technological advances in home production free women from daily chores,

the role of the household has gradually transitioned from a unit of labor specialization (a

submodular surplus function) to a unit of labor cooperation (a supermodular surplus func-
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Figure 1.5: The relationships between marriage-age and income among American men ages
40-44 in 1980 and in 2012.

tion). When love and companionship are valued more, a husband and a wife of similar

education and income levels have more to share in their life and leisure, so the consideration

of complementing each other in intellectual activities is stronger than the consideration of

substituting each other for housework for example. In addition, human capital investments

in children have also become more important. The benefits multiply when both parents are

highly educated. Therefore, the transition of the role of marriage and family from a unit of

labor specialization to a unit of labor cooperation also serves as a potentially crucial reason

for the reversal of the college gender gap.

1.5.2 A Man’s Marriage-Age and His Income

Across time and countries, the relationship between a man’s age at first marriage and his

income later in life has been hump-shaped: those who married between 25 and 30 earned

more on average than those who married earlier and later. In addition, those who remain

unmarried into their forties earned the least. Figure 1.5 shows the relationship among

American men ages 40-44 in 1980 and in 2012. Figure 1.10 shows the same relationship

31



among Canadian men ages 40-44 in 1981 and among Brazilian men ages 40-44 in 1991.

Previous studies on the relationships between marriage-age and income cannot explain

the non-monotonic relationships. Furthermore, they are based on the outdated premise of

Becker (1973) that marriage and household formation allow men to specialize in labor-market

activities and women in household chores. Keeley (1974, 1977, 1979), using a search-theoretic

framework, predicts a negative marriage-age/income relationship because higher-income men

benefit more from marriage specialization and find partners more easily. Bergstrom and

Bagnoli (1993), using a signaling model, predict a positive relationship for men. They argue

that it takes time for men to reveal their true income-earning abilities, so men with higher

income-earning potential delay marriage.

The current model always predicts a hump-shaped relationship.

Proposition 2. The relationship between a man’s marriage-age and his income in equi-

librium is always hump-shaped: men who marry in the second period have higher average

income than those who marry in the first period and those who marry in the third period.

Figure 1.2 illustrates men’s equilibrium strategies, marriage-age and incomes. Those mar-

rying in the first period are the low-ability men who do not go to college and receive a low

income. Those marrying in the second period are the high-ability men who succeed with a

high income after a college investment. Those marrying in the third period are the high-

ability men who receive a low-income offer after college and make a career investment to try

to improve. Some of them succeed and receive a high income, while some of them fail and

receive a low income. On average, those marrying in the third period earn more than those

marrying in the first period but less than those marrying in the second period.

The upward-sloping portion of the hump-shaped curve comes from the fact that college

investment is time-intensive and delays marriage. Those men who marry early do not have a

bright labor market outlook and choose to marry as early as possible. Those who can have a
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brighter labor market outlook put in effort and take time to improve their chance of success

and delay marriage. The positive relationship is the same as in Bergstrom and Bagnoli (1993)

but the driving force is conceptually very different. Whereas in Bergstrom and Bagnoli

(1993), men delay marriage to reveal their private information of income-earning abilities,

in this model, everything is public information, and people delay marriage to improve their

income.

The downward-sloping portion of the hump-shaped curve among men who marry rel-

atively late formalizes the effect mentioned in the concluding remarks of Bergstrom and

Schoeni (1996), the first paper documenting men’s hump-shaped relationship between marriage-

age and income, “Some of these men who marry very late in life ... may be persons whose

successes in life have not met the expectations that led them to postpone marriage and who

continue to postpone marriage until their true worth is recognized.” This marriage-delaying

effect is also conceptually different from the marriage-market friction effect of Becker-Keeley.

The marriage delay in this model is due to the interaction of investments and the marriage

market. A less desirable outcome in the labor market incentivizes men to marry later but a

desirable outcome in the labor market incentivizes men to marry early.

My model also predicts that the lowest-income men will stay unmarried if there is an

unequal number of men and women in the marriage market. This prediction is also consis-

tent with the evidence presented by Figures 1.5 and 1.10. It formalizes another remark in

Bergstrom and Schoeni (1996): “There may also be a considerable number of men who are

such poor marriage material, that any woman whom they would wish to marry would prefer

being single to marrying one of these men.”

1.5.3 A Woman’s Marriage-Age and Her Income

Figure 1.6 shows the relationships between marriage-age and income among American
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Figure 1.6: The relationship between marriage-age and income among American women ages
40-44 in 1980 and in 2012.

women ages 40-44 in 1980 and in 2012. The relationship was positive in 1980: the later a

woman married, the more she earned. The same positive relationship was observed in Canada

and Brazil in 1981 and 1991 respectively (Figure 1.11). However, in 2012, women’s relation-

ship between marriage-age and income became similarly hump-shaped to men’s: those who

married after 35 earned less than those married before 35. The same relationships are un-

altered if we restrict the sample to different races or to only those who earned a positive

income.

Previous models could not predict the non-monotonic relationship and the change over

time. Becker (1973) and Keeley (1974, 1977, 1979), with their marriage-market friction

effect, predict that because low-income women benefit more from household specialization,

they marry earlier, and the marriage-age/income relationship is positive. Bergstrom and

Bagnoli (1993) on the other hand predict no relationship between women’s income and

marriage-age, because every woman marries in the first period in their two-period model.

The current model predicts the change from the positive relationship to the non-monotonic

relationship.

Proposition 3. When the fitness cost is sufficiently large (φH is sufficiently small and/or
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Condition 1.2 holds), the equilibrium marriage-age/income relationship for women is posi-

tive: the average income of women increases with their marriage-age. When the fitness cost

is sufficient small (φH is sufficiently large and/or Condition 1.2 does not hold), the equilib-

rium relationship is hump-shaped: the women who marry in the second period have higher

average income than those who marry in the first period and those who marry in the third

period.

Figure 1.2 shows women’s equilibrium strategies, marriage-age, and income when their in-

come abilities are uniformly distributed. Low-ability women marry in the first period and

all earn a low income. Those who marry in the second period consist of all the intermediate-

ability (between θ∗w1 and θ∗w2) women who do not make a career investment regardless of the

outcome of the college investment, and the high-ability women who receive a high income

after the college investment. Women who marry in the third period are those of high-ability

who receive a low-income offer after college and make a career investment.

The women who marry in the second period may have higher or lower average income than

the women who marry in the third period. When the fitness cost is high, only extremely

high-ability unlucky women make the career investment and delay marriage to the third

period. Many of those who marry in the second period are low-income earners. When the

fitness cost is low, more women make career investments but many of them marry with a

low income in the third period. In the extreme case when men and women do not have

any difference in reproductive fitness, women’s equilibrium strategies are the same as men’s,

and women’s marriage-age/income relationship becomes as hump-shaped as men’s. Among

the women who marry in the second period, not many will earn a low income. Among

the women who marry in the third period, many are of intermediate-ability rather than of

extremely-high ability, and they will earn a low income. The average income of those who

marry in the third period can be lower than the average income of those who marry in the

second period, and the marriage-age/income relationship is hump-shaped.
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Several factors in the model can contribute to the change in relationships from positive in

1980 to hump-shaped in 2012. The declining fitness cost in the marriage market results from

the interplay between social and economic changes that push up the supply of and down the

demand for women’s reproductive fitness. On one hand, the supply of reproductive fitness

has increased. Advances in medical technology (e.g. in-vitro fertilization, egg-freezing) and

better maternal health services result in higher probability of staying fit, so older women

can have children with more ease and less adverse health effects. On the other hand, the

demand for reproductive fitness has decreased. For instance, the desired family size has

decreased. In the United States, the average desired number of children has declined from

3.6 to 2.6 from 1960 to 2010. Demand for women’s reproductive fitness decreases because

increases in parents’ incomes as well as higher opportunity cost of raising kids prevent bigger

family size. Many families have shifted from demand for quantity of children to demand for

quality (Becker and Lewis, 1973). Women’s reproductive fitness becomes less of a concern

than women’s income and education. Finally, a simple increase in income gain from college

and career investments also has the same effect as a decrease in the relative importance of

reproductive fitness: when income gain becomes much more important, gender difference in

the marriage market becomes less important.

1.5.4 A Woman’s Marriage-Age and Her Husband’s Income

Figure 1.7 shows the relationship between a woman’s marriage-age and her husband’s

income. It was persistently hump-shaped: women who married around the median marriage-

age (22 in 1980, 26 in 2012) married husbands with the highest income on average. One-

dimensional assortative matching by incomes could not explain the non-monotonic relation-

ship. In 1980, as shown in Figure 1.6, the later a woman married, the more she earned on

average. If men and women are simply positive-assortatively matched by incomes, the later

36



16000

18000

20000

22000

24000

H
us

ba
nd

's 
In

co
m

e 
in

 1
98

0 
U

SD

< 20 20-25 25-29 30-34 35-39
Wife's Marriage-Age

Data source: US Census 1980

Husband's Income by Marriage-Age, USA 1980
40-44-year-old women

40000

50000

60000

70000

80000

H
us

ba
nd

's 
In

co
m

e 
in

 2
01

2 
U

SD

< 20 20-25 25-29 30-34 35-39
Wife's Marriage-Age

Data source: American Community Survey 2012

Husband's Income by Marriage-Age, USA 2012
40-44-year-old women

Figure 1.7: The relationship between a woman’s marriage-age and her husband’s income
among American women ages 40-44 was hump-shaped in both 1980 and 2012.

a woman marries, the more her husband would earn. If men and women are simply negative-

assortatively matched by incomes, the later a woman marries, the less her husband would

earn. Furthermore, such an assortative matching model cannot explain another change. In

1980, women who married before the median marriage-age had higher-income husbands than

those who married after the median marriage-age, but in 2012, women who married after

the median marriage-age had higher-income husbands than those who married before the

median marriage-age.

The extra dimension of reproductive fitness in the marriage market helps explain the

non-assortative matching as well as the change over time.

Proposition 4. The relationship between a woman’s marriage-age and her husband’s in-

come in equilibrium is always hump-shaped. When the fitness cost is sufficiently high (φH

is sufficiently small and/or Condition 1.2 holds), women who marry in the first period have

higher-income husbands on average than women who marry in the third period. When the

fitness cost is low, (φH is sufficiently large and/or Condition 1.2 does not hold), the women

who marry in the first period have lower-income husbands on average than the women who

marry in the third period.
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The women who marry in the first period have low average income but are reproductively

fit. The women who marry in the second period are reproductively fit and college-educated;

a significant portion earns a high income. The women who marry in the second period

earn a higher average income than those who marry in the first period, and all of them

are reproductively fit. By Lemma 1, because higher-income fit women marry higher-income

men, the women who marry in the second period have higher-income husbands on average

than the ones who marry in the first period. The women who marry in the third period have

relatively higher income but lower reproductive fitness on average than those who marry in

the first period.

The relative importance of reproductive fitness in the marriage market determines whether

those who marry in the first period or in the third period have higher-income husbands on

average. When the relative importance of reproductive fitness is so high that in the equilib-

rium matching fit women marry higher-income husbands than almost all less-fit women, then

those who marry in the third period marry lower-income husbands than those who marry in

the first period. Otherwise, if the relative importance of reproductive fitness is not as high

when Condition 1.2 does not hold, it is possible that higher income can compensate for lower

fitness in the marriage market, so that higher-income fit women may marry higher-income

husbands than low-income less-fit women. In addition, when φH is sufficiently large, the av-

erage income of the husbands of the women who marry at age 3 is larger than marriage-age

1 women’s husbands’ average income.

The right-skewed equilibrium relationship when reproductive fitness is important in the

marriage market is consistent with the observed relationship in 1980. The left-skewed equi-

librium relationship when reproductive fitness is less important in the marriage market is

consistent with the observed relationship in 2012. In 1980, higher-income men in general

married low-income fit women but recently higher-income men marry high-income fit women.

The factors that have contributed to the change from women’s positive marriage-age/income

38



1.5

2

2.5

3

In
co

m
e

1 2 3
Marriage-Age

Men's Income Women's Income
Husband's Income

Incomes by Marriage-Age, 1980

1.5

2

2.5

3

In
co

m
e

1 2 3
Marriage-Age

Men's Income Women's Income
Husband's Income

Incomes by Marriage-Age, 2012

Figure 1.8: Predicted relationships between a man’s marriage-age and his income, between
a woman’s marriage-age and her income, and between a woman’s marriage-age and her
husband’s income.

relationship in 1980 to the hump-shaped relationship in 2012 also contribute to the change

from the right-skewed equilibrium relationship to the recent left-skewed relationship: the

supply of reproductive fitness increased and the demand decreased.

We can calculate the equilibrium relationships between a man’s marriage-age and his

personal income, between a woman’s marriage-age and her personal income, and between a

woman’s marriage-age and her husband’s income. Figure 1.8 graphs the equilibrium relation-

ships under two different regimes: φH = 0.6 in the first setting and φH = 0.8 in the second

setting, while all the other parameters remain constant (Fm(θ) = Fw(θ) = θ, Cm = Cw = 1,

YmH = 3, YmL = 2, YwH = 2.4, YwL = 1.6, S(Ym, Yw, R) = 1R=RH (YmYw/2 − 1)). The

equilibrium relationships are consistent with the observed relationships in 1980 and 2012,

respectively.

1.5.5 Income Uncertainty Delays Marriage

So far in the model, making an investment and entering the marriage market in the same

period is not allowed. In this section, I relax this restriction and allow men and women to

enter the marriage market and invest at the same time. The income uncertainty associated

39



with the investment are not resolved when people enter the marriage market. Their marriage

characteristic cannot be represented by a real number of realized income. The marriage

characteristic may be an income distribution from which the realized income is drawn. The

basic theoretical framework needs to be expanded in order to include not only new strategies

but also new marriage characteristics.

The result is quite surprising:

Proposition 5. When an agent is sufficiently patient, investing and delaying marriage

strictly dominates investing and marrying at the same time.

Intuitively, entering the marriage market early without realizing his marriage characteristics

locks a man to a wife early. If he waits to marry, he can marry a wife who is more suitable to

him and who can provide him higher marriage payoff than the wife he is locked to early. The

same logic applies to a woman. Remember that in any stable matching, an agent is always

matched with the partner that gives him or her the higher possible marriage payoff. The

wife he marries after he realizes his income is always more suitable in this sense. Therefore,

when the flow marriage payoff is negligible, a man always has the incentive to delay marriage

and wait for the income uncertainty to resolve to marry a more suitable wife.

This income-uncertainty effect is conceptually different from the Bergstrom-Bagnoli sig-

naling effect although both effects delay marriage. In Bergstrom and Bagnoli (1993), a man

delays marriage to let his privately known income-earning ability become public information

in the second period, and only high-ability men have incentives to delay marriage. In this

model, although all the information is public, income uncertainty coupled with the com-

petitive structure of the marriage market deters all people from marrying early. The result

highlights a marriage-delaying effect caused by the competitive nature of the marriage mar-

ket. Oppenheimer (1988) argues that people tend to marry only after income uncertainty is

resolved, and my model formalizes the argument by showing the undesirability of marrying
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early.

It offers an explanation to why overwhelming majority of people only marry after they

have finished their schooling. Among people ages 11-21 in 1979 NLSY, 79% of women

and 84% of men married after they have finished all schooling (Browning et al., 2014).

Nonetheless, not everyone waits until he or she finishes all the schooling as predicted by

the model. Possible reasons for early marriage suggested by the current model include that

agents enjoy the flow consumption of marriage and their uncertainty about future income is

quite low.

1.6 Conclusion

This paper provides a dynamic equilibrium framework to study simultaneously human capital

investments and the marriage market. College and career investment decisions, distributions

of marriage characteristics, matching between men and women, and the division of surplus

within a household are all endogenized. I provide equilibrium existence proof techniques

applicable to other investment-and-matching models in the literature and also an equilibrium

uniqueness theorem in a specialized model. I am able to derive a set of implications about

the labor market and the marriage market. First, the model explains the college gender

gap puzzle that more women go to college but earn less by arguing that women have an

endogenously higher marriage market return to college. Second, the model is consistent with

men’s hump-shaped relationship between marriage-age and income, and the shift in women’s

relationship from positive to hump-shaped. Third, the stable matching is non-assortative in

incomes, and explains how higher-income husbands become increasingly inclined to marry

higher-income women than younger lower-income women. Finally, I extend the basic model

with post-marital investments, and show that uncertainty about future income can deter

people from marrying early.

41



The current framework serves as a foundation for future theoretical, applied, and empiri-

cal work. First, we can enrich the current framework by incorporating cohabitation, divorce,

and household consumption. Second, the model also makes predictions about different effects

on marriage-age and the marriage matching by ages of men and women. Other implications

should be explored. Finally, we can try to estimate the investment-and-matching models

with techniques developed by Choo and Siow (2006).

1.7 Proofs

1.7.1 Proofs of Lemmas 1 and 2

Proof of Lemma 1. The proof is by way of contradiction. First we look at the case when

the marriage surplus function is strictly supermodular in Ym and Yw. Suppose that there is

a positive measure of couples of (Ym, Y ′
w, R) and (Y ′

m, Yw, R) where Y ′
m > Ym and Y ′

w > Yw.

The marriage surplus generated by the two matched couples is S(Ym, Y ′
w, R)+S(Y ′

m, Yw, R).

The surplus generated by swapping the partners is S(Ym, Yw, R)+S(Y ′
m, Y

′
w, R). The surplus

generated by the swap is strictly higher because the surplus function is strictly supermodular

in incomes. Since there is a positive measure of such couples, the total surplus cannot be

maximized under the stable matching, contradicting the surplus-maximizing property of the

stable matching. We can analogously prove the negative-assortative matching when the

marriage surplus function is strictly submodular in Ym and Yw.

Proof of Lemma 2. First, I show that Condition 1.1 is necessary for the pure matching to

be stable. Suppose that Condition 1.1 does not hold. Then there exist Ym and ϵ > 0 such

that for almost all Y ′ ∈ (Ym − ϵ, Ym + ϵ), Y ∈ (Y ∗
m − ϵ, Y ∗

m), Yw ∈ (YwH − ϵ, YwH),

S(Y ′, G−1
wH(Gm(Y )−GwL(Yw)), RH) + S(Y, Yw, RL)
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< S(Y,G−1
wH(Gm(Y )−GwL(Yw)), RH) + S(Y ′, Yw, RL).

It is more efficient to have couples (Y ′, (G−1
wH(Gm(Y )−GwL(Yw)), RH)) and (Y, Yw, RL) than

couples (Y, (G−1
wH(Gm(Y )−GwL(Yw)), RH)) and (Y ′, Yw, RL). Hence the pure matching with

couples (Y, (G−1
wH(Gm(Y )−GwL(Yw)), RH)) and (Y ′, Yw, RL) is not efficient and therefore not

stable.

Next, I prove sufficiency of Condition 1.1 for the pure matching to be stable. When

Condition 1.1 holds, it is never more efficient for (YwH , RH) to marry any income Ym > Y ∗
m

men than to marry income Y ∗
m men. The highest-income husband a (YwH , RL) can marry is

Y ∗
m. By Lemma 1, for almost all Yw, a (Yw, RH) woman marries a higher-income husband

than a (Yw, RL) woman, and a (YwH , RL) woman marries a higher income husband than

a (Yw, RL) woman with any income Yw < YwH . Therefore, the lowest-income husband a

(YwH , RL) woman can marry is also Ym.

Finally, I show that thresholds Y +
m and Y −

m exist. Because S(Ym, Yw, R) is strictly su-

permodular in Yw and R, S1(YmH , YwH , RH) > S1(YmH , YwH , RL). By the smoothness of the

surplus function, for some ϵ > 0, for almost all Y > YmH − ϵ and Yw > Yw − ϵ, S1(Y, Yw,

RH) > S1(Y, YwH , RL). That is, for any Ym < Y ′
m < YmH − ϵ,

ˆ Y ′
m

Ym

S1(Ỹm, Yw, RH)dỸm >

ˆ Y ′
m

Ym

S1(Ỹm, YwH , RL)dỸm,

or equivalently for any Ym and Y ′
m > Ym,

S(Y ′
m, Yw, RH)− S(Ym, Yw, RH) > S(Y ′

m, YwH , RL)− S(Ym, YwH , RL).

Therefore, the marriage surplus generated by couples (Y ′
m, Yw, RH) and (Ym, YwH , RL) is

strictly more than the marriage surplus generated by couples (Ym, Yw, RH) and (Y ′
m, YwH ,

RL). The existence of Y −
m can be similarly shown from S1(YmL, YwL, RH) > S1(YmL, YwL,

RL).
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1.7.2 Proof of Theorem 1

By Glicksberg, it suffices to show that the space of stable marriage payoff functions (Vm, Vw)

is non-empty, compact, and convex, ΓV ◦Γµ◦Γσ is upper-hemicontinuous, and ΓV (Γµ(Γσ(Vm,

Vw))) is non-empty, compact, and convex for any pair of stable marriage payoff functions

(Vm, Vw).

First, I show that the space of stable marriage payoff functions is non-empty, compact,

and convex. Non-emptiness follows from the existence of a stable outcome for every marriage

market (Gretsky et al., 1992). To show compactness of the space of stable marriage payoff

functions (Vm, Vw), we need to show that if (µn
m, µ

n
w) → (µm, µw), then the sequence (V n

m,

V n
w )n where (V n

m, V
n
w ) ∈ ΓV (µn

m, µ
n
w) for each n has a convergent subsequence. To show that

(V n
m, V

n
w )n has a convergent subsequence, by the Arzelà-Ascoli Theorem, it suffices to show

that (V n
m, V

n
w ) is a uniformly bounded, equicontinuous sequence of real-valued functions. It is

uniformly bounded because the surplus function is increasing in every argument and V n
m(Ym),

V n
w (Yw, R) ≤ S(YmH , YwH , RH). Equicontinuity follows from the following crucial argument.

For each Ym and n, there exists (Y n
w , R

n) ∈ supp(µn
w) such that

V n
m(Ym) = S(Ym, Y

n
w , R

n)− V n
w (Y

n
w , R

n).

For any Ym > Y ′
m, because

V n
m(Y

′
m) = max

(Yw,R)∈supp(µn
w)
[S(Y ′

m, Yw, R)− Vw(Yw, R)],

we have

V n
m(Ym)− V n

m(Y
′
m)

= S(Ym, Y
n
w , R

n)− V n
w (Y

n
w , R

n)− max
(Yw,R)∈supp(µn

w)
[S(Y ′

m, Yw, R)− Vw(Yw, R)]

≤ [S(Ym, Y
n
w , R

n)− V n
w (Y

n
w , R

n)]− [S(Y ′
m, Y

n
w , R

n)− V n
w (Y

n
w , R

n)]
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= S(Ym, Y
n
w , R

n)− S(Y ′
m, Y

n
w , R

n)

=
S(Ym, Y n

w , R
n)− S(Y ′

m, Y
n
w , R

n)

Ym − Y ′
m

(Ym − Y ′
m).

[S(Ym, Y n
w , R

n) − S(Y ′
m, Y

n
w , R

n)]/(Ym − Y ′
m) is bounded by some real number K because S

is continuous on a bounded set. V n
w (·) is a uniformly bounded and equicontinuous sequence

of real-valued functions by the same argument.

The space of stable marriage payoff functions (Vm, Vw) is convex if and only if for any

(V 1
m, V

1
w) ∈ ΓV (µ1

m, µ
1
w), (V 2

m, V
2
w) ∈ ΓV (µ2

m, µ
2
w), and λ ∈ (0, 1), there exists (µm, µw) such

that (λV 1
m + (1 − λ)V 2

m,λV
1
w + (1 − λ)V 2

w) ∈ ΓV (µm, µw). Let Σ(µm, µw) represent the

value of the primal linear programming problem PP(µm, µw) and also the value of the dual

linear programming problem DP(µm, µw) since the values of the two linear programs coincide

(Gretsky et al., 1992). Because Σ is weakly continuous, there exists a (µm, µw) such that

supp(µm) ⊂ supp(µ1
m) ∪ supp(µ2

m), supp(µw) ⊂ supp(µ1
w) ∪ supp(µ2

w), and it satisfies Σ(µm,

µw) = λΣ(µ1
m, µ

1
w) + (1 − λ)Σ(µ2

m, µ
2
w). For any (Ym, Yw, R), (λV 1

m + (1 − λ)V 2
m)(Ym) ≥ 0,

(λV 1
w + (1− λ)V 2

w)(Yw, R) ≥ 0, and for all Ym ∈ supp(µm) and (Yw, R) ∈ supp(µw), (λV 1
m +

(1− λ)V 2
m)(Ym) + (λV 1

w + (1− λ)V 2
w)(Yw, R) ≥ S(Ym, Yw, R). Therefore, (λV 1

m + (1− λ)V 2
m,

λV 1
w + (1 − λ)V 2

w) solves the dual linear programming problem DP(µm, µw), and is thus in

the space of stable marriage payoff functions.

Second, I show that the composite mapping ΓV ◦ Γµ ◦ Γσ is upper-hemicontinuous by

showing that Γµ ◦ Γσ is a continuous function, and ΓV is an upper-hemicontinuous corre-

spondence. Continuity of Γµ ◦ Γσ follows from the characterization of Γσ by ability cutoffs

and reservation income, and the continuity of the ability cutoffs and the reservation income

in marriage payoff functions (Vm, Vw). Since the sequence (V n
m, V

n
w )n has a convergent subse-

quence, ΓV is upper-hemicontinuous if and only if (µn
m, µ

n
w) → (µn, µw), (V n

m, V
n
w ) ∈ ΓV (µn

m,

µn
w), and (V n

m, V
n
w ) → (Vm, Vw) implies (Vm, Vw) ∈ ΓV (µm, µw). It suffices to show that

Σ(µm, µw) =
´
Vmdµm +

´
Vwdµw, and (Vm, Vw) satisfy the conditions that Vm(Ym) ≥ 0,
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Vw(Yw,R) ≥ 0, Vm(Ym) + Vw(Yw, R) ≥ S(Ym, Yw, R) for all (Ym, Yw, R).

|
ˆ

Vmdµm +

ˆ
Vwdµw − Σ(µm, µw)|

= |
ˆ

Vmdµm +

ˆ
Vwdµw −

ˆ
V n
mdµ

n
m −
ˆ

V n
w dµ

n
w + Σ(µn

m, µ
n
w)− Σ(µn

m, µ
n
w)|

≤ |
ˆ

Vmdµm +

ˆ
Vwdµw −

ˆ
V n
mdµ

n
m −
ˆ

V n
w dµ

n
w|+ |Σ(µn

m, µ
n
w)− Σ(µm, µw)|

≤ |
ˆ

Vmdµm +

ˆ
Vwdµw −

ˆ
V n
mdµ

n
m −
ˆ

Vwdµ
n
w|+ |Σ(µn

m, µ
n
w)− Σ(µm, µw)|

+|
ˆ

V n
mdµ

n
m +

ˆ
V n
w dµ

n
w −
ˆ

V n
mdµ

n
m −
ˆ

V n
w dµ

n
w|

≤ |
ˆ

Vmdµm +

ˆ
Vwdµw −

ˆ
Vmdµ

n
m −
ˆ

Vwdµ
n
w|

+∥Vm − V n
m∥+ ∥Vw − V n

w ∥+ |Σ(µn
m, µ

n
w)− Σ(µm, µw)|.

Fix any ϵ. Since (µn
m, µ

n
w) → (µm, µw), there is an N1(ϵ) such that for all n > N1(ϵ),

|
´
Vmdµm +

´
Vwdµw −

´
Vmdµn

m −
´
Vwdµn

w| ≤ ϵ/3. Since (V n
m, V

n
w ) → (Vm, Vw), there is an

N2(ϵ) such that for all n > N2(ϵ), ∥Vm−V n
m∥+∥Vw−V n

w ∥ ≤ ϵ/6. Since Σ is weakly continuous,

there is N3(ϵ) such that for all n > N3(ϵ), |Σ(µn
m, µ

n
w)− Σ(µm, µw)| ≤ ϵ/3. Therefore, given

any ϵ, for all n > N(ϵ) = max{N1(ϵ), N2(ϵ), N3(ϵ)}, |
´
Vmdµm +

´
Vwdµw −Σ(µm, µw)| ≤ ϵ.

Therefore, |
´
Vmdµm+

´
Vwdµw−Σ(µm, µw)| = 0. We need to show that it also satisfies the

stability conditions. Suppose otherwise: Vm(Ym) + Vw(Yw, r) < S(Ym, Yw, R) for a positive

measure of (Ym, Yw, R). Then limn→∞[∥Vm − V n
m∥+ ∥Vw − V n

w ∥] > 0, a contradiction to the

assumption that V n
m → Vm and V n

w → Vw.

Finally, I show that ΓV (Γµ(Γσ(Vm, Vw))) is non-empty, compact, and convex. Non-

emptiness of Γµ and Γσ follows from constructions, and non-emptiness of ΓV is proven by

Gretsky et al. (1992). Remember that stable marriage payoff functions are solutions to the

linear programming problem. Take pairs of stable marriage payoff functions (Vm, Vw), (V ′
m,

V ′
w) ∈ V (µm, µw), then for any λ ∈ (0, 1), (λVm + (1− λ)V ′

m,λVw + (1− λ)V ′
w) ∈ ΓV (µm, µw)

because the pair of stable marriage payoff function is also the solution to the linear program-
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ming problem. Therefore, ΓV (µm, µw) is convex. Showing compactness of ΓV (Γµ(Γσ(Vm,

Vw))) = ΓV (µm, µw) follows similar steps of showing the compactness of the space of stable

marriage payoff functions.

1.7.3 Proof of Theorem 2

To simplify notations, for k1, k2, k3 ∈ {L,H}, let Vk1 = Vm(Ymk1), Vk2k3 = Vw(Ywk2 , Rk3),

Sk1k2k3 = S(Ymk1 , Ywk2 , Rk3).

Equilibrium investments are then

θ∗m =
Cm

YmH − YmL + V ∗
H − V ∗

L

(1.3)

θ∗w1 =
Cw

YwH − YwL + V ∗
HH − V ∗

LH

(1.4)

θ∗w2 =
Cw + φL(V ∗

LH − V ∗
LL)

YwH − YwL + φH(V ∗
HH − V ∗

LH) + φL(V ∗
HL − V ∗

LL)
(1.5)

Equilibrium marriage characteristics distributions are

µ∗
H =

ˆ 1

θ∗m

θm(2− θm)dFm(θm) (1.6)

µ∗
L =

ˆ 1

θ∗m

(1− θm)
2dFm(θm) (1.7)

µ∗
HH =

ˆ 1

θ∗w1

θwdFw(θw) +

ˆ 1

θ∗w2

φH(1− θw)θwdFw(θw) (1.8)

µ∗
LH = Fw(θw1) +

ˆ θ∗w2

θ∗w1

(1− θw)dFw(θw) +

ˆ 1

θ∗w2

φH(1− θw)
2dFw(θw) (1.9)

µ∗
HL =

ˆ 1

θ∗w2

φLθw(2− θw)dFw(θw) (1.10)

µ∗
LL = 1−

ˆ 1

θ∗w2

φL(1− θw)
2dFw(θw) (1.11)

First, suppose that Condition 1.2 holds (SHLH + SLHL > SHHL + SLLH). The left
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case 1-1
case 1-2
case 1-3
case 1-4
case 1-5
case 1-6
case 1-7

(YwH , RH)

(YwL, RH)

(YwH , RL)

(YwL, RL)

Xm(YwL, RH) ≥ Xm(YwH , RL)

case 2-1
case 2-2
case 2-3
case 2-4
case 2-5
case 2-6
case 2-7

(YwH , RH)

(YwH , RL)

(YwL, RH)

(YwL, RL)

Xm(YwL, RH) ≤ Xm(YwH , RL)

Figure 1.9: Fourteen cases of marriage characteristics distributions and stable matchings
when the marriage characteristics take binary values.

panel of Figure 1.3 illustrates the possible equilibrium matching: (YwL, RH) women marry

higher-income husbands than (YwH , RL) women. The equilibrium marriage characteristics

distributions can be categorized into the following seven scenarios depending on the relative

abundance of high-income men: (1) µ∗
H < µ∗

HH , (2) µ∗
H = µ∗

HH , (3) µ∗
H < µ∗

HH + µ∗
LH , (4)

µ∗
H = µ∗

HH +µ∗
LH , (5) µ∗

H < µ∗
HH +µ∗

LH +µ∗
HL, (6) µ∗

H = µ∗
HH +µ∗

LH +µ∗
HL, (7) µ∗

H > µ∗
HH +

µ∗
LH +µ∗

HL. The following seven cases are mutually exclusive and comprehensive, under each

case equilibrium marriage characteristics distributions are different. Equilibrium marriage

payoffs in each case are uniquely determined up to a constant. Equilibrium investments

(θ∗m, θ
∗
w1, θ

∗
w2) (by equations (1.3)-(1.5)), marriage characteristics distributions (µ∗

m, µ
∗
w) (by

equations (1.6)-(1.11)) and matching µ∗ are uniquely determined.

Case 1-1:
ˆ 1

Cm
YmH−YmL+SHHH−SLHH

θm(2− θm)dFm(θm)

<

ˆ 1

Cw
YwH−YwL+SLHH−SLLH

θwdFw(θw)

+

ˆ 1

Cw+φL(SLHL−SLLL)
YwH−YwL+φH (SLHH−SLLH )+φL(SLHL−SLLL)

φH(1− θw)θwdFw(θw).

Equilibrium distribution satisfies µ∗
H < µ∗

HH . Equilibrium marriage payoffs are determined

48



by

V ∗
H − V ∗

L = SHHH − SLHH

V ∗
HH − V ∗

LH = SLHH − SLLH

V ∗
LH − V ∗

LL = SLLH − SLLL

V ∗
HL − V ∗

LL = SLHL − SLLL.

Case 1-2
ˆ 1

Cm
YmH−YmL+SHHH−SLHH

θm(2− θm)dFm(θm)

≥
ˆ 1

Cw
YwH−YwL+SLHH−SLLH

θwdFw(θw)

+

ˆ 1

Cw+φL(SLHL−SLLL)
YwH−YwL+φH (SLHH−SLLH )+φL(SLHL−SLLL)

φH(1− θw)θwdFw(θw)

and
ˆ 1

Cm
YmH−YmL+SHLH−SLLH

θm(2− θm)dFm(θm)

≥
ˆ 1

Cw
YwH−YwL+SHHH−SHLH

θwdFw(θw)

+

ˆ 1

Cw+φL(SLHL−SLLL)
YwH−YwL+φH (SHHH−SHLH )+φL(SLHL−SLLL)

φH(1− θw)θwdFw(θw).

Equilibrium distribution satisfies µ∗
H = µ∗

HH . Equilibrium marriage payoffs are determined

by

V ∗
H − V ∗

L = λ∗(SHLH − SLLH) + (1− λ∗)(SHHH − SLHH)

V ∗
HH − V ∗

LH = λ∗(SHHH − SHLH) + (1− λ∗)(SLHH − SLLH)

V ∗
LH − V ∗

LL = SLLH − SLLL

V ∗
HL − V ∗

LL = SLHL − SLLL.

49



where λ∗ is the unique solution to
ˆ 1

Cm
YmH−YmL+[λ(SHLH−SLLH )+(1−λ)(SHHH−SLHH )]

θm(2− θm)dFm(θm)

=

ˆ 1

Cw
YwH−YwL+[λ(SHHH−SHLH )+(1−λ)(SLHH−SLLH )]

θwdFw(θw)

+

ˆ 1

Cw+φL(SLHL−SLLL)
YwH−YwL+φH [λ(SHHH−SHLH )+(1−λ)(SLHH−SLLH )]+φL(SLHL−SLLL)

φH(1− θw)θwdFw(θw).

Case 1-3
ˆ 1

Cw
YwH−YwL+SHHH−SHLH

θwdFw(θw)

+

ˆ 1

Cw+φL(SLHL−SLLL)
YwH−YwL+φH (SHHH−SHLH )+φL(SLHL−SLLL)

φH(1− θw)θwdFw(θw)

<

ˆ 1

Cm
YmH−YmL+SHLH−SLLH

θm(2− θm)dFm(θm)

<

ˆ 1

Cw+φL(SLHL−SLLL)
YwH−YwL+φH (SHHH−SHLH )+φL(SLHL−SLLL)

[θw + φH(1− θw)]dFw(θw)

+Fw

(
Cw + φL(SLHL − SLLL)

YwH − YwL + φH(SHHH − SHLH) + φL(SLHL − SLLL)

)

Equilibrium distribution satisfies µ∗
HH < µ∗

H < µ∗
HH + µ∗

LH . Equilibrium payoffs satisfy

V ∗
H − V ∗

L = SHLH − SLLH

V ∗
HH − V ∗

LH = SHHH − SHLH

V ∗
LH − V ∗

LL = SLLH − SLLL

V ∗
HL − V ∗

LL = SLHL − SLLL.

Case 1-4
ˆ 1

Cm
YmH−YmL+SHLH−SLLH

θm(2− θm)dFm(θm)
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≥ +

ˆ 1

Cw+φL(SLHL−SLLL)
YwH−YwL+φH (SHHH−SHLH )+φL(SLHL−SLLL)

[θw + φH(1− θw)]dFw(θw)

+Fw(
Cw + φL(SLHL − SLLL)

YwH − YwL + φH(SHHH − SHLH) + φL(SLHL − SLLL)
)

and
ˆ 1

Cm
YmH−YmL+SHHL−SLHL

θm(2− θm)dFm(θm)

≤
ˆ 1

Cw+φL(SHLH−SLLL−SHHL+SLHL)
YwH−YwL+φH (SLHH−SLLH )+φL(SLHL−SLLL)

[θw + φH(1− θw)]dFw(θw)

+Fw

(
Cw + φL(SHLH − SLLL − SHHL + SLHL)

YwH − YwL + φH(SLHH − SLLH) + φL(SLHL − SLLL)

)

Equilibrium distribution satisfies µ∗
H = µ∗

HH +µ∗
LH . Equilibrium marriage payoffs are deter-

mined by

V ∗
H − V ∗

L = λ∗(SHHL − SLHL) + (1− λ∗)(SHLH − SLLH)

V ∗
HH − V ∗

LH = SHHH − SHLH

V ∗
LH − V ∗

LL = λ∗(SHLH − SLLL − SHHL + SLHL) + (1− λ∗)(SLLH − SLLL)

V ∗
HL − V ∗

LL = SLHL − SLLL

where λ∗ is the unique solution to
ˆ 1

Cm
YmH−YmL+[λ(SHHL−SLHL)+(1−λ)(SHLH−SLLH )]

θm(2− θm)dFm(θm)

=

ˆ 1

Cw+φL[λ(SHLH−SLLL−SHHL+SLHL)+(1−λ)(SLLH−SLLL)]
YwH−YwL+φH (SLHH−SLLH )+φL(SLHL−SLLL)

[θw + φH(1− θw)]dFw(θw)

+Fw

(
Cw + φL[λ(SHLH − SLLL − SHHL + SLHL) + (1− λ)(SLLH − SLLL)]

YwH − YwL + φH(SLHH − SLLH) + φL(SLHL − SLLL)

)

Case 1-5

+

ˆ 1

Cw+φL(SHLH−SLLL−SHHL+SLHL)
YwH−YwL+φH (SLHH−SLLH )+φL(SLHL−SLLL)

[θw + φH(1− θw)]dFw(θw)
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+Fw

(
Cw + φL(SHLH − SLLL − SHHL + SLHL)

YwH − YwL + φH(SLHH − SLLH) + φL(SLHL − SLLL)

)

<

ˆ 1

Cm
YmH−YmL+SHHL−SLHL

θm(2− θm)dFm(θm)

< 1−
ˆ 1

Cw+φL(SHLH−SLLL−SHHL+SLHL)
YwH−YwL+φH (SLHH−SLLH )+φL(SLHL−SLLL)

φL(1− θw)
2dFw(θw).

Equilibrium distribution satisfies µ∗
HH + µ∗

LH < µ∗
H < µ∗

HH + µ∗
LH + µ∗

HL. Equilibrium

marriage payoffs are determined by

V ∗
H − V ∗

L = SHHL − SLHL

V ∗
HH − V ∗

LH = SHHH − SHLH

V ∗
LH − V ∗

LL = SHLH − SLLL − SHHL + SLHL

V ∗
HL − V ∗

LL = SLHL − SLLL

Case 1-6
ˆ 1

Cm
YmH−YmL+SHHL−SLHL

θm(2− θm)dFm(θm)

≥ 1−
ˆ 1

Cw+φL(SHLH−SLLL−SHHL+SLHL)
YwH−YwL+φH (SLHH−SLLH )+φL(SLHL−SLLL)

φL(1− θw)
2dFw(θw)

and
ˆ 1

Cm
YmH−YmL+SHLL−SLLL

θm(2− θm)dFm(θm)

≤ 1−
ˆ 1

Cw+φL(SHLH−SHLL)
YwH−YwL+φH (SHHH−SHLH )+φL(SHHL−SHLL)

φL(1− θw)
2dFw(θw).

Equilibrium distribution satisfies µ∗
H = µ∗

HH +µ∗
LH +µ∗

HL. Equilibrium marriage payoffs are

determined by

V ∗
H − V ∗

L = λ∗(SHLL − SLLL) + (1− λ∗)(SHHL − SLHL)
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V ∗
HH − V ∗

LH = SHHH − SHLH

V ∗
LH − V ∗

LL = λ∗(SHLH − SLLL − SHHL + SLHL) + (1− λ∗)(SHLH − SHLL)

V ∗
HL − V ∗

LL = λ∗(SLHL − SLLL) + (1− λ∗)(SHHL − SHLL)

where λ∗ is the unique solution to
ˆ 1

Cm
YmH−YmL+[λ(SHLL−SLLL)+(1−λ)(SHHL−SLHL)]

θm(2− θm)dFm(θm)

= 1−
ˆ 1

Cw+φL[λ(SHLH−SLLL−SHHL+SLHL)+(1−λ)(SHLH−SHLL)]
YwH−YwL+φH (SHHH−SHLH )+φL[λ(SLHL−SLLL)+(1−λ)(SHHL−SHLL)]

φL(1− θw)
2dFw(θw).

Case 1-7
ˆ 1

Cm
YmH−YmL+SHLL−SLLL

θm(2− θm)dFm(θm)

> 1−
ˆ 1

Cw+φL(SHLH−SHLL)
YwH−YwL+φH (SHHH−SHLH )+φL(SHHL−SHLL)

φL(1− θw)
2dFw(θw).

Equilibrium distribution satisfies µ∗
H > µ∗

HH +µ∗
LH +µ∗

HL. Equilibrium marriage payoffs are

determined by

V ∗
H − V ∗

L = SHLL − SLLL

V ∗
HH − V ∗

LH = SHHH − SHLH

V ∗
LH − V ∗

LL = SHLH − SHLL

V ∗
HL − V ∗

LL = SHHL − SHLL.

Second, suppose that Condition 1.2 does not hold, i.e. SHLH +SLHL ≤ SHHL+SLLH . In

the equilibrium matching, almost all (YwL, RH) women marry lower-income husbands than

(YwH , RL) women do. There are also seven different scenarios depending on equilibrium

matching distributions: (1) µ∗
H < µ∗

HH , (2) µ∗
H = µ∗

HH , (3) µ∗
HH < µ∗

H < µ∗
HH + µ∗

LH , (4)

µ∗
H = µ∗

HH + µ∗
LH , (5) µ∗

HH + µ∗
LH < µ∗

H < µ∗
HH + µ∗

LH + µ∗
HL, (6) µ∗

H = µ∗
HH + µ∗

LH + µ∗
HL,

(7) µ∗
H > µ∗

HH + µ∗
LH + µ∗

HL.
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Case 2-1 = Case 1-1

Case 2-2 = Case 1-2

Case 2-3
ˆ 1

Cw
YwH−YwL+SLHH−SLLH

θwdFw(θw)

+

ˆ 1

Cw+φL(SLLH−SLLL)
YwH−YwL+φH (SLHH−SLLH )+φL(SLHL−SLLL)

φH(1− θw)θwdFw(θw)

<

ˆ 1

Cm
YmH−YmL+SHHL−SLHL

θm(2− θm)dFm(θm)

<

ˆ 1

Cw
YwH−YwL+SLHH−SLLH

θwdFw(θw)

+

ˆ 1

Cw+φL(SLLH−SLLL)
YwH−YwL+φH (SLHH−SLLH )+φL(SLHL−SLLL)

(1− θw)θwdFw(θw).

Equilibrium distribution satisfies µ∗
HH < µ∗

H < µ∗
HH + µ∗

HL. Equilibrium marriage payoff

functions are determined by

V ∗
H − V ∗

L = SHHL − SLHL

V ∗
HH − V ∗

LH = SLHH − SLLH

V ∗
LH − V ∗

LL = SLLH − SLLL

V ∗
HL − V ∗

LL = SLHL − SLLL.

Case 2-4
ˆ 1

Cw
YwH−YwL+SLHH−SLLH

θwdFw(θw)

+

ˆ 1

Cw+φL(SLLH−SLLL)
YwH−YwL+φH (SLHH−SLLH )+φL(SLHL−SLLL)

(1− θw)θwdFw(θw)

≤
ˆ 1

Cm
YmH−YmL+SHHL−SLHL

θm(2− θm)dFm(θm)
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and
ˆ 1

Cm
YmH−YmL+SHLH−SLLH

θm(2− θm)dFm(θm)

≤
ˆ 1

Cw
YwH−YwL+SHHH−SHLH

θwdFw(θw)

+

ˆ 1

Cw+φL(SLLH−SLLL)
YwH−YwL+φH (SHHH−SHLH )+φL(SHHL−SLLL−SHLH+SLLH )

(1− θw)θwdFw(θw).

Equilibrium distribution is µ∗
HH + µ∗

HL = µ∗
H . Equilibrium marriage payoffs are determined

by

V ∗
H − V ∗

L = λ∗(SHHL − SLHL) + (1− λ∗)(SHLH − SLLH)

V ∗
HH − V ∗

LH = λ∗(SLHH − SLLH) + (1− λ∗)(SHHH − SHLH)

V ∗
LH − V ∗

LL = SLLH − SLLL

V ∗
HL − V ∗

LL = λ∗(SLHL − SLLL) + (1− λ∗)(SHHL − SLLL − SHLH + SLLH)

where λ∗ is the unique solution to
ˆ 1

Cm
YmH−YmL+λ(SHHL−SLHL)+(1−λ)(SHLH−SLLH )

θm(2− θm)dFm(θm)

=

ˆ 1

Cw
YwH−YwL+λ(SLHH−SLLH )+(1−λ)(SHHH−SHLH )

θwdFw(θw) +

ˆ 1

Cw+φL(SLLH−SLLL)

YwH − YwL + φH [λ(SLHH − SLLH) + (1− λ)(SHHH − SHLH)]
+ φL[λ(SLHL − SLLL) + (1− λ)(SHHL − SLLL − SHLH + SLLH)]

(1− θw)θwdFw(θw).

Case 2-5
ˆ 1

Cw
YwH−YwL+SHHH−SHLH

θwdFw(θw)

+

ˆ 1

Cw+φL(SLLH−SLLL)
YwH−YwL+φH (SHHH−SHLH )+φL(SHHL−SLLL−SHLH+SLLH )

(1− θw)θwdFw(θw)
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<

ˆ 1

Cm
YmH−YmL+SHLH−SLLH

θm(2− θm)dFm(θm)

< 1−
ˆ 1

Cw+φL(SLLH−SLLL)
YwH−YwL+φH (SHHH−SHLH )+φL(SHHL−SLLL−SHLH+SLLH )

φL(1− θw)
2dFw(θw).

Equilibrium distribution is µ∗
HH+µ∗

HL < µ∗
H < 1−µ∗

LL. Equilibrium marriage payoffs satisfy

V ∗
H − V ∗

L = SHLH − SLLH

V ∗
HH − V ∗

LH = SHHH − SHLH

V ∗
LH − V ∗

LL = SLLH − SLLL

V ∗
HL − V ∗

LL = SHHL − SLLL − SHLH + SLLH .

Case 2-6 = Case 1-6

Case 2-7 = Case 1-7

1.7.4 Proof of Proposition 1

When PmH = PwH ≡ PH , PmL = PwL ≡ PL, Fm = Fw ≡ F , and cm = cw ≡ c, the three

equilibrium cutoffs become

θ∗m =
C

YH − YL + V ∗
m(YH)− V ∗

m(YL)
,

θ∗w1 =
C

YH − YL + V ∗
w(YH , RH)− V ∗

w(YL, RH)
,

θ∗w2 =
C + φL[V ∗

w(YL, RL)− EV ∗
w(YL, RL)]

YH − YL + φH [V ∗
w(YH , RH)− V ∗

w(YL, RH)] + φL[V ∗
w(YH , RL)− V ∗

w(YL, RL)]
.

The proof is by contradiction. Suppose that weakly more men go to college than women

in equilibrium: 1 − F (θ∗m) ≥ 1 − F (θ∗w1). Hence, θ∗m ≤ θ∗w1. First, from the equilibrium

investment cutoffs determination, θ∗m ≤ θ∗w1 implies

V ∗
m(YH)− V ∗

m(YL) ≥ V ∗
w(YH , RH)− V ∗

w(YL, RH) (1.12)
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Second, since θ∗w2 > θ∗w1, θ∗m ≤ θ∗w1 < θ∗w2. The mass of high-income men and women are

respectively

µ∗
m(YH) =

ˆ 1

θ∗m

[θ + (1− θ)θ]dF (θ)

µ∗
w(YH , RH) + µ∗

w(YH , RL) =

ˆ 1

θ∗w1

θdF (θ) +

ˆ 1

θ∗w2

(1− θ)θdF (θ)

Hence, more men than women draw from high-income distribution in equilibrium, µ∗
m(YH) >

µ∗
w(YH , RH) + µ∗

w(YH , RL). Regardless of the equilibrium matching (case 1-5, 1-6, 1-7, 2-5,

2-6, or 2-7 in the equilibrium uniqueness proof), the following stability conditions hold: there

are positive measures of matches between YH men and (YH , RH) women,

V ∗
m(YH) + V ∗

w(YH , RH) = S(YH , YH , RH), (1.13)

there are positive measures of matches between YH men and (YH , RL) women because there

are more high-income men than high-income women, so some high-income men marry fit

lower-income women,

V ∗
m(YH) + V ∗

w(YL, RH) = S(YH , YL, RH), (1.14)

and finally by the stability condition,

V ∗
m(YL) + V ∗

w(YL, RH) ≥ S(YL, YL, RH). (1.15)

Subtract equation (1.14) from equation (1.13),

V ∗
w(YH , RH)− V ∗

w(YL, RH) = S(YH , YH , RH)− S(YH , YL, RH).

Subtract equation (1.15) from equation (1.14),

V ∗
m(YH)− V ∗

m(YL) ≤ S(YH , YL, RH)− S(YL, YL, RH).
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By strict supermodularity,

V ∗
m(YH)− V ∗

m(YL) ≤ S(YH , YL, RH)− S(YL, YL, RH)

< S(YH , YH , RH)− S(YH , YL, RH) = V ∗
w(YH , RH)− V ∗

w(YL, RH)

which contradicts inequality (1.12). Therefore, when the surplus function is strictly super-

modular in incomes, strictly more women than men go to college.

Suppose that the surplus function is strictly submodular instead, weakly more women

than men go to college. In any stable matching, by Lemma 1, almost all (YL, RH) women

marry higher-income husbands than (YH , RH) and (YL, RL) women, and almost all (YL, RL)

women marry higher-income husbands than (YH , RL) women. Therefore, at least some (YL,

RH) women marry the highest-income husbands. By the stability condition, V ∗
m(YH)+V ∗

w(YL,

RH) = S(YH , YL, RH) where equality follows from symmetry. By the stability condition for

YL men and (YH , RH), V ∗
m(YL) + V ∗

w(YH , RH) ≥ S(YL, YH , RH) = S(YH , YL, RH). The two

stability conditions combine to

V ∗
m(YH)− V ∗

m(YL) ≤ V ∗
w(YL, RH)− V ∗

w(YH , RH).

As a result, θ∗m ≥ θ∗w1, and 1 − Fm(θ∗m) ≤ 1 − Fw(θ∗w1). The inequality holds strictly when

there is no match between YL men and (YH , RH) women, and strictly more women than men

go to college.

1.7.5 Extended Model and Proof of Proposition 5

Suppose that an agent can enter the marriage market and invest in the same period. Assume

that their subsequent investment plans are publicly known and they can commit to these

plans. An age 1 agent can choose among four actions: to go to college and to delay marriage

(I1, D1), to go to college and to enter the marriage market in the current period (I1, E1),
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not to invest and to delay marriage (N1, D1), and not to invest and to enter the marriage

market (N1, E1). Easily we can see that (N1, D1) is strictly dominated by (N1, E1) because

there is no gain in delaying marriage if an agent does not go to college. An age 2 agent

chooses among four strategies: to make a career investment and to delay marriage (I2, D2),

to make a career investment and to enter the marriage market (I2, E2), not to make a career

investment and to delay marriage (N2, D2), not to make a career investment and to enter

the marriage market (N2, E2). (N2, D2) is dominated by (N2, E2).

A man who chooses (N1, E1) or (N2, E2) enters the marriage market with marriage type

Ym1 or Ym2. A man who chooses (I1, E1) enters the marriage market at age 1 but does

not have his income realized. His marriage type is σm2(θm, ·) where σm2(θm, Ym2) is his

probability of investing when he receives an income offer Ym2. A man who chooses (I2, D2)

enters the marriage market in the second period, but does not have his income realized. His

marriage type is Pm3(·|θm), the distribution he draws his income from in the third period. In

summary, a man’s marriage type can be Ym, σm2(θm, ·), or Pm3(·|θm). Similarly, a woman’s

marriage type is (Yw, R), σw2(θw, ·), or Pw3(·|θw).

Let Xm and Xw denote a man’s and a woman’s marriage characteristics, and Xm and

Xw the set of men’s and women’s characteristics, respectively. Let S̃(Xm, Xw) denote the

expected marriage surplus of a Xm man and a Xw woman. Assume that a man and a woman

start to receive their marriage surplus when both of them realize their income. Therefore,

the marriage surplus function is

S̃(Ym, Yw, R) = S(Ym, Yw, R)

S̃(Ym, Pw3(·|θw)) = δEYw3,R[S(Ym, Yw3, R)|θw]

S̃(Ym, σw2(θw, ·)) = δEYw2 [(1− σw2(θw, Yw2))S(Ym, Yw2, RH)

+σw2(θw, Yw2)S̃(Ym, Pw3(·|θw))|θw]
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S̃(Pm3(·|θm), Yw, R) = δEYm3 [S(Ym3, Yw, R)|θm]

S̃(Pm3(·|θm), Pw3(·|θw)) = δEYm3,Yw3,R[S(Ym3, Yw3, R)|θm, θw]

S̃(Pm3(·|θm), σw2(θw, ·)) = δEYm3,Yw2 [(1− σw2(θw, Yw2))S(Ym3, Yw2, RH)

+σw2(θw, Yw2)S̃(Ym3, Pw3(·|θw))|θm, θw]

S̃(σm2(θm, ·), Yw, R) = δEYm2 [(1− σm2(θm, Ym2))S(Ym2, Yw, R)

+σm2(θm, Ym2)S̃(Pm3(·|θm), Yw, R)|θm]

S̃(σm2(θm, ·), Pw3(·|θw)) = δEYm2,Yw3,R[(1− σm2(θm, Ym2))S(Ym2, Yw3, R)

+σm2(θm, Ym2)S̃(Pm3(·|θm), Pw3(·|θw))|θm, θw]

S̃(σm2(θm, ·), σw2(θw, ·)) = δEYm2,Yw2 [(1− σm2(θm, Ym2))(1− σw2(θw, Yw2))S(Ym2, Yw2, RH)

+(1− σm2(θm, Ym2))σw2(θw, Yw2)S̃(Ym2, Pw3(·|θw))

+σm2(θm, Ym2)(1− σw2(θw, Yw2))S̃(Pm2(·|θm), Yw2, RH)

+σm2(θm, Ym2)σw2(θw, Yw2)S̃(Pm2(·|θm), Pw2(·|θw))|θm, θw].

Let µ̃m and µ̃w represent respectively measures of men’s and women’s marriage characteris-

tics. Let µ̃ be the matching measure on the expanded marriage characteristics set Xm ×Xw.

Let Ṽm : Xm → R and Ṽw : Xw → R be men’s and women’s marriage payoff functions. A

marriage market outcome (µ̃, Ṽm, Ṽw) is stable if µ̃ has marginals µ̃m and µ̃w, Ṽm(δPm) ≥ 0

and Ṽm(Xm) ≥ 0 for all Xm, Ṽw(Xw) ≥ 0 for all Xw, Ṽm(Xm) + Ṽw(Xw) = S̃(Xm, Xw) for

all ∀(Xm, Xw) ∈ supp(µ̃), and Ṽm(Xm) + Ṽw(Xw) ≥ S̃(Xm, Xw) for all Xm ∈ supp(µ̃m) and

Xw ∈ supp(µ̃w).8

8See Borch (1962); Wilson (1968); Chiappori and Reny (2015); Zhang (2015c) for settings with income
uncertainty.
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Now consider an age 2 ability θm man who decides between investing and marrying (I2,

E2), and investing and delaying marriage (I2, D2). The marriage timing decision does not

affect the labor market return or the investment cost, the only difference is in the marriage

market payoff. If he invests and enters the marriage market, his marriage type is Pm3(·|θm),

and his marriage market payoff is Ṽm(Pm3(·|θm)). If he invests and delays marriage, he enters

the marriage market in the third period, and his expected payoff is δEYm3 [Ṽm(Ym3)|θm]. It

turns out that investing and delaying marriage always dominates investing and marrying at

the same time. Consider the following logic. Suppose that the Pm3(·|θm) is matched to a

(Yw, R) woman in the marriage market, so they divide up their marriage surplus,

S̃(Pm3(·|θm), Yw, R) = Ṽm(Pm3(·|θm)) + Ṽw(Yw, R).

A Pm3(·|θm) man’s marriage payoff is

Ṽm(Pm3(·|θm)) = δEYm3 [S(Ym3, Yw, R)|θm]− Ṽw(Yw, R)

= δEYm3 [S(Ym3, Yw, R)− Ṽw(Yw, R)|θm]− (1− δ)Ṽw(Yw, R)

By the stability condition, a Ym3 man’s marriage payoff is weakly higher than the payoff he

gets with a (Yw, R) woman,

Ṽm(Ym3) ≥ S(Ym3, Yw, R)− Ṽw(Yw, R).

Since this inequality is true for any Ym3,

Ṽm(Pm3(·|θm)) ≤ δEYm3 [Ṽm(Ym3)|θm]− (1− δ)Ṽw(Yw, R).

Since Ṽw(Yw, R) > 0, or Ṽm(Ym3) > S(Ym3, Yw, R)− Ṽw(Yw, R) for some Ym, Ṽm(Pm3(·|θm)) <

δEYm3 [Ṽm(Ym3)|θm]. Therefore, a man prefers making a career investment and delaying

marriage to making a career investment and marrying at the same time if he is matched

to a a type Yw woman. The same preference stays if he is matched to a type Pw3(·|θw) or
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σw3(θw, ·) woman. Furthermore, a man prefers going to college and marrying later over going

to college and marrying at the same time.

It has been shown above that when a man who makes a career investment and marries

in the same period marries a (Yw, R) woman, he strictly prefers to delay marriage to the

next period. In general, we can show that investing and marrying at the same time is always

dominated by investing and delaying marriage when the agent is sufficiently patient. Now we

show the preference when he marries a Pw3(·|θw) woman. The marriage payoff of investing

and marrying at the same time is

Ṽm(Pm3(·|θm)) = S̃(Pm3(·|θm), Pw3(·|θw))− Ṽw(Pw3(·|θw))

= δEYm3,Yw3,R[S(Ym3, Yw3, R)|θm, θw]− Ṽw(Pw3(·|θw))

= EYm3

[
δEYw3,R[S(Ym3, Yw3, R)|θw]− Ṽw(Pw3(·|θw))|θm

]

= EYm3

[
S̃(Ym3, Pw3(·|θw))|θw]− Ṽw(Pw3(·|θw))|θm

]

< EYm3 [Ṽm(Ym3)|θm]

where the inequality follows from the stability condition for each Ym3,

S̃(Ym3, Pw3(·|θw))|θw]− Ṽw(Pw3(·|θw)) ≤ Ṽm(Ym3),

with inequality holding for almost all Ym3. When δ is sufficiently large, δEYm3 [Ṽm(Ym3)|θm] >

Ṽm(Pm3(·|θm)). Suppose a Pm3(·|θm) man marries a σm2(θm, ·) woman,

Ṽm(Pm3(·|θm)) = S̃(Pm3(·|θm), σw2(θw, ·))− Ṽw(σw2(θw, ·))

= δEYm3,Yw2 [(1− σw2(θw, Yw2))S(Ym3, Yw2, RH)

+σw2(θw, Yw2)S̃(Ym3, Pw3(·|θw))|θm, θw]− Ṽw(σw2(θw, ·))

= EYm3 [δEYw2 [S̃(Ym3, σw2(θw, ·))− Ṽw(σw2(θw, ·))]

< EYm3 [Ṽm(Ym3)|θm].
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When δ is sufficiently large, δEYm3 [Ṽm(Ym3)|θm] > Ṽm(Pm3(·|θm)). Therefore, we have shown

that (I2, D2) dominates (I2, E2) when a man is sufficiently patient.

We now show similarly that (I2, D2) dominates (I2, E2) when a woman is sufficiently

patient. The marriage payoff of (I2, D2) is δEYw3,R[Ṽw(Yw)|θw], and the marriage payoff of

(I2, E2) is Ṽw(Pw3(·|θw)). If a Pw3(·|θw) woman marries a Ym man, her payoff is

Ṽw(Pw3(·|θw)) = S̃(Ym, Pw3(·|θw))− Ṽm(Ym)

= δEYw3,R[S(Ym, Yw3, R)|θw]− Ṽm(Ym)

< δEYw3,R[S(Ym, Yw3, R)− Ṽm(Ym)|θw]

≤ δEYw3,R[Ṽw(Yw)|θw].

If a Pw3(·|θw) woman marries a Pm3(·|θm) man, her payoff is

Ṽw(Pw3(·|θw)) = S̃(Pm3(·|θm), Pw3(·|θw))− Ṽm(Pm3(·|θm))

= δEYm3,Yw3,R[S(Ym3, Yw3, R)|θm, θw]− Ṽm(Pm3(·|θm))

= EYw3,R[δEYm2 [S(Ym, Yw3, R)|θm]− Ṽm(Ym)|θw]

< EYw3,R[Ṽw(Yw, R)|θw].

When δ is sufficiently large, Ṽw(Pw3(·|θw)) < EYw3,R[Ṽw(Yw, R)|θw]. If a Pw3(·|θw) woman

marries a σm2(θm, ·) man,

Ṽw(Pw3(·|θw)) = S̃(σm2(θm, ·), Pw3(·|θw))− Ṽm(σm2(θm, ·))

= δEYm2,Yw3,R[(1− σm2(θm, Ym2))S(Ym2, Yw3, R)

+σm2(θm, Ym2)S̃(Pm3(·|θm), Pw3(·|θw))|θm, θw]− Ṽm(σm2(θm, ·))

= EYw3,R[δEYm2 [(1− σm2(θm, Ym2))S(Ym2, Yw3, R)

+σm2(θm, Ym2)S̃(Pm3(·|θm), Pw3(·|θw))− Ṽm(σm2(θm, ·))|θm, θw]]

= EYw3,R[δEYm2 [S̃(σm2(θm, Ym2), Yw, R)− Ṽm(σm2(θm, ·))|θm, θw]]
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< EYw3,R[Ṽw(Yw, R)|θw]

When δ is sufficiently large, Ṽw(Pw3(·|θw)) < EYw3,R[Ṽw(Yw, R)|θw]. Therefore, we have shown

that (I2, D2) dominates (I2, E2) when a woman is sufficiently patient.

We next show that (I1, D1) dominates (I1, E1) for sufficiently patient men. Let σm2(θm, ·)

be an ability θm man’s second period investment strategy. If he chooses (I1, D1), his expected

marriage payoff is

δEYm2

[
(1− σm2(θm, Ym2))Ṽm(Ym2) + σm2(θm, Ym2)EYm3 [δṼm(Ym3)|θm]|θm

]
.

If he chooses (I1, E1), his expected marriage payoff is Ṽm(σm2(θm, ·)). Suppose that he

matches with a (Yw, R) woman, and they divide their marriage surplus,

Ṽm(σm2(θm, ·)) = S̃(σm2(θm, ·), Yw, R)− Ṽw(Yw, R)

= δEYm2 [(1− σm2(θm, Ym2))S(Ym2, Yw, R)

+σm2(θm, Ym)S̃(Pm3(·|θm), Yw, R)|θm]− Ṽw(Yw, R)

= EYm2 [(1− σm2(θm, Ym2))(δS(Ym2, Yw, R)− Ṽw(Yw, R))|θm]

+EYm2 [σm2(θm, Ym2)(δS̃(Pm3(·|θm), Yw, R)− Ṽw(Yw, R))|θm]

< δEYm2 [(1− σm2(θm, Ym2))Ṽm(Ym2)|θm]

+δEYm2 [σm2(θm, Ym2)EYm3 [δṼm(Ym3)|θm]|θm].

The man’s marriage payoff Ṽm(σm2(θm, ·)) if he marries with a Pw3(·|θw) woman is

S̃(σm2(θm, ·), Pw3(·|θw))− Ṽw(Pw3(·|θw))

= EYm2 [EYw3,R[(1− σm2(θm, Ym2))(δS(Ym2, Yw3, R)− Ṽw(Pw3(·|θw)))|θw]|θm]

+EYm2 [EYw3,R[σm2(θm, Ym2)(δS̃(Pm3(·|θm), Pw3(·|θw))− Ṽw(Pw3(·|θw)))|θm, θw]

≤ EYm2 [(1− σm2(θm, Ym2))Ṽm(Ym2) + σm2(θm, Ym2)EYm3 [δṼm(Ym3)|θm]|θm].
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For sufficiently large δ, Ṽm(σm2(θm, ·)) is smaller than

δEYm2 [(1− σm2(θm, Ym2))Ṽm(Ym2) + σm2(θm, Ym2)EYm3 [δṼm(Ym3)|θm]|θm].

If a σm2(θm, ·) man is matched with a σw2(θw, ·) woman, then his marriage payoff Ṽm(σm2(θm,

·))

= S̃(σm2(θm, ·), σw2(θw, ·))− Ṽw(Pw3(·|θw))

= E
[
(1− σm2(θm, Ym2))(1− σw2(θw, Yw2))

(
δS(Ym2, Yw2, RH)− Ṽw(Pw3(·|θw)

)]

+E
[
(1− σm2(θm, Ym2))σw2(θw, Yw2)

(
δS̃(Ym2, Pw3(·|θw))− Ṽw(Pw3(·|θw)

)]

+E
[
σm2(θm, Ym2)(1− σw2(θw, Yw2))

(
δS̃(Pm2(·|θm), Yw2, RH)− Ṽw(Pw3(·|θw)

)]

+E
[
σm2(θm, Ym2)σw2(θw, Yw2)

(
δS̃(Pm2(·|θm), Pw3(·|θw))− Ṽw(Pw3(·|θw)

)]

≤ E
[
(1− σm2(θm, Ym2))(1− σw2(θw, Yw2))Ṽm(Ym2)

]

+E
[
(1− σm2(θm, Ym2))σw2(θw, Yw2)Ṽm(Ym2)

]

+E
[
σm2(θm, Ym2)(1− σw2(θw, Yw2))Ṽm(Pm2(·|θm))

]

+E
[
σm2(θm, Ym2)σw2(θw, Yw2)Ṽm(Pm2(·|θm))

]

≤ EYm2 [(1− σm2(θm, Ym2))Ṽm(Ym2)|θm]

EYm2 [σm2(θm, Ym2)EYm3 [δṼm(Ym3)|θm]|θm]

where the last inequality follows from the fact that Ṽm(Pm2(·|θm)) ≤ EYm3 [δṼm(Ym3)|θm] for

sufficiently large δ. For sufficiently large δ, Ṽm(σm2(θm, ·)) is smaller than

δEYm2 [(1− σm2(θm, Ym2))Ṽm(Ym2) + σm2(θm, Ym2)EYm3 [δṼm(Ym3)|θm]|θm].

Therefore, we have shown that no matter who the man is matched to in the marriage market,

if he is sufficiently patient, (I1, E1) is dominated. We can use analogous arguments to show

that (I1, D1) dominates (I1, E1) for sufficiently patient women.
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Figure 1.10: The relationships between marriage-age and income among Canadian men ages
40-44 in 1981 and among Brazilian men ages 40-44 in 1991.

1.8 Data Description and Additional Figures

The data in USA 1980 were taken from the 1% sample of the 1980 US Census via IPUMS

(Ruggles et al., 2010). Age at first marriage (AGEMARR) and personal income (INCTOT)

are directly asked on the form. To be comparable with 2010, I dropped all the people who

have married more than once, which constituted 18% of the sample; including those people in

the analysis does not change the relationship qualitatively. The data in USA 2012 were taken

from the 1% sample of the 2012 American Community Survey via IPUMS-USA (Ruggles

et al., 2010). Marriage-age is calculated for those who married once in the current marital

status (YRMARR). Those who married more than once constitute about 16% of the sample

and are dropped because marriage-age cannot be computed for this subsample.

The Canadian data in 1981 were taken from 1980 Census of Canada via IPUMS (Ruggles

et al., 2010). Age at first marriage was directly asked and recorded as AGEMARR. Personal

income is INCTOT. The Brazilian men ages 40-44 in 1991 were the the men from 1991 Censo

Demogràfico via IPUMS-International (Ruggles et al., 2010). Marriage-age was directly

asked and recorded as AGEMARR. Personal income is INCTOT. Questions related to family
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Figure 1.11: The relationship between marriage-age and income among Canadian women
ages 40-44 in 1981 and among Brazilian women ages 40-44 in 1991.

income or spouse’s income are not asked. I choose these two countries because of data

availability: those were the only two countries with data on both personal income and

marriage-age in IPUMS-International.

The husband’s income is calculated as the family income minus personal income (FTOT-

INC − INCTOT). Questions related to family income or spouse’s income were not asked in

the Canadian and Brazilian datasets.
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Chapter 2 Pre-Matching Gambles

“The lottery of the law [profession] ... is very far from being a perfectly fair lottery;

and that as well as many other liberal and honorable professions, is, in point of

pecuniary gain, evidently under-recompensed. Those professions keep their level,

however, with other occupations; and, notwithstanding these discouragements,

all the most generous and liberal spirits are eager to crowd into them.”

− Adam Smith, Wealth of Nations

Abstract: This paper studies gambling behavior in an equilibrium two-sided matching mar-

ket. People choose lotteries to change their matching attributes before they enter a stable

matching market. These choices can be financial investments, occupation choices, or college

major choices. Surprisingly, risk-averse people can take very risky investments before they

enter a matching market. A unique fundamental feature of the matching market, I call

the stable rematching effect, drives the risky choices: a gamble changes not only a person’s

matching attribute but also his or her partner. Furthermore, the gambling incentive arises

independently of the shape of the surplus function contrary to the possible misconceived

intuition that surplus supermodularity and positive-assortative matching resulted from the

surplus play a key role. The paper discusses the trade-off between efficiency and inequal-

ity: the socially efficient gambling can always be supported in equilibrium, but there may

exist other equilibria with different equilibrium wealth distributions. Finally, I interpret

pre-matching gambling as choosing careers with different wage distributions and account for

gender-specific patterns of occupational choices and marital timing.

Keywords: investment-and-matching, stable rematching effect, income inequality, occupa-

tional choice
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JEL: C78, D31, J41

2.1 Introduction

People take risks. Ordinary you and I visit casinos and buy lottery tickets. Sane citizens

commit crimes and take chance to park illegally. College graduates pick career paths with

similar expected lifetime earnings but very different income distributions. Young profes-

sionals quit their steady jobs and become entrepreneurs. Investment managers build risky

portfolios.

Adam Smith (1776) conjectures that social status motives and overconfidence drive these

risky choices. Friedman and Savage (1948) postulate that utility functions exhibit convexity

in some range. Rubin and Paul (1979) point out that people may gamble to reach subsistence

level (e.g. stealing, robbery). Robson (1992) and Becker et al. (2005) reemphasize the

importance of social status. I argue in this paper that subsequent matching concerns induce

gambling. College students choose different majors that provide different bundles of human

capital in order to meet future employers’ needs in the competitive labor market. People

risk their wealth in order to attract mates in the future. Investment managers build risky

portfolios because financial investment returns not only augment cash flow but also attract

future investors.

This paper is the first to study gambling behavior in an equilibrium two-sided matching

market. Agents can pick lotteries to change their matching characteristics before they find

partners and bargain for their surplus. Studying these often overlooked investments in

an equilibrium setting can lead to quite surprising implications about private and social

risk-taking. The inherent competitive structure of the matching market in fact encourages

gambling.

The paper contains the following key results. First, the paper rationalizes seemingly risky
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choices before matching markets. Second, the paper discovers a gambling-inducing factor

inherent in stable matching market independent of any assumption on the surplus function.

Third, the paper investigates the properties of equilibria. Fourth and finally, the paper

provides a tractable model that is consistent with key stylized facts about career choices and

the marriage market.

Beneficial pre-matching gambles can be prevalent. I first show in an example that an

agent may strictly prefer to take an actuarially unfair gamble. Moderate amount of risk

aversion does not preclude agents from taking these unfair and risky gambles. The example

also alludes to the factors that drive the seemingly risk-seeking preferences.

Stability of the transferable utilities matching market inherently encourages and induces

pre-matching risk-taking. A stable rematching effect always prompts the agent to gamble. A

gamble does not only change an agent’s contribution to surplus but also his or her partner.

Crucially, due to stability, for every realization of the gamble, the agent is always matched

with the partner that gives him the highest attainable payoff. This stable rematching effect

is exclusive to matching market.

The risk-taking behavior, despite of its usual negative connotation, is not necessarily

undesirable in the current matching setting. The gambles can be beneficial to private as well

as social welfare. The gambles in equilibrium are constrained efficient. That is, if a social

planner can redo the gambles everyone on one side of the market takes and rearranges the

matches based on the realizations of the gambles, he cannot improve social welfare. When

multiple equilibria arise, carefully designed tax schemes can eliminate inefficient equilibrium.

I show an example where a progressive tax scheme can effectively enhance efficiency, reduce

inequality, and generate positive tax revenue.

I use a dynamic extension of the model to study gender differences in occupational choices

and marital patterns. If women remain reproductively desirable for a shorter length of time

than men and it takes time to resolve uncertainties from risky investment, women will choose
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careers that have steady gains and marry early. Men on the other hand choose occupations

that may have volatile returns (e.g. traders, entrepreneurs) and marry later in general. As

fecundity constraint lessens, more women enter the occupations previously dominated by

men and are exposed to labor market shocks and delay their marriages.

After a brief literature review, the rest of the paper proceeds as follows. Section 2.2

demonstrates an example in which an agent could find profitable pre-matching lottery. Sec-

tion 2.3 describes the basic model. Section 2.4 shows the dominance of extremely volatile

gambles when the surplus function is bi-linear. Section 2.5 highlights how stability fosters

risk-taking behaviors. Section 2.6 shows the existence of the efficient equilibrium and the

equilibrium properties. Section 2.7 extends the model to a dynamic setting and discusses

interplay between occupational choices and marital timing. Section 2.8 concludes.

Related Literature

The paper is linked to the literature that answers why people gamble. Smith (1776) raises

and discusses the question. The primary consideration has been the additional social status

wealth adds. Modern treatment begins with Friedman and Savage (1948). They argue the

utility over money is convex on certain range, and people take gambles if their wealth falls in

that range. Their explanation for the convexity is that people gamble with wealth because

of social status considerations. Wealth gain raises not only consumption but also one’s social

status. Ray and Robson (2012) formalizes these arguments in a dynamic setting. Becker et

al. (2005) investigate the gambling incentives when social status can be bought and traded

in an explicit or implicit market. Complementarity between money and status for utility is

key to prompt risk-taking behavior that results in unequal wage distributions. This paper

shows complementarity is no longer key in a two-sided hedonic market.

The idea that marriage can generate gambling incentives has been explored before as

well. Rubin and Paul (1979) and Robson (1996) both discuss incentives to gamble in order
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to obtain additional wives. Because of discreteness number of wives a man can have, he

would rather take unfair lotteries to obtain enough wealth and resources for an additional

wife than to let some of resources to remain idle for inefficient use. However, the papers

rely on both assumptions of non-transferable utility and polygamy. The current paper is in

a transferable utility, one-to-one matching setting. Roughly speaking, the previous papers

have considered how quantity of wives can affect a man’s gambling incentive, whereas the

current paper considers how quality can induce similar gambling incentive.

Rosen (1997) shows agents’ willingness to gamble if having more wages enable one to move

to bigger cities with more abundant resources. From the literature that investigates voluntary

and wealth redistribution, the paper provides a possible relationship between efficiency and

inequality in a matching market. Rosen (1997) and Becker et al. (2005) investigate wealth

redistribution as a result of gambling incentives. Bergstrom (1986) studies gambling and

occupational choices. Anderson and Smith (2010), although not on gambling incentives, show

the convexity of the payoff function when the surplus function is bilinear and supermodular,

and some of their key results depend on this feature of the payoff function. This paper

generalizes this result and investigates the persistent underlying driving force.

Different from the previous investment-and-matching models in which investments yield

deterministic returns, I investigate investments with uncertain returns. The literature on

investments with deterministic returns is fairly large (Cole et al., 2001b; Iyigun and Walsh,

2007; Chiappori et al., 2009; Mailath et al., 2012, 2013; Dizdar, 2013). Zhang (2015a) studies

investments with uncertain returns but the focus is not on the tradeoff between investments

of different volatilities. We can draw some parallels about equilibrium results. The efficient

gambles and inequality can be supported in equilibrium, but there may also exist inefficient

equilibria. The inefficiency is related to the lack of corresponding agents on the other side of

the market, similar to the causes of inefficiency in Cole et al. (2001b) and Dizdar (2013). The

equilibrium gambles and the deterministic investments are constrained efficient, however.
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2.2 A Motivating Example

Let me first show a simple example in which an agent always embraces uncertainty and prefers

a gamble over a deterministic investment that has the same expected return. Consider a

two-sided matching market with continuums of men and women distinguished by a one-

dimensional matching attribute denoted by x and y, and the attributes are distributed

according to mass distributions Gm and Gw. A man of attribute x and a woman of y produce

zero individually and positive surplus s(x, y) if matched. Market conditions determine the

matching among agents and division of the surplus. Matching π and payoffs u and v are said

to be stable if the matching maximizes total surplus
´
sdπ and matched partners split their

surpluses, i.e. u(x)+v(y) = s(x, y) if π(x, y) > 0, and no pair of agents can be strictly better

off matching with each other and redividing their surplus than staying with their current

partners, i.e. for any x and y,

u(x) + v(y) ≥ s(x, y).

This inequality holds for any pair of agents and often holds strictly for any two agents who

are not matched to each other.

Now suppose that the surplus function is s(x, y) = xy and that a risk-neutral man born

with attribute x has an investment choice before entering the large matching market, while

the rest of the agents can only enter the market with their innate attributes. He can either

enter the large matching market with attribute x or take a fair gamble that changes his

attribute such that with probability p he has high attribute x > x and with probability 1−p

he has low attribute x < x, but the expected attribute remains x, x = px+ (1− p)x.

Since there are continuums of agents, the man’s choice between x and p ◦ x+ (1− p) ◦ x

does not affect the equilibrium payoff functions u(·) and v(·). He chooses an investment to

maximize his expected payoff. If he does not take the gamble, his payoff is u(x). If he takes
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s(x, y) = xy

x y u(x) + v(y) = s(x, y)

x

x

u(x) + v(y) ≥ s(x, y)

u(x) + v(y) ≥ s(x, y)

Figure 2.1: Stability conditions in a two-sided matching market.

the gamble, his expected payoff is pu(x) + (1− p)u(x).

In fact, the gamble yields weakly greater expected payoff. If he enters the matching

market with attribute x and is stably matched with a woman of attribute y (as shown in

Figure 2.1)1, his payoff is the surplus x and y produces net any payoff y takes,

u(x) = xy − v(y).

Simply by the stability condition u(x) + v(y) ≥ s(x, y) for all x and y, the following two

inequalities must hold:

u(x) ≥ xy − v(y),

u(x) ≥ xy − v(y).

Figure 2.1 illustrates the matching market and summarizes these implied stability conditions.

The expected payoff of taking the gamble is then bounded by these stability inequalities,

in particular,

pu(x) + (1− p)u(x) ≥ p[xy − v(y)] + (1− p)[xy − v(y)]

= pxy + (1− p)xy − v(y) = xy − v(y) = u(x).

Therefore, taking the fair lottery for x is at least as good as not taking it. Often the
1If x is not matched to any woman, u(x) = 0, then taking the gamble is trivially weakly better as u(·) is

non-negative by individual rationality.
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inequalities u(x) ≥ xy − v(y) and u(x) ≥ xy − v(y) hold strictly; for example, when none

of the partners of men with attribute x is a woman with attribute y in the stable matching

(π(x, y) = 0), u(x) > xy − v(y). As long as one of the inequalities holds strictly, the fair

lottery yields strictly higher expected payoff than the risk-free investment. By continuity,

the agent can strictly prefer an unfair lottery even if he is strictly risk averse in the payoffs.

The range of such desirable unfair lotteries can be quite large; as shown in the subsequent

numerical Example 1, the risk-neutral median man is willing to take a gamble that makes

him the greatest with probability 1/4 and the worst with probability 3/4.

Example 1. Mass 1 of men and mass 1 of women are endowed with attributes uniformly

distributed on [0, 1]. Suppose the surplus function is s(x, y) = xy and single agents produce

zero. The stable matching is positive assortative and the unique stable payoff functions are

u(x) = x2/2 and v(y) = y2/2. An attribute x = 1
2 man decides between remaining attribute

1
2 and taking a gamble that changes his attribute to either the worst x = 0 or the best x = 1.

If his utility is U(u) = u
1
2 (1+ρ), he prefers buying an extreme fair lottery 1

2 ◦ 0 + 1
2 ◦ 1 to

remaining attribute 1
2 if

p · 11+ρ + (1− p) · 01+ρ > (
1

2
)1+ρ ⇒ p > 1/21+ρ.

In particular, if the man is risk-neutral (ρ = 1), he prefers the extreme lottery to no lottery

if p > 1/4. If ρ = 1/2 so his utility is U(u) = u
3
4 , he prefers the lottery if p > 0.36. Of

course, gambling is not always preferred when the agent is too risk averse and/or the lottery

is too unfair. If the man is risk averse enough, when ρ < 0 in this example, he strictly prefers

staying attribute 1
2 to taking any fair lottery. If the available lottery is p ◦ 1 + (1 − p) ◦ 0

where p < 1/4, a risk-neutral man strictly prefers not taking it.

In this example, preference for gamble over risk-free option does not rely on particular

attribute distributions Gm and Gw. If all agents can choose gambles and their choices result
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in attribute distributions, each agent nonetheless individually prefers to choose a gamble.

In fact, in a general equilibrium model in which every agent can choose among lotteries,

if there are several lotteries that have the same mean and are ordered in terms of second

order stochastic dominance, when the surplus function is bilinear, the only weakly domi-

nant investment strategy for each agent is the second order stochastically most dominated

investment, which we will show in Section 2.4. However, the independence between oppo-

site side heterogeneity and gambling incentives is not generally true. In fact, the attribute

distributions crucially determine the gambling incentives.

2.3 The Model

Economy E consists of a continuum of men and women endowed with one-dimensional

attributes respectively denoted by x̂ and ŷ. Mass functions Fm and Fw describe the distri-

butions of the attributes on compact supports X̂ and Ŷ in R+. Without loss of generality,

assume equal masses of men and women2.

The economy E operates in two phases, an investment phase followed by a matching

phase. In the investment phase, the agents simultaneously choose among fair investment

lotteries to stochastically alter their innate attributes. Then in the matching phase, the

agents match based on their realized attributes and divide their matching surpluses in a

frictionless stable assignment market. Details of the economy precede definition of the equi-

librium.
2X̂ and Ŷ could be discrete or continuous. If there are unequal masses of men and women, dummy agents

can always be added to the shorter side of the market. Dummy agents do not change their attributes and
matching with dummy agents does not generate any surplus.
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2.3.1 Gambling Phase

In the investment phase, each agent simultaneously and non-cooperatively chooses a fair

lottery that alters one’s innate attribute. A lottery P (·|x̂) specifies the cumulative distribu-

tion function of the realized attribute. Each man x̂’s feasible lottery set P(x̂) consists of all

lotteries that realize attribute on compact support X = [x, x] and have expected attribute

of x̂. The lotteries for women are similarly defined and specified; Q(·|ŷ) represents a feasible

fair lottery of ŷ and Q(ŷ) the set of feasible lotteries with compact support on Y ≡ [y, y].

Note that P(x̂) and Q(ŷ) include every mixed strategy as well; for example, mixed strategy

σ◦P1(·|x̂)+(1−σ)◦P2(·|x̂) is equivalent to the pure strategy P (·|x̂) = σP1(·|x̂)+(1−σ)P2(·|x̂).

(P (·|·), Q(·|·)), or simply (P,Q), represent the population strategies where each x̂ plays

P (·|x̂) and each ŷ plays Q(·|ŷ). If X̂ and Ŷ are continuous sets, P (·|·) and Q(·|·) are said to

be well-behaved if they are discontinuous at only a finite number of points and Lipschitz on

every interval of continuity points. In particular, well-behaved P (·|·) and Q(·|·) are absolutely

continuous on the intervals of continuity points.

2.3.2 Matching Phase

After agents play well-behaved strategies (P,Q), attributes are realized at the beginning of

the matching phase. (P,Q) induce heterogeneous attribute distributions Gm and Gw where

Gm(x) =

ˆ
x̃≤x

P (x̃|x̂)dFm(x̂), Gw(y) =

ˆ
ỹ≤y

Q(ỹ|ŷ)dFw(ŷ).

Let gm and gw represent the associated measures. A man of attribute x and a woman of

attribute y produce surplus s(x, y), and unmatched agents obtain zero surplus. Assume

s : X × Y → R+ is twice differentiable and has non-zero cross-partial almost everywhere.

Men and women find partners in a continuum transferable utility assignment market

characterized by measures gm on X and gw on Y and the surplus function s, and match and
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split surpluses in a stable, efficient way.

A stable bargaining outcome of assignment market (gm, gw, s) is composed of a surplus-

maximizing matching of gm and gw, and payoff functions that specify the stable payoffs for

all attributes on X and Y . Let π ∈ Π(gm, gw) be a feasible matching such that measure π

on supp(gm) × supp(gw) has marginals gm and gw. The primal linear program P(gm, gw, s)

finds a feasible matching π ∈ Π(gm, gw) that attains

sup
π̃∈Π(gm,gw)

ˆ
sdπ̃,

and the dual linear program D(gm, gw, s) finds payoff functions u : supp(gm) → R and

v : supp(gw) → R to minimize total payoffs among all stable payoff functions that satisfy

u(x) + v(y) ≥ s(x, y) ∀(x, y) ∈ supp(gm)× supp(gw).

In other words, the solutions u(·) and v(·) attain

inf
{(ũ,ṽ)|ũ(x)+ṽ(y)≥s(x,y)∀(x,y)∈supp(gm)×supp(gw)}

(ˆ
ũdgm +

ˆ
ṽdgw

)
.

Definition 2. A stable bargaining outcome (π, u, v) of assignment game (gm, gw, s) is

composed of solution π ∈ Π(gm, gw) to the primal linear program P(gm, gw, s) and solutions

u(·) and v(·) to the dual linear program D(gm, gw, s).

Solutions to the primal and dual linear programs exist3. The solutions to the two linear

programs also achieve the same objective,

max
π̃∈Π(gm,gw)

ˆ
sdπ̃ = min

{(ũ,ṽ)|ũ(x)+ṽ(y)≥s(x,y)∀(x,y)∈supp(gm)×supp(gw)}

(ˆ
ũdgm +

ˆ
ṽdgw

)
.

Let B(gm, gw, s) denote the set of stable bargaining outcomes of (gm, gw, s), as there is not

necessarily a unique stable bargaining outcome.
3Interested readers should consult Gretsky et al. (1992, 1999), Chapters 4 and 5 of Villani (2009), and

Dizdar (2013) for more detailed formulations and proofs.
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In summary, the economy is composed of a simultaneous non-cooperative investment

phase in which everyone chooses a lottery and a cooperative assignment phase. Therefore,

(Fm, Fw,P ,Q, s), innate attribute mass distributions, feasible lottery strategies, and surplus

function describe an economy E.

2.3.3 Equilibrium

An equilibrium of the economy consists of population strategies and a stable bargaining

outcome extended appropriately. Roughly speaking, in an equilibrium, each agent rationally

expects his or her matching outcome and respective payoff and chooses the lottery that

maximizes his or her expected payoff.

Consider well-behaved strategies (P,Q) and a stable bargaining outcome (π, u, v) of the

assignment market (gm, gw, s) induced by (P,Q). Suppose a man of innate attribute x̂

deviates to play a feasible strategy P̃ (·|x̂) ̸= P (·|x̂). There are two issues with such unilateral

deviation. First, population strategies in which one agent plays P̃ (·|x̂) and every other agent

plays according to (P,Q) are no longer well-behaved. Second, u(·) and v(·) by definition

are defined respectively on supp(gm) and supp(gw), so a deviation P̃ (·|x̂) may realize an

attribute x not in supp(gm) so the man’s payoff u(x) when he realizes attribute x is not

defined.

We make the following assumptions to solve these issues. When an agent unilaterally

deviates from (P,Q), assume the stable bargaining outcome (π, u, v) is unchanged. If the

agent’s deviation yields an existing attribute, the payoff is well-defined by the payoff func-

tions. On the other hand, if the agent’s realized attribute x lies outside supp(gm), his

payoff is the maximal net surplus he or she can get given the payoff the partner takes; that

is, u(x) ≡ supy∈supp(gw)[s(x, y) − v(y)] if x ̸∈ supp(gm). Define extended stable bargain-

ing outcome for any assignment market with matching and payoffs functions extended to

support X × Y . Define the payoff u(x) of a non-existent attribute x ̸∈ supp(gm) to be
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u(x) = supy∈supp(gw)[s(x, y) − v(y)]. Define v(y) for y ̸∈ supp(gw) similarly and π(x, y) = 0

for all x ̸∈ supp(gm) or y ̸∈ supp(gw).

Definition 3. An extended stable bargaining outcome (π, u, v) of an assignment market

(gm, gw, s) is composed of π : X × Y → R+, u : X → R+, and v : Y → R+ such that (π, u,

v) restricted to supp(gm) × supp(gw) is a stable bargaining outcome of (gm, gw, s), and for

x ∈ X\supp(gm) and y ∈ Y \supp(gw), π(x, y) = 0, u(x) ≡ supy∈supp(gw)[s(x, y)− v(y)], and

v(y) ≡ supx∈supp(gm)[s(x, y)− u(x)].

We are ready to define the equilibrium of the game, modifying the definitions of the

ex-post contracting equilibrium in Cole et al. (2001b) and Dizdar (2013).

Definition 4. Consider (P ∗, Q∗, π∗, u∗, v∗) composed of well-behaved strategies (P ∗, Q∗) and

an extended stable bargaining outcome (π∗, u∗, v∗) in economy E = (Fm, Fw,P ,Q, s). Let

G∗
m and G∗

w represent the induced attribution distributions G∗
m(x) =

´
x̃≤x P

∗(x̃|x̂)dFm(x̂)

and G∗
w(y) =

´
ỹ≤y Q

∗(ỹ|ŷ)dFw(ŷ) and g∗m and g∗w the corresponding attribute measures. (P ∗,

Q∗, π∗, u∗, v∗) is a fulfilled expectations equilibrium of economy E if

• (π∗, u∗, v∗) is an extended stable bargaining outcome of (g∗m, g∗w, s), and

• (P ∗, Q∗) are optimal with respect to extended stable bargaining outcome (π∗, u∗, v∗);

namely, for all x̂ ∈ X̂ and P (·|x̂) ∈ P(x̂),
´
u∗(x)dP ∗(x|x̂) ≥

´
u∗(x)dP (x|x̂), and for

all ŷ ∈ Ŷ and Q(·|ŷ) ∈ Q(ŷ),
´
v∗(y)dQ∗(y|ŷ) ≥

´
v∗(y)dQ(y|ŷ).

2.4 Dominant Extreme Gambles Under Linear Surplus

In this section, I show that when the surplus function is linear in agent’s attribute, it is a

weakly dominant strategy to pick extreme lotteries in which agents gamble to realize only

either the highest attribute or the lowest attribute. It follows that there exists an equilibrium
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in which every man and every woman chooses the extreme lottery when the surplus function

is bilinear.

Definition 5. An extreme lottery P (·|x̂) for an agent of innate attribute x̂ is to realize

only the highest or the lowest possible attribute. Given that x with probability p and x with

probability 1− p where p = x̂−x
x−x so that px+ (1− p)x = x̂.

Proposition 6. If s(x, y) is linear in x, an attribute x̂ man’s only weakly dominant strategy

is the extreme lottery.

Lemma 3. If s(x, y) is linear in x, every man weakly prefers P̃ to any second-order stochas-

tically dominant lottery P .

First, let’s see that every man prefers his lottery P1 to the degenerate lottery. Suppose

the population strategies are P (·|·) and Q(·|·) resulting in matching market distributions

Gm and Gw, if the selection function is β, u(·) and v(·) are the rationally expected payoffs;

regardless of the strategies and the selection function, payoffs satisfy the stability conditions.

The expected utility of taking the degenerate lottery P0(·|x̂) for an attribute x̂ man is U(x̂,

P0) = u(x̂), and on the other hand, the expected utility of taking fair lottery P1(·|x̂) when

others are playing P (·|·) and Q(·|·) and selection function is β is U(x̂, P1, P,Q, β) ≡ U(x̂,

P1) =
´
u(x)dP1(x|x̂). Suppose x̂ is matched with y in the stable matching π, then

u(x̂) = s(x̂, y)− v(y).

By stability, for any x ∈ X,

u(x) ≥ s(x, y)− v(y).

Therefore,

U(x̂, P1) =

ˆ
u(x)dP1(x|x̂) ≥

ˆ
[s(x, y)− v(y)]dP1(x|x̂) =

ˆ
s(x, y)dP1(x|x̂)− v(y).
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By linearity of the surplus function in x,
´
s(x, y)dP1(x|x̂) = s(

´
xdP1(x|x̂), y). Because by

definition P1(x|x̂) is a fair lottery,
´
xdP1(x|x̂) = x̂. Hence U(x̂, P1) ≥ U(x̂, P0).

In general, take any random variable ϵ ∼ Ω such that EΩ(ϵ) = 0. Given any payoff

function u(·) that satisfies the stability conditions, if s(x, y) is linear in x,
´
u(x̂+ ϵ)dΩ(ϵ) ≥

u(x̂). Pl+1(·|x̂) is a mean-preserving spread of Pl(·|x̂) if and only if there exists a random

variable zl such that E[zl|x] = 0, xl+1 = xl + zl.

Therefore, just as the lotteries are second order stochastically ranked, they are ranked in

terms of expected utilities as well: the more second order stochastically dominated a lottery

is, the higher the expected utility, regardless of other players’ lottery choices. Therefore, the

most second order stochastically dominated lottery is a weakly dominant strategy for each

man and woman.

Naturally, there exists an equilibrium in which the men and women all play the dominant

strategy to pick the most volatile investment.

Proposition 7. Suppose the surplus function s(x, y) is bilinear. There exists an ex-post

contracting equilibrium in which every agent takes the extreme gamble.

It is not necessarily the unique equilibrium. Section 2.6 presents an example with mul-

tiple equilibria. Nonetheless, the equilibrium in which every agent is voluntarily exposed to

maximal uncertainty exists and in fact maximizes social surplus. When both sides of the

agent are heterogeneous enough, then taking the most extreme lottery is everyone’s unique

strictly dominant strategy, so the equilibrium is unique. This example resonates some of the

ideas in Cole et al. (2001b), which I will elaborate in Section 2.6.

Proposition 8 (Uniqueness). Suppose the surplus function is bilinear. If distributions Fm

and Fw are differentiable and strictly increasing on full supports X and Y , and all the

non-degenerate lotteries Pl(·|x̂) and Qn(·|ŷ) are differentiable and strictly increasing on full

supports X and Y , then the population strategies in which each man chooses lottery PL(·|x̂)
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and each woman chooses lottery QN(·|ŷ) are the unique equilibrium strategies.

From the derivation above, even for a general surplus function, the agent might 1) strictly

prefer a nonempty set of unfair lotteries in the neighborhood of the fair lottery, 2) strictly

prefer the fair lottery even if he is strictly risk averse, and 3) strictly prefer an unfair lottery

even if he is strictly risk averse.

Note that bi-linearity is not equivalent to supermodularity of the surplus function. Al-

though s(x, y) = xy as used in the example in Introduction is bilinear and strictly supermod-

ular, s(x, y) = x+ y−xy for x, y ∈ [0, 1] is bilinear and strictly submodular. Fundamentally

similar to the results in this section, Anderson and Smith (2010) show convexity of the stable

payoff function when surplus function is bilinear. I will show a force derived from stability

and efficiency that persistently encourages pre-matching risk-taking. Also note that if the

surplus function is instead strictly biconvex (e.g. s(x, y) = x2y2), all the propositions go

through and the most volatile investments are strictly dominant.

2.5 Stable Reassignment Effect

The motivating single-agent gambling example in Section 2.2 and the results on extreme

gambles as unique dominant strategies under linear surplus in the previous section suggest

that the stable payoff functions are inherently convex and that the stable organization of

the assignment market itself possibly contributes to such payoff convexity. I will show below

an inherent stable rematching effect that always generates convexity in the stable payoff

functions and thus induces pre-matching gambling. Notably, this gamble-inducing effect

arises solely as a byproduct of the stability conditions and exists independently of the surplus

function. The independence of the effect’s existence to the shape of the surplus function

particularly dismisses the probable speculation that complementarity plays the essential role

in encouraging gambles in the previous results.
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In essence, the stable assignment, in particular, the rematching based on realized at-

tribute, provides an implicit but persistent benefit to gambling. In any stable bargaining

outcome, simply by the stability conditions, a man cannot do strictly better by matching

with a partner different from the one that he is assigned to and paying the new partner at

least her competitive payoff. In other words, in any stable bargaining outcome, any man (or

any woman) is assigned to the partner that maximizes his marital payoff. Consider the sce-

narios between gambling and no gambling. A man who does not gamble will end up with an

assigned partner. When he gambles, he will be very likely assigned a different partner based

on the realized attribute. This reassigned partner enables him a higher stable payoff than he

would get otherwise with the original partner if he does not gamble. This rematching effect

always brings an extra benefit to the agent who gambles. The rematching based on realized

attribute adds a benefit to the agent who realizes a higher attribute and an insurance if the

realized attribute is low.

Let me now formally demonstrate the gamble-inducing stable rematching effect. Consider

an assignment market (gm, gw, s) induced by the population strategies (P,Q) and an extended

stable bargaining outcome (π, u, v) of the market. Take any man x ∈ X. Recall the stability

conditions the stable matching and payoffs satisfy. For any woman y ∈ supp(gw),

u(x) ≥ s(x, y)− v(y).

If there is positive measure of matches between x and y, i.e. π(x, y) > 0, then

u(x) = s(x, y)− v(y).

Consider s(x, y)− v(y). It represents the payoff x would get if he marries y and pays y her

competitive market value v(y). In the stable assignment, x is matched with y only if

s(x, y)− v(y) ≥ s(x, y′)− v(y′) ∀y′ ∈ supp(gw).
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In other words, x marries y that gives the highest possible payoff, so

u(x) = sup
y∈supp(gw)

[s(x, y)− v(y)].

Let y(x) ∈ supp(gw) denote a woman attribute that satisfies

s(x, y(x))− v(y(x)) = sup
y∈supp(gw)

[s(x, y)− v(y)],

and let Y (x) denote the set of women whose match with x will yield the maximal payoff

supy∈supp(gw)[s(x, y) − v(y)] for x. Therefore in an extended stable bargaining outcome,

u(x) = s(x, y(x))− v(y(x)) for all x ∈ X, not only x ∈ supp(gw). In particular, if an agent

has innate attribute x̂ and takes a gamble and realizes a different attribute x, his optimally

assigned partners in the market probably differ, and the payoff x gets by matching with any

of his optimal partners y(x) weakly exceeds the payoff x gets by matching x̂’s partner y(x̂).

u(x) = s(x, y(x))− v(y(x)) ≥ s(x, y(x̂))− v(y(x̂)). (2.1)

If Y (x̂) ∩ Y (x) = ∅, x has for sure a different assigned partner as x̂, and the payoff benefit

is strictly positive.

Now, compare a feasible fair lottery P (·|x̂) for an innate attribute x̂ man to his degenerate

lottery p(x|x̂) = 1x=x̂. The difference between the expected payoffs from the two decisions is

EP (·|x̂)[u(x)]− u(x̂) = EP (·|x̂)[s(x, y(x))− v(y(x))]− [s(x̂, y(x̂))− v(y(x̂))].

Subtract and add the same term EP (·|x̂)[s(x, y(x̂)−v(y(x̂))], the hypothetical expected payoff

a man x̂ would receive for gambling P (·|x̂), producing with the partner of attribute y(x̂),

and transferring v(y(x̂)) to her. The expected payoff difference is then rewritten as

EP (·|x̂)[u(x)]− u(x̂) = EP (·|x̂)[s(x, y(x))− v(y(x))]− EP (·|x̂)[s(x, y(x̂)− v(y(x̂))]

+EP (·|x̂)[s(x, y(x̂))− v(y(x̂))]− [s(x̂, y(x̂))− v(y(x̂))].

85



Combine the first two terms and the last two terms respectively, the expected payoff difference

is expressed as the sum of two effects,

EP (·|x̂) {[s(x, y(x̂))− v(y(x̂))]− [s(x̂, y(x̂))− v(y(x̂)]}
︸ ︷︷ ︸

surplus contribution effect

+

EP (·|x̂) {[s(x, y(x))− v(y(x))]− [s(x, y(x̂))− v(y(x̂))]}
︸ ︷︷ ︸

stable rematching effect

The first term represents the difference between two expected payoffs, 1) the expected

payoff x̂ gets by taking the gamble P (·|x̂) but matching with the partner y(x̂) he would have

without gambling, and 2) the (expected) payoff of x̂ for not gambling. Regardless of the

realization of the attribute, the wife gets her share of payoff v(y(x̂)). Therefore, the sign of

the second term amounts to the convexity of the surplus function with respect to the agent’s

own attribute given a fixed partner y(x̂),

EP (·|x̂) {[s(x, y(x̂))− v(y(x̂))]− [s(x̂, y(x̂))− v(y(x̂)]} = EP (·|x̂)s(x, y(x̂))− s(x̂, y(x̂)).

If the surplus function is convex in x, in other words, man’s marginal surplus contribution

increases as his attribute increases, then the effect is positive. If the surplus function is

concave, or the marginal surplus decreases as man’s attribute increases, then the effect is

negative. I call the term the surplus contribution effect since its sign depends on the

slope of marginal surplus function and the convexity of the surplus function. If the surplus

function is linear in x, for example when s(x, y) = xy, then this term is always zero and this

effect does not affect people’s gambling incentives at all. Therefore, the previous results on

beneficial gambling must be driven by the second effect.

The second term represents the expected payoff difference from optimal partner rematch-

ing based on different gambling realizations, whereas the first term represents the expected

payoff difference between gambling and no gambling if the agent is held fixed to his no-
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gambling partner. For any realized x ∈ supp(p(·|x̂)),

[s(x, y(x))− v(y(x))]− [s(x, y(x̂))− v(y(x̂))]

represents the difference between the maximal payoff x can get by matching with y(x) and the

possibly non-optimal payoff x can get by matching with y(x̂). By (2.1) and that s(x, y(x))−

y(x) is the maximal payoff for x, the payoff difference is non-negative for any realized x. Since

the payoff difference is non-negative for any realization, the expected payoff difference over all

possible realizations is always non-negative. I call the second term the stable rematching

effect for the payoff gain comes from reassigning the agent to an optimally chosen partner

by the stability conditions. This weakly positive benefit gives a persistent reason for agents

to gamble.

Note that the non-negative stable rematching effect does not depend on any assumption

about the shape of the surplus function, but rather comes solely from the stability conditions

that govern the assignment market.

To emphasize that stable assignment induces gambles regardless of the shape of the

surplus function, let’s take a price-theoretic approach to see why in particular surplus super-

modularity assumption can be dispensed with. Consider an assignment market (gm, gw, s).

Suppose that the mass distributions Gm and Gw are strictly increasing and twice differen-

tiable on full supports X and Y and that s is strictly supermodular and twice differentiable.

The stable matching is then positive assortative. Let Y (x) = {y : π(x, y(x)) > 0} the set

of women’s attributes that attribute x men are matched with. The assumptions on the

distributions and the surplus function dictate that Y (x) is a singleton for all x, denoted by

y(x); y(x) = G−1
w (Gm(x)) is a strictly increasing and bijective function. Moreover, u and v

are differentiable. An attribute x man’s payoff is the surplus x and y(x) produce together
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net the payoff of attribute y(x) woman,

u(x) = s(x, y(x))− v(y(x)).

Each man chooses and is paired with the woman that maximizes his payoff, so we have the

first order condition

s2(x, y(x))− v′(y(x)) = 0. (2.2)

Let’s examine the convexity of the continuous and twice differentiable payoff function u.

Differentiate with respect to x,

u′(x) = s1(x, y(x)) + [s2(x, y(x))− v′(y(x))]y′(x).

so by the FOC (2.2), the second term is zero, and u′(x) is simply the marginal surplus of x

given the fixed optimal partner y(x),

u′(x) = s1(x, y(x)),

a standard and widely result in the matching literature. Differentiate u′(x) with respect to x,

we get the differentiation with respect to the first term and to the second term, respectively,

u′′(x) = s11(x, y(x))︸ ︷︷ ︸
surplus contribution effect

+ s12(x, y(x))y
′(x)︸ ︷︷ ︸

stable rematching effect

.

The two terms correspond to the two effects described above - the surplus contribution effect

and the stable rematching effect. The second term, the stable rematching, is undoubtedly

always non-negative. When the surplus function is strictly supermodular s12 > 0, the stable

matching is positive assortative so y′(x) > 0, so the effect is positive.

Economically, when the surplus is strictly supermodular, it is straightforward to under-

stand gambling incentives to improve expected equilibrium marginal surplus. With a super-

modular surplus function, an agent’s own marginal surplus increases in partner’s attribute,
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so the agent has incentive to take a fair gamble to be matched with a better partner and

enjoys a higher marginal surplus. The gambling incentives in the one-sided hedonic market

in Rosen (1997) and Becker et al. (2005) for example crucially depend on the assumption of

complementarity.

Although the gambling incentives in the matching market can be justified in the same

way when the surplus is supermodular, that does not imply that gambling incentives cru-

cially depend on the supermodularity assumption. Take the extreme opposite case that the

surplus function is submodular, s12 < 0 (e.g. s(x, y) = x + y − xy for x, y ∈ [0, 1]). An

agent’s marginal surplus decreases as the partner’s attribute increases. However, the match-

ing market reassigns the agent a partner based on the realized attribute and a higher realized

attribute results in a partner with lower attribute when the surplus is submodular. Conse-

quently, when an agent realizes a higher attribute, his stably assigned partner has a lower

attribute than if he does not take the gamble; when an agent realizes a lower attribute, his

stably assigned partner has a higher attribute. Isolating to the stable rematching effect, the

effective marginal surplus s1(x, y(x)) increases unambiguously with respect to one’s attribute

change, because s12 < 0 and y′ < 0 imply s12(x, y(x))y′(x) > 0.

The same stable rematching effect always contributes to the convexity of the payoff

function regardless of the underlying surplus function. Suppose the surplus function is

strictly supermodular for certain (x, y) and strictly submodular for other certain combination

of (x, y). When s12 > 0, the stable matching is locally positive assortative. On the other

hand when s12 < 0, the stable matching is locally negative assortative. Therefore, s12(x,

y)y′(x) ≥ 0 for all (x, y). Nonetheless, as long as the surplus contribution effect is not

significantly negative, the stable rematching effect always encourages gambling behavior.

An important market condition that affects gambling incentive for agents is the degree

of diversity on the opposite side of the market. Take the extreme case that all women are

born identical and do not gamble. Then y′(x) = 0 in any market. The stable rematching
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effect s12(x, y)y′(x) = 0. However, if the other side of the two-sided market is diverse, then

gambling becomes more attractive. Mathematically, consider the general expression of the

stable rematching effect for a realized x,

[s(x, y(x))− v(y(x))] = sup
y∈supp(gw)

[s(x, y)− v(y)].

As supp(gw) expands, any man x’s optimal payoff weakly increases. The payoff gain due to

rematching increases without affecting the magnitude of the surplus contribution effect. The

degree of diversity is important in guaranteeing uniqueness of the equilibrium with socially

efficient investments in Cole et al. (2001b). It will also play a crucial role in this model. In

particular, I show an example with homogeneous agents on both sides of the market and

multiple equilibria.

Therefore, convexity of the stable payoff function in the previous sections hinges on this

rematching effect. In the special case of a bilinear surplus function, s11 = s22 = 0, the surplus

contribution effect is mute and the stable payoff functions exhibit weak convexity generally

and strict convexity when the agents are heterogeneous enough.

The stable rematching effect is similar to a substitution effect. However, the matching

market is special in the following sense. Consider a competitively organized market. A vector

of goods {1, · · · , N} is available, and a bundle is denoted by x = (x1, · · · , xN) ∈ X . Suppose

the supply of goods is fixed. Every person is endowed with (possibly different) wage earnings

wi ∈ R+ and (possibly different, “well-behaved”) utility function ui : X → R+. They are

price takers and denote the vector of prices by p.

The utility a person i derives when he has income w is the maximal utility he can derive

by consuming the optimal bundle of goods,

u(w) ≡ u(x) s.t. p·x≤w

Let x(w) denote the optimal bundle of goods when a person has income w.
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Consider gambling now. Suppose a person starts with income ŵ and can take a fair

gamble on the income. The person purchases the goods after gambling. Then the utility

difference between gambling and not gambling is

E[u(w)]− u(ŵ),

and express in terms of the explicit utility function,

E[u(w)]− u(ŵ) = E[u(x(w))]− u(x(ŵ)).

Add and subtract the term E
[
u
(
w
ŵx(ŵ)

)]
, i.e. the expected utility if the agent simply

consumes the feasible bundle given any income w by shifting proportionally with respect to

his income x̂, the difference becomes

E[u(x(w))]− E
[
u
(w
ŵ
x(ŵ)

)]
+ E

[
u
(w
ŵ
x(ŵ)

)]
− u(x(ŵ)).

It combines to have two terms,

E
[
u(x(w))− u

(w
ŵ
x(ŵ)

)]
+ E

[
u
(w
ŵ
x(ŵ)

)
− u(x(ŵ))

]
.

2.6 Equilibrium Properties

Conjecture 1. For the socially efficient allocation (P ∗∗, Q∗∗), there exists an extended sta-

ble bargaining outcome function (π∗∗, u∗∗, v∗∗) such that (P ∗∗, Q∗∗, π∗∗, u∗∗, v∗∗) is a fulfilled

expectations equilibrium.

The effect that drives gambling is to convexify the payoff function, which is endogenous

determined in this model. The idea is similar to Friedman and Savage (1948) and the

subsequent literature. The key advance here is that the utility function is not assumed to

be convex. The convexity arises from a rematching effect unique to the assignment market.
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x

u(x)

x ̸∈ supp(g∗m)

Figure 2.2: Equilibrium payoff functions are weakly concave on equilibrium support.

The efficient equilibrium is not necessarily the unique equilibrium; there may exist in-

efficient equilibria. In this section, I investigate these inefficient equilibria. An equilibrium

is constrained efficient if neither side of the agents can collectively change their equi-

librium investments to improve total expected surplus. Every equilibrium turns out to be

constrained efficient.

Proposition 9. Every fulfilled expectations equilibrium is constrained efficient.

If an equilibrium is inefficient, changing one side of investments cannot improve efficiency

since it is constrained efficient, but changing both sides of investments can improve. In other

words, in every inefficient equilibrium, some coordination failures happen between two sides

of the market.

Suppose everyone is born homogeneous and can take a gamble before participating in

the matching market. Each of the mass 1 of type 2x0 men and mass 1 of type 2y0 women

can enter the matching market either with the innate type as his or her match type or after

taking a lottery P1 for men and Q1 for women that with probability 1
2 a person becomes x0

and with the other probability 1
2 the person becomes type 3x0. Let the surplus function be

s(x, y) = 2xy. So the attribute sets are X̂ = {x0, 2x0, 3x0} and Ŷ = {y0, 2y0, 3y0}.

Two quite different rational expectations equilibria arise. In the first equilibrium, no one

takes a gamble; in the second equilibrium, everyone takes the gamble.
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In the first homogeneous equilibrium, everyone enters the matching market as the innate

type without gambling so mass 1 of type 2x0 men and mass 1 of type 2y0 women are in

the matching market. The equilibrium non-negative share payoff functions u∗(·) and v∗(·)

satisfy u∗(x0) = v∗(y0) = 0, u∗(2x0) = v∗(2y0) = 2x0y0, and u∗(3x0) = v∗(3y0) = 4x0y0.

Under these equilibrium share payoffs, no one can strictly benefit from taking a gamble.

In the second heterogeneous equilibrium, everyone takes the lottery and the equilibrium

share payoff functions are u∗(x0) = v∗(y0) = 0, u∗(2x0) = v∗(2y0) = 2x0y0, and u∗(3x0) =

v∗(3y0) = 4.5x0y0. The matching market is composed of mass 0.5 of type 3x0 men, mass 0.5

of type x0 men, mass 0.5 of type 3y0 women, and mass 0.5 of type y0 women.

The second equilibrium is the efficient equilibrium. The total surplus in the second

equilibrium is 1
2(3x0)(3y0)+

1
2(x0)(y0) = 5x0y0 while the total surplus in the first equilibrium

is only (2x0)(2y0) = 4x0y0. Therefore, a social planner should encourage the seemingly risky

behavior.

A perhaps undesirable effect of the population-wide risky behavior is the ex-post inequal-

ity in their match types and payoffs. A remedy to the problem is a progressive tax scheme

on the share payoffs. As we see in Section 2.5, the share payoff functions are strictly convex.

A progressive tax scheme can flatten out the convexity of share payoff function. As long as

there the after-tax share payoffs remain a little convex, incentives to invest and improve still

exist. Moreover, a carefully designed progressive tax, besides reducing inequality, can also

produce positive revenue and eliminate inefficient equilibrium.

Let me show an example of such tax scheme that can be implemented for the current

example. Suppose τm(1x) = τw(1y) = −1, τm(2x) = τw(2y) = 0, τm(3x) = τw(3y) =
2
9 , that

is, attribute 1s are given subsidies of 100% and attribute 3s are taxed fraction 2/9 of their

earnings. Before the taxes, u∗(1x) = v∗(1y) = 1, u∗(2x) = v∗(2y) = 3, u∗(3x) = v∗(3y) = 9.

After the taxes, u†(1x) = v†(1y) = 2, u†(2x) = v†(2y) = 3, u†(3x) = v†(3y) = 7: the

inequality is reduced and the equilibrium lotteries are still supported. Furthermore, a positive
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tax revenue is generated: τ = 1
2 ·2+

1
2 ·(−1) = 1

2 . Finally, the previous inefficient equilibrium

investments are no longer supported as the risk of a bad outcome is completely insured by

the subsidy: u†(1x) = v†(1y) = 4, u†(2x) = v†(2y) = 4, u†(3x) = v†(3y) = 14
3 .

A literature exists on the relationship between economic growth and income inequality.

Rosen (1997) focuses on the complementarity between income and location. Becker et al.

(2005) focus on market for status and generate endogenous income distributions. Ray and

Robson (2012) have an equilibrium growth model with endogenous risk-taking. However,

none of the papers considers the gambling incentives in a matching market.

2.7 Occupational Choices with Marital Concerns

We can extend this framework to understand gender differences in risk-taking behavior as

well. If we treat the risk-taking behavior as career path choices, we can explain the ob-

servation that more men are in risky careers and explain marriage age-personal income

relationships. An active literature empirically examines the gender difference in risk pref-

erences and tries to justify the career choice. I provide an alternative explanation to what

seem to be a difference in risk preferences - differential fecundity.

Time is discrete and infinite. At the beginning of each period, masses one of men and

women are born and are endowed with attributes x̂ and ŷ, distributed according to fm and

fw on X̂ and Ŷ . They each live for two periods which we refer to as ages 1 and 2, and make

an occupational choice and a marriage timing choice. At the beginning of age 1, they can

either take either a safe occupation that has certain returns or a risky occupation that has

uncertain returns. The safe occupation S gives an agent lifetime earning of x̂ for sure and

the risky occupation R gives the agent an earning of x̂+ ϵ with probability 1
2 and x̂− ϵ with

probability 1
2 . The risky occupation realizes its return at age 2 and cost cR to choose.

They choose to marry at age 1 or age 2 after choosing occupation. Denote the early
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marriage choice by E and marriage delay by D. It costs cD to delay to age 2. The marital

surplus s : X × Y → R+ depends on the realized wages x and y; suppose s is continuously

differentiable and is weakly concave, s11, s22 ≤ 0. A risky occupational man who enters the

marriage market early is of matching type 1
2 ◦ (x̂ + ϵ) + 1

2 ◦ (x̂− ϵ). Suppose every agent is

risk-neutral. The expected surplus a man of type 1
2 ◦ (x̂+ ϵ) + 1

2 ◦ (x̂− ϵ) marries a woman

of y is 1
2s(x̂+ ϵ, y) + 1

2s(x̂− ϵ, y).

The marriage market, roughly speaking, is described by (gm, gw, s) and returns the stable

bargaining outcome.

In the stationary equilibrium, u∗ and v∗ are fixed. Each agent has four strategies: (S,

E), (S, D), (R, E), and (R, D). The expected payoffs for a man x̂ are respectively

• (S, E): u∗(x̂)

• (S, D): u∗(x̂)− cmD

• (R, E): u∗(12 ◦ (x̂+ ϵ) + 1
2 ◦ (x̂− ϵ))− cmR

• (R, D): 1
2u

∗(x̂+ ϵ) + 1
2u

∗(x̂− ϵ)− cmR − cmD

The expected payoffs for a woman ŷ are respectively

• (S, E): v∗(ŷ)

• (S, D): v∗(ŷ)− cwD

• (R, E): v∗(12 ◦ (ŷ + ϵ) + 1
2 ◦ (ŷ − ϵ))− cwR

• (R, D): 1
2v

∗(ŷ + ϵ) + 1
2v

∗(ŷ − ϵ)− cwR − cwD

When cD > 0, (S, D) is strictly dominated by (S, E). When cR > 0 and s is concave, (R,

E) is strictly dominated by (S, E). The choice is then between (S, E) and (R, D); that is,
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between choosing the safe occupation and marrying early and choosing the risky occupation

and delaying marriage.

A man chooses (R, D) over (S, E) when

1

2
u∗(x̂+ ϵ) +

1

2
u∗(x̂− ϵ)− u∗(x̂) > cmR + cmD.

The left hand side is positive because of the stable rematching effect. The gain from delaying

marriage is resulted from the different wife one gets. The cost cR + cD includes cost of risky

occupation and cost of marriage delay.

A woman chooses (R, D) over (S, E) when

1

2
v∗(ŷ + ϵ) +

1

2
v∗(ŷ − ϵ)− v∗(ŷ) > cwR + cwD.

The women have a potentially higher cost when she chooses (R, D).

The simple dynamic model generates a number of stylized facts fairly consistent with our

observations. If cwR + cwD > cmR + cmD,

• Men are more likely to choose risky occupations than women and marry later.

• Men’s wage distributions are more varied than women’s.

• Men and women of higher abilities tend to enter risky occupations and marry later.

• Women of higher wages and lower wages tend to marry later.

• If sex ratio is imbalanced, lowest ability men may choose risky activities, for example,

criminal activities.

Suppose men and women can choose among a set of lotteries as their wage realizations.

However, wages realize over time, and people can only enter the matching market when they

realize their wages or know their realizations with certainty. Suppose women’s desirability

as a marriage partner declines sharply over time, and men’s does not decline. Then, men
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tend to take gambles and women tend to take the non-degenerate lottery or gambles with

smaller uncertainty. As the previous sections have shown, gambles are often preferable. Men

are without fecundity constraints and therefore tend to choose risky career paths and marry

until they are successful in the career pursuits. Women on the other hand have additional

waiting costs, so they rather choose career paths that give them steady gains in their incomes

and can marry early.

We also can explain the observed personal income-marriage age relationships resulted

from the gender differences in career path choices. Around the world, the relationship be-

tween age at first marriage and personal income earned in later life has been persistently

inverse-U shaped for men: those who marry earlier and later earn significantly less than those

who marry around a median age. On the other hand, the correlation between marriage age

and personal income for women has been positive until recently in the United States the

relationship tends to an inverse-U shape similar to men’s.

Suppose men and women of heterogeneous innate types become marriageable in each

period and there are costs to invest to choose a set of investment lotteries. For men, those

of the lowest abilities do not invest at all and marry as early as possible. Men who choose

to invest choose risky lottery options, and those who realize their wage gains marry earlier

than those who realize wage gains later or who do not realize the gains at all. Women on the

other hand tend to invest safely. Those who do not invest earn low wages and marry early,

but those who invest choose career paths that have steady wage gains or that have small

variation in wages and realize quicker gains. As a result, the relationship between marriage

age and personal income is positive for women if the fecundity constraint is significant. If the

fecundity constraint is not as significant as before, for example because of lower demand for

quantity of children and a shift to a demand for quality of children, women, more similarly

treated as men on the marriage market, will choose uncertain career paths and delay their

marriages. Furthermore, the marriage age-personal income relationship tends to be inverse
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U as well.

In summary, men and women could have the same risk preferences and still exhibit

different risk-taking behavior regarding their career choices, because of their differences in

fecundity and the associated social devaluing of older age women.

Zhang (2015a) discusses the influence of fecundity concern on career investment and

age at marriage taking the labor market uncertainty as given but such investment lottery

options are not available in that model. Adding these lottery options does not change the

theoretical predictions. Charles and Luoh (2003) also empirically verify the importance of

wage distributions and market opportunities on schooling and the gender differences in those

aspects. Preliminary analyses verify the model’s predictions.

2.8 Conclusion

I show that stability encourages pre-matching risk-taking behavior. These gambling behav-

iors are even strictly profitable for risk-averse agents on unfair lotteries. The fundamental

force that drives this type of behavior is sorting among the two sides of the market as a re-

sult of stability and transferable utilities. This discovery explains some observed risk taking

behavior in the market and offers some thought on the inevitability of risk and inequality

for economic growth.

It could be interesting to extend these results in various ways. I have shown the possi-

bility of pre-matching gambles in a setting with transferable utility and stability. If agents

have ordinal preferences, and the matching among the agents is stable in the sense of Gale

and Shapley (1962), we might also investigate agents’ risk-taking behaviors in pre-matching

investment in these markets. However, utilities and fair lotteries are not straightforwardly

defined with respect to ordinal preferences.

Furthermore, it would be interesting to show that the logic goes through in a model with
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search frictions. Adding search frictions should not change the basic logic that a man still

may strictly benefit from fair lotteries and the sorting effect is still strong enough for people

to take lotteries. Bi-linearity of surplus function may play a crucial role in the extensions.

Burdett and Coles (1997) shows that when the surplus function is bilinear, there is block

matching in equilibrium, that is, agents on both sides are segregated into blocks of matching

that can be viewed as classes. The matching technology and bargaining process may have

different implications for the incentives on pre-matching investments.

2.9 Proofs

Before presenting the proofs, I list some key properties of the extended stable bargaining

outcomes to be repeatedly used. Given an assignment market characterized by (gm, gw, s),

an extended stable bargaining outcome (π∗, u∗, v∗) is composed of the solutions to two linear

programs. The primal linear program P∗(gm, gw, s) solves supπ∈Π(gm,gw)

´
sdπ where Π(gm,

gw) is the set of measures π on X × Y with marginals gm and gw. The dual linear program

D∗(gm, gw, s) solves

inf
{(u,v)|u(x)+v(y)≥s(x,y)∀(x,y)∈(supp(gm)×Y )∪(X×supp(gw)}

(ˆ
udgm +

ˆ
vdgw

)
.

Solutions to both programs exist and achieve the same objective,

max
π∈Π(gm,gw)

ˆ
sdπ = min

{(u,v)|u(x)+v(y)≥s(x,y)∀(x,y)∈(supp(gm)×Y )∪(X×supp(gw)}

(ˆ
udgm +

ˆ
vdgw

)
.

The solutions restricted to supp(gm) × supp(gw) constitute the solutions to the linear pro-

grams P(gm, gw, s) and D(gm, gw, s), hence a stable bargaining outcome of (gm, gw, s).

Furthermore, (π∗, u∗, v∗) satisfies the following properties. For x ∈ X and y ∈ Y ,

u∗(x) = sup
y∈supp(gw)

[s(x, y)− v∗(y)], v∗(x) = sup
y∈supp(gw)

[s(x, y)− v∗(x)].

99



If π∗(x, y) > 0, u∗(x) + v∗(y) = s(x, y). Finally, by the constraints of the dual program, for

all (x, y) ∈ (supp(gm)× Y ) ∪ (X × supp(gw), u∗(x) + v∗(y) ≥ s(x, y).

Proof of Proposition 3. Suppose the population strategies are P (·|·) and Q(·|·) resulting in

matching market distributions Gm and Gw, if the selection function is β, u(·) and v(·) are

the rationally expected payoffs. Take an attribute x̂ ∈ X man. When all other agents play

according to P (·|·) and Q(·|·), and the selection function is β, the expected utility of taking

lottery Pl+1 for x̂ is

U(x̂, Pl+1, P,Q, β) ≡ U(x̂, Pl+1) =

ˆ
u(xl+1)dPl+1(xl+1|x̂).

Since Pl+1 is a mean-preserving spread of Pl, for xl+1 ∼ Pl+1(·|x̂) and xl ∼ Pl(·|x̂), there

exists a random variable zl with distribution Λl and EΛl
[zl|xl] = 0 such that xl+1

d
= xl + zl.

Then dPl+1(xl+1|x̂) =
´
zl+xl≤xl+1

dΛl(zl|xl)dPl(xl|x̂). The expected utility of taking lottery

Pl+1 can be rewritten as

U(x̂, Pl+1) =

ˆ [ˆ
u(xl + zl)dΛl(zl|xl)

]
dPl(xl|x̂).

For any random variable x such that EΩ(x) = x̂,
´
u(x)dΩ(x) ≥ u(x̂). If x̂ is not matched

with anyone in the market, u(x̂) = 0 ≤ u(x) for all x. If x̂ is matched with y, u(x̂) + v(y) =

s(x̂, y). By stability, for any x, u(x) + v(y) ≥ s(x, y). Therefore,
´
u(x)dΩ(x) ≥

´
[s(x,

y)− v(y)]dΩ(x) =
´
s(x, y)dΩ(x)− v(y) = s(x, y)− v(y) where the last equality follows from

linearity of s(x, y) in x.

The inequality holds for any stable payoff function u(·) and any random variable ϵ with

zero mean. It holds for zl with Λl so
´
u(xl + zl)dΛl(zl) ≥ u(x̂+ zl). Therefore,

U(x̂, Pl+1) =

ˆ [ˆ
u(xl + zl)dPl(xl|x̂)

]
dΛl(zl) ≥

ˆ
u(x̂+ zl)dΛl(zl).

The expected utility of taking lottery Pl is U(x̂, Pl) =
´
u(x̂+zl)dΛl(zl), so U(x̂, Pl+1) ≥ U(x̂,
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Pl). Symmetrically, if s(x, y) is linear in y, U(ŷ, Qn+1) ≥ U(ŷ, Qn) for n ∈ {0, · · · , N−1}.

Proof of Proposition 7. When every man takes lottery PL and every woman takes lottery

QN , the induced distributions are g∗m(x) =
´
pL(x|x̂)dFm(x̂), and g∗f (y) =

´
qN(y|ŷ)dFw(ŷ).

The support of G∗
m and G∗

f can be finite, countable or continuous. Regardless, by Gretsky et

al. (1992), stable share payoff functions u∗(·) and v∗(·) exist. By Corollary 6, the strategies

are optimal with respect to β∗(g∗m, g
∗
f , s). (PL(·|·), QN(·|·), β∗) constitutes an equilibrium.

Proof of Proposition 8. Regardless of the agents’ choices, the induced matching market dis-

tributions Gm and Gf are strictly increasing and differentiable because of the nice con-

ditions on innate type distributions and lotteries. As a result, the matching function

y(x) = G−1
w (Gm(x)) is continuous, strictly monotonic, and differentiable. Then any sta-

ble share payoff function u(x) is differentiable. In particular, u′′(x) = s12(x, y(x))y′(x) > 0 is

positive. Therefore, given any rationally expected stable payoff functions, an agent strictly

prefer to take the lottery that second order stochastically dominates all the others.

Proof of Proposition 9. Take an equilibrium (P ∗, Q∗, π∗, u∗, v∗) and equilibrium assignment

market distributions (g∗m, g∗w) induced by (P ∗, Q∗). I prove constrained efficiency of (P ∗, Q∗)

by contradiction. Suppose to the contrary that there exist population lottery choices P̃ (·|·)

such that the surplus-maximizing matching π̃ generates surplus
´
sdπ̃ >

´
sdπ∗. The distri-

butions induced by (P̃ , Q∗) are (g̃m, g∗w) and let (π̃, ũ, ṽ) be an extended stable bargaining

outcome of (g̃m, g∗w, s).

Since the primal and dual linear programs achieve the same objective,
´
sdπ̃ =

´
ũdg̃m+

´
ṽdg∗w and

´
sdπ∗ =

´
u∗dg∗m +

´
v∗dg∗w. Therefore,

ˆ
sdπ̃ =

ˆ
ũdg̃m +

ˆ
ṽdg∗w >

ˆ
u∗dg∗m +

ˆ
v∗dg∗w =

ˆ
sdπ∗. (2.3)
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Rearrange (2.3) and add the term
´
u∗dg̃m on both sides of the inequality,

ˆ
u∗dg̃m −

ˆ
u∗dg∗m >

[ˆ
u∗dg̃m +

ˆ
v∗dg∗w

]
−
[ˆ

ũdg̃m +

ˆ
ṽdg∗w

]
. (2.4)

By definition of the dual linear program D(g̃m, g∗w, s), (ũ, ṽ) restricted to domain supp(g̃m)×

supp(g∗w) obtain the minimum of
´
udg̃m+

´
vdg∗w among all (u, v) such that u(x)+v(y) ≥ s(x,

y) for all (x, y) ∈ supp(g̃m)× supp(g∗w). By the definition of the extended stable bargaining

outcome, (ũ, ṽ) defined on X × Y minimize
´
udg̃m +

´
vdg∗w among (u, v) such that u(x) +

v(y) ≥ s(x, y) for all (x, y) ∈ (X × supp(g∗w)) ∪ (supp(g̃m) × Y ). If supp(g̃m) ⊆ supp(g∗m),

(u∗, v∗) defined on X × Y satisfy the condition u(x) + v(y) ≥ s(x, y) for all (x, y) ∈ (X ×

supp(g∗w))∪(supp(g̃m)×Y ) but may not minimize the total surplus, so the RHS of inequality

(2.4) is non-negative, and the LHS of the inequality is positive. g̃m and g∗m are respectively

induced by P̃ and P ∗, so expand g̃m and g∗m on the LHS of (2.4), we get the inequality
ˆ [ˆ

u∗(x)dP̃ (x|x̂)−
ˆ

u∗(x)dP ∗(x|x̂)
]
dFm(x̂) > 0.

Therefore, for some x̂ ∈ X̂,
´
u∗(x)dP̃ (x|x̂) >

´
u∗(x)dP ∗(x|x̂). However, this conclusion

contradicts the equilibrium optimality conditions satisfied by strategies P ∗(·|·) and payoff

functions u∗(·) that ∀x̂ ∈ X̂,
´
u∗(x)dP̃ (x|x̂) ≤

´
u∗(x)dP ∗(x|x̂). We can analogously show

Q∗ are constrained efficient.
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Chapter 3 The Optimal Sequence of Prices and Auctions

Abstract: This paper highlights the tradeoffs between posting prices and running auctions

in a dynamic environment. It also provides a new justification to the use of the buy-it-

now option (BIN) on eBay - to post a price before an auction. Consider a seller who

must use simple posted prices and reserve price auctions to sell one unit of an indivisible

good within a fixed number of periods while buyers with independent private values arrive

over time. An auction costs more than a simple posted price and can attract different set

of buyers. I characterize the optimal sequence of prices and auctions that maximizes the

seller’s expected profit. The seller’s dynamic programming problem in a finite period setting

is non-stationary but remains surprisingly tractable. The optimal mechanism sequence is a

sequence of declining prices when the auction cost is sufficiently high, a sequence of auctions

with declining reserve prices when the auction cost is sufficiently low, and most interestingly,

a sequence of prices followed by a sequence of auctions when the auction cost is intermediate.

In particular, auctioning before posting a price is never optimal. The price-auction sequence

is optimal under various extensions of the basic setting and resembles a BIN.

Keywords: dynamic mechanism design, reserve price auction, posted price, buy-it-now

JEL: D44

3.1 Introduction

Although a second-price auction with a carefully chosen reserve price can generate the op-

timal expected revenue when buyers have independent private values (Myerson, 1981), it is

usually much more costly and inconvenient to set up than a simple posted price. In compar-

ison with a simple posted price, an auction has operational and mental costs involved with
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calculating a reserve price, advertising to and aggregating bidders to an auction house, re-

viewing bids, communicating with buyers, and determining payments. In large competitive

markets where the buyers can search and choose among sales of closely substitutable goods,

many buyers love posted prices for their certainty of sale price, transparency, immediacy and

convenience. As a result, sellers can shy away from running auctions. For example, eBay is

an online platform long known for auctions but has evolved to a site mainly of posted prices.

In January 2002, more than 90% of the active listings on eBay were auctions, but by late

2012, only around 10% of the active listings were auctions, and the rest were posted prices

and hybrid buy-it-now formats (Einav et al., 2013).

In this paper, we explicitly take auction costs into account and study how a seller re-

peatedly chooses between prices and auctions to maximize her expected profit in a dynamic

environment. Specifically, a seller must sell one unit of an indivisible good within a fixed

T periods and in each period, she either runs a reserve price auction incurring a per-period

auction cost or posts a price for free. Buyers with independent private values enter the

market each period: they can be short-lived or long-lived, short-sighted or forward-looking.

What sequence of prices and auctions should the seller choose to maximize her expected

profit? It seems to be daunting to solve for the optimal sequence of prices and auctions, as

there are 2T combinations of them, not to mention the determination of optimal prices and

reserve prices in each period. Furthermore, the dynamic programming problem the seller

faces in each period changes as the time elapses.

However, it turns out that the non-stationary dynamic programming problem is surpris-

ingly tractable, and the optimal sequence of prices and auctions takes a surprisingly simple

form: a sequence of posted prices followed by a sequence of auctions. In the static setting,

Myerson (1981) has shown that a reserve price auction with the optimal reserve price de-

termined by the virtual utility curve generates the highest expected revenue; therefore, the

seller runs the optimal auction if the auction cost is low, and posts a fixed price otherwise. In
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the dynamic setting, the seller uses the prices-auctions sequence. Prices are adjusted down-

ward and then auctions are run each period after a period, with the reserve prices declining

to the static optimal reserve price in the last period. When the auction cost is sufficiently

low, the dynamic pricing phase does not exist: a sequence of auctions is optimal. When

the auction cost is sufficiently high, the sequential auction phase does not exist: a sequence

of declining prices is optimal. When the auction cost is within most realistic range, as will

be numerically shown, the mixed prices-auctions sequence is optimal, and it resembles the

buy-it-now option on eBay. No other complicated combination of prices and auctions is

optimal. Most notably, it is never optimal for a seller to run auctions then post prices.

The optimality of this simple prices-auctions sequence relies on an implicit endogenous

opportunity cost associated with auctions only in the dynamic setting. In the static setting,

the seller only faces the straightforward tradeoff between the gain in expected revenue from

an auction and the additional cost incurred form an auction. In the dynamic setting, the

seller faces an additional cost when he uses an auction. The optimal reserve price is always

lower than the optimal posted price, so the probability of a sale using the optimal auction

is higher than using the optimal price. In the dynamic setting, the good not sold today

is worth the expected revenue it generates in the next period. Therefore, using an auction

in a dynamic setting incurs not only an operational cost but also an opportunity cost of

selling the good too soon. The operational cost stays constant over time by assumption,

but the opportunity cost of selling decreases as the number of remaining periods decreases.

Although the seller’s dynamic programming problem is non-stationary, the retention value

of the good unambiguously diminishes. As a result, running an auction in a later period

essentially incurs a lower opportunity cost and thus becomes relatively more attractive.

Having understood this key economic tradeoff between an auction and a posted price,

we can easily see that the resulting optimal sequence of mechanisms persists in more gen-

eral settings when the seller may randomly exit, the buyers enter stochastically and have
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sequential outside options.

When the horizon is infinite, there is no exogenous deadline to sell the good but a cost

of delay that incentivizes early sale, the problem the seller faces in each period is identical,

and the seller’s optimization problem is stationary. As a result of the stationary problem,

the seller runs the same mechanism repeatedly in each period. A high cost seller posts a

constant price and a low cost seller runs auctions with a constant reserve price. In particular,

the optimal reserve price is inversely related to the auction cost: a lower auction cost delays

the sale of the good. Moreover, for a fixed operational cost, it is more likely for a more

patient seller to post price. The optimal auction can be approximately implemented by an

ascending auction with the deadline determined by the time elapsed after the latest bid. In

continuous time, a constant price is always optimal.

This paper solves a dynamic sales mechanism design problem, and contributes to two

strands of literature. First, the paper is the first to consider intermingled choices between

posted prices and costly auctions. Wang (1993) compares the separate uses of costly auctions

and posted prices, and highlights the importance of the steepness of the marginal revenue

curve. Kultti (1999) considers the competition between the auctions market and the posted

prices market. A large computer science literature highlights the near-optimality of simple

sequential posted prices compared to auctions (Blumrosen and Holenstein, 2008; Chawla et

al., 2010; Yan, 2011; Hartline, 2012). Although this paper takes a different approach and

characterizes the exactly optimal mechanism sequence of prices and auctions, the underlying

key message is the same: simple mechanisms such as prices can perform almost equally well

as complicated mechanisms.

Second, the paper provides a new justification to the use of buy-it-now options. Previous

explanations include risk aversion of the buyers (Budish and Takeyama, 2001), impatience

of the seller (Mathews, 2004), and seller and buyer competition (Anwar and Zheng, 2015).

In the current setting, the price-auction sequence arises naturally and remains robust under
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many extensions even when buyers and sellers are risk-neutral and patient. The price-auction

sequence has been optimal in various dynamic settings (Riley and Zeckhauser, 1983; McAfee

and McMillan, 1988; Dilme and Li, 2012; Board and Skrzypacz, 2014), and the current

model is the first to succinctly highlight the importance of the non-stationary opportunity

cost associated with running an auction in a dynamic setting. Investigations of mechanism

choices in the electronic commerce market have also received attention in the empirical

literature (Bajari and Hortacsu, 2004; Einav et al., 2013), and the theoretical investigations

in this paper can potentially aide future empirical investigations.

The paper is organized as follows. Section 3.2 introduces the benchmark setting and

solves the seller’s problem in the static setting. Section 3.3 demonstrates the key insights of

the paper with a simple two-period example. Section 3.4 fully solves the seller’s problem in

the finite horizon. Section 3.5 demonstrates the robustness of the main results under more

general settings. Section 3.6 further demonstrates the robustness of the results when buyers

are long-lived and forward-looking. Section 3.7 solves and discusses the seller’s problem

without deadline. Section 3.8 concludes and suggests future extensions.

3.2 Preliminaries and the Seller’s Static Problem

In this section, let me first introduce the basic setup, and then characterize the seller’s

static problem. Many components of the basic setup (e.g. constant discounting, constant

fixed buyer arrival, fixed auction cost) seem to be stylized, but will be relaxed significantly

in Section 3.5. The main results continue to hold in the extended setting, and the main

economic intuitions are adequately demonstrated with the basic setup.

A (woman) seller wants to sell one unit of an indivisible good for which she has zero

consumption value. She must sell the good within T periods. T can be one, finitely many,

stochastic, or infinite. She discounts each period by the same discount factor δ ∈ [0, 1]. In
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each period t, n one-period-lived (man) buyers enter the market. Each buyer has a private

value v independently drawn from the identical value distribution F with positive density f

on the entire support [0, 1]. All the agents are risk-neutral and have quasi-linear preferences

in transfers. Except for the private value each buyer is born with, everything else is common

knowledge.

Throughout the paper, we maintain the assumption that F has monotone hazard rate.

The sole purpose of the assumption is to guarantee that the optimal reserve price and the

optimal posted price are uniquely determined, so that we do not have to deal with the

irrelevant complication that the optimal mechanism involves ironing.

Assumption 1 (Monotone Hazard Rate Condition). (1− F (v))/f(v) is decreasing in v.

At the beginning of each period t, the seller chooses a mechanism mt, either a reserve

price second-price auction Ar or a posted price Pp. A seller running a second-price auction

Ar with reserve price r asks each buyer for a sealed bid. At the end of the period the seller

assigns the good to the buyer with the highest bid if it is above r, and the winning buyer

pays the bigger of the reserve price and the second highest bid. In the second-price auction

Ar, it is a dominant strategy for a buyer to bid his value v. A reserve price auction costs

c ≥ 0 to run. On the other hand, it is free to post a price. In a posted price mechanism Pp,

the seller posts a fixed price p at the beginning of a period and the buyers with values higher

than p have equal chances of receiving the good. It intends to capture a dynamic process in

which the buyers sequentially enter the market and each buyer decides immediately whether

to purchase or not.

Let R(m) and π (m) denote mechanism m’s expected revenue and profit in the current

period. Any posted price mechanism’s expected profit equals its expected revenue, but

any auction’s expected profit is its expected revenue minus the auction cost c. Let s (m)

represent the ex-ante expected probability that the seller sells the good using mechanism m,
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and let k(m) = 1− s(m) denote the probability that the good is not sold and is kept by the

seller to the next period. The probability that the good is sold from a posted price Pp is

s(Pp) = 1− F n(p), and the probability that the good is sold from a a reserve price auction

Ar is s(Ar) = 1− F n(r). Since the probability the good is sold depends only on the posted

price or the reserve price, we will write s(p) = s(Pp) and s(r) = s(Ar) for convenience.

Similarly, k(p) and k(r) represent the probabilities that the good is kept from using Pp and

Ar, respectively.

Let (mτ , · · · ,mT ) denote the mechanism sequence of the seller who runs mechanism mt

in period t if the good has not been sold by the end of period t− 1. The seller’s problem is

to choose the optimal mechanism sequence m∗ ≡ (m1, · · · ,mT ) so that the expected profit

from running (mτ , · · · ,mT ) is maximized for any period τ . Since the buyer arrival process

is known and there is no learning by the seller, the seller essentially chooses a sequence of

mechanisms at the beginning of the first period, to be executed in each period if the good

has not been sold.

The setup intends to capture a seller’s problem in a large selling market such as eBay. For

example, a person who has bought a lyric opera ticket but could no longer attend the event

scheduled in two weeks chooses between posting a fixed price for the ticket and auctioning

off the ticket before it loses its value. The item’s posting can last for a week (e.g. it stays

as a new item for a week on the front page of the website where buyers much more likely

search). Potential buyers browse the website and encounter the posting for the item on

sale, and decide whether or not to buy the ticket immediately. They have idiosyncratic

values for the ticket. Although their individual values are unknown, their aggregate demand

curve is known to the seller. Buyers are anonymous to the seller so the seller cannot price

discriminate against them, and she is restricted to use either prices or auctions.
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The Seller’s Static Problem

In the remainder of the section, I solve the seller’s one-period problem as a building block

for the subsequent multi-period problem. The determination of the optimal reserve price

auction is not new and is only restating Myerson (1981). The only addition from the previous

literature is the introduction of the posted price’s marginal revenue curve that draws parallel

to the auction’s marginal revenue curve as interpreted by Bulow and Roberts (1989), the

virtual utility curve as originally named in Myerson (1981). The introduction of the posted

price’s marginal revenue curve will especially facilitate the exposition as well as the solution

of the seller’s problem in the dynamic setting. The advantage will first become apparent in

the characterization of the seller’s expected profit in the dynamic setting.

Let me first characterize an auction’s revenue. The realized revenue of an auction Ar is r

if the second highest bid is lower than r, and is v if the second highest bid v is greater than

r. Therefore, the expected revenue is

R(Ar) = rn[1− F (r)]F n−1(r) +

ˆ 1

r

vn(n− 1)[1− F (v)]F n−2(v)f(v)dv.

It can be rearranged to be

R (Ar) =

ˆ 1

r

[
v − 1− F (v)

f(v)

]
dF n (v) .

Define

α(v) = v − 1− F (v)

f(v)
.

Myerson (1981) call α(v) the virtual utility curve, but we follow Bulow and Roberts (1989)

and call α(v) an auction’s marginal revenue curve. Bulow and Roberts (1989) have named it

so because of the following interpretation of the problem. The probability that a buyer buys

the good at price v is q(v) = 1−F (v). An inverse demand curve can be therefore constructed

as v(q) = F−1(1 − q). The expected revenue from selling quantity q is R(q) = q · v(q) =
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q ·F−1(1−q), so the marginal revenue is MR(q) = F−1(1−q)−q/F ′(F−1(1−q)). Substituting

in v(q), MR(q(v)) = v−[1−F (v)]/f(v) ≡ α(v). A standard auction then becomes a standard

monopoly pricing problem. The reserve price auction Ar asks each buyer to submit v and

calculate the marginal revenue α(v) accordingly. The good is assigned to the buyer with the

highest marginal revenue α(v) if it is positive. Then the expected revenue of any auction Ar

is the expected marginal revenue of the highest value buyer when the value exceeds r,

R(Ar) =

ˆ 1

r

α(v)dF n(v).

By Myerson (1981), the expected revenue maximizing mechanism among all direct revelation

mechanisms is a reserve price auction with the optimal reserve price r∗ uniquely determined

by α(r∗) = 0. Since α(v) is continuous, α(0) < 0 and α(1) = 1, r∗ exists. Since F satisfies the

monotone hazard rate condition, α(v) is strictly increasing, and r∗ is uniquely determined.

The probability the good is not sold is k(r∗) = F n(r∗).

Posting price p realizes a revenue p if there is a buyer who values it more than p

and revenue 0 if no buyer values it more than p. Its expected revenue can be written

as R(Pp) = p[1 − F n(p)]. However, we cannot see the connection between a posted price

and an auction. As Bulow and Roberts (1989) construct an auction’s marginal revenue

curve α(v), I construct here a posted price’s marginal revenue curve. The auction’s marginal

revenue curve is constructed for each buyer with value drawn from distribution F (v). The

posted price’s marginal revenue curve is constructed for the highest value buyer out of the

n buyers. Recognize that that the seller generates the same revenue from posting a price

to all buyers and from posting the same price to the highest value buyer, as some buyer is

willing to pay price p if and only if the highest value buyer is willing to pay price p. The

highest value is drawn from the first-order distribution F n(v). The highest value buyer’s

inverse demand curve is v(q) = (F n)−1(1 − q), and the marginal revenue is derived from
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d[q · (F n)−1(1− q)]/dq,

ρ(v) = v − 1− F n(v)

[F n(v)]′
.

We can succinctly write a posted price Pp’s expected revenue as

R(Pp) =

ˆ 1

p

ρ(v)dF n(v).

Such representation helps us see the similarities between the two classes of mechanisms.

More importantly, the representation facilitates the exposition and eases our understanding

in the dynamic setting. The optimal posted price p∗ is uniquely determined by ρ(p∗) = 0.

The optimal price p∗ exists because ρ(v) is continuous, ρ(0) < 0 and ρ(1) = 1. The optimal

price p∗ is unique because

ρ(v) = v − 1− F n(v)

[F n(v)]′
= v − F n−1(v) + · · ·+ 1

nF n−1(v)
· 1− F (v)

f(v)

is strictly increasing in v, as [F n−1(v) + · · · + 1]/[nF n−1(v)] is strictly decreasing in v, and

[1− F (v)]/f(v) is decreasing in v by Assumption 1. The probability the good is not sold is

k(p∗) = F n(p∗).

Figure 3.1 provides a graphical illustration of the two marginal revenue curves. The

optimal reserve price and the optimal posted price equate the marginal revenue to zero.

Consequently, the areas under the curves (weighted with respect to dF n(v)) are the expected

revenues of the two mechanisms.

Since

ρ(v) = v − F n−1(v) + · · ·+ 1

nF n−1(v)
· 1− F (v)

f(v)
= α(v) +

[
1− F n−1(v) + · · ·+ 1

nF n−1(v)

]
1− F (v)

f(v)
,

a posted price’s marginal revenue ρ(v) is always smaller than an auction’s marginal revenue

α(v) except for when n = 1 and two curves coincide. Since α(r∗) = ρ(p∗) = 0, the optimal

posted price is always higher than the optimal reserve price. Clearly from the figure, the
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Figure 3.1: Auction’s and posted price’s marginal revenue curves and expected revenues in
the static setting. An auction’s marginal revenue curve is α(v) = v − [1− F (v)]/f(v) and a
posted price’s marginal revenue curve is ρ(v) = v− [1−F n(v)]/[F n(v)]′. The optimal reserve
price is r∗ = α−1(0) and the optimal posted price is p∗ = ρ−1(0). The optimal auction’s ex-
pected revenue is R(Ar∗) =

´ 1
r∗ α(v)dF

n(v), and the optimal posted price’s expected revenue
is R(Pp∗) =

´ 1

p∗ ρ(v)dF
n(v). The difference between the optimal revenues can be written as

R(Ar∗)−R(Pp∗) =
´ 1

0 xd[F n(α−1(x))− F n(ρ−1(x))].

optimal posted price’s expected revenue is smaller. Since α(r∗) = ρ(p∗) = 0 and α(1) =

ρ(1) = 1, by changes of variables, the optimal revenue difference can be expressed as

R(Ar∗)−R(Pp∗) =

ˆ 1

0

xd
[
F n(α−1(x))− F n(ρ−1(x))

]
. (3.1)

Although the optimal reserve price auction always generates more expected revenue than

the optimal posted price, if there is a sufficiently high cost of running the auction, it may be

more desirable to post the optimal price. In general, there is a cutoff cost c∗ such that the

seller with the cost is indifferent between the optimal reserve price auction and the optimal

posted price. Running an auction is more appealing for the seller if her cost is lower than the

cutoff cost, and posting a price is more appealing if her cost is higher than the cutoff cost.

The cutoff cost equals the optimal revenue difference, as the tradeoff in the static setting is

simply between the revenue gain from the auction and the cost incurred from the auction.

Proposition 10 characterizes the seller’s optimal mechanism in the static setting.
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Proposition 10. Suppose T = 1. Let r∗ and p∗ be the unique solutions to α(r∗) = ρ(p∗) = 0,

and c∗ = R(Ar∗) − R(Pp∗). The seller’s optimal mechanism is Ar∗ if c < c∗, and is Pp∗ if

c > c∗. A c = c∗ seller is indifferent between Ar∗ and Pp∗.

3.3 A Two-Period Example

Let me use a simple two-period example to demonstrate the key insights of the seller’s multi-

period problem. Suppose that there are two buyers in each of the two periods. Their values

are independently drawn from the uniform [0, 1] distribution (F (v) = v and f(v) = 1).

Purely for simplicity, suppose that the seller does not discount (δ = 1). Her objective is to

choose a selling mechanism m1 in the first period and a selling mechanism m2 in the second

period to maximize her expected profit π(m1,m2) = π(m1) + k(m1)π(m2).

We now solve for and characterize the seller’s profit-maximizing mechanism sequence

(m∗
1,m

∗
2). We can solve for the profit-maximizing mechanism choice problem by backward

induction. We first solve for the optimal mechanism in the second period. The seller’s

problem in the last period is essentially a static problem. We thus directly apply the solution

of the static problem described in the previous section. The profit of a posted price Pp is

π(Pp) =
´ 1

p ρ(v)dv
2. The optimal price to post in the second period is determined by

ρ(p∗2) = p∗2 −
1−(p∗2)

2

2p∗2
= 0, or p∗2 =

√
3/3 ≈ 0.577, and the optimal revenue and profit is

R(P√
3/3) = π(P√

3/3) = 2
√
3/9 ≈ 0.385. The revenue of an auction Ar is R(Ar) =

´ 1

r α(v)dv
2.

The optimal reserve price is determined by α(r∗2) = 2r∗2 − 1 = 0, so r∗2 = 1/2. The optimal

revenue is R(Ar∗2
) =
´ 1

r∗2
(2v − 1)dv2 = 5/12 ≈ 0.417. By equation (3.1), let

c∗2 ≡ R(Ar∗2
)−R(Pp∗2

) =

ˆ 1

0

xd
[(
α−1(x)

)2 −
(
ρ−1(x)

)2]
=

5

12
− 2

√
3

9
≈ 0.032. (3.2)

By Proposition 10, if c < c∗2, then the optimal mechanism is m∗
2 = Ar∗2

= A0.5; otherwise,

the optimal mechanism is m∗
2 = Pp∗ = P√

3/3.
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Having solved the second period’s optimal mechanism, we can solve for the first period’s

optimal mechanism. Let π∗
2 = π(m∗

2) denote the optimal second period profit. The total

expected profit from posting price p1 in the first period and using m∗
2 in the second period is

the expected profit posting price p1 plus the expected profit using m∗
2 in case the good is not

sold. Since the probability is not sold in the first period is p∗1, π(Pp1 ,m
∗
2) = R(Pp1) + p21π

∗
2.

The profit can be written as

π(Pp1 ,m
∗
2) =

ˆ 1

p1

ρ(v)dv2 + π∗
2 −
ˆ 1

p1

π∗
2dv

2 =

ˆ 1

p1

[ρ(v)− π∗
2]dv

2 + π∗
2.

The optimal price is thus determined by ρ(p∗1) = p∗1 − [1 − (p∗1)
2]/2p∗1 = π∗

2. The economic

interpretation is that the optimal posted price price is set so that the posted price’s marginal

revenue equates the opportunity cost of selling the good, π∗
2. Solving for the optimal posted

price, p∗1 = (π∗
2 +
√
π∗2
2 + 3)/3. The total expected profit from running an auction Ar1 in the

first period is

π(Ar1 ,m
∗
2) = R(Ar1)− c+ r21π

∗
2 =

ˆ 1

r1

[α(v)− π∗
2]dv

2 + π∗
2 − c.

The optimal reserve price is determined by α(r∗1) = r∗1 − (1 − r∗1) = π∗
2. The economic

interpretation is similar as in the optimal posted price determination: the optimal reserve

price is set so that the auction’s marginal revenue is equated to the opportunity cost of

selling the good, π∗
2. Solving for the optimal reserve price, r∗1 = (π∗

2 + 1)/2. Let c∗1 satisfy

π(Pp∗1
,m∗

2) = π(Ar∗1
,m∗

2); a cost c∗1 seller is indifferent between Pp∗1
and Ar∗1

in the first period.

c∗1 =

[ˆ 1

r1

[α(v)− π∗
2]dv

2 + π∗
2

]
−
[ˆ 1

p1

[ρ(v)− π∗
2]dv

2 + π∗
2

]

=

ˆ 1

r∗1

[α(v)− π∗
2]dv

2 −
ˆ 1

p∗1

[ρ(v)− π∗
2]dv

2.

But remember that α(r∗1) = ρ(p∗1) = π∗
2. With the same change of variable performed for
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c∗1
c∗2 − c∗1

Figure 3.2: Auction’s and posted price’s marginal revenue curves and expected revenues in
the two-period setting. The revenue difference between the optimal auction and the optimal
price increases: c∗1 =

´ 1

π∗
2
[x−π∗

2]d[(α
−1(x))2− (ρ−1(x))2] < c∗2 =

´ 1

0 xd[(α−1(x))2− (ρ−1(x))2].
The optimal prices decline: p∗1 = ρ−1(π∗

2) > p∗2 = ρ−1(0), and the optimal reserve prices
decline: r∗1 = α−1(π∗

2) > r∗2 = α−1(0).

equation (3.1),

c∗1 =

ˆ 1

π∗
2

(x− π∗
2)d
[(
α−1(x)

)2 −
(
ρ−1(x)

)2]
. (3.3)

Note that π∗
2 depends on c. We can solve for c∗1 ≈ 0.0075. When c < c∗1, auction Ar∗1

is used,

and when c ≥ c∗1, posted price Pp∗1
is used.

Let

c̃(π) =

ˆ 1

π

(x− π)d
[(
α−1(x)

)2 −
(
ρ−1(x)

)2]
.

Note that c̃′(π) = −
´ 1

π d[(α−1(x))2 − (ρ−1(x))2] = (α−1(π))2 − (ρ−1(π))2 < 0. From the

characterization of c∗1 in equation (3.3) and c∗2 in equation (3.2), c∗1 = c̃(0) and c∗2 = c̃(π∗
2(c

∗
2)).

Since π∗
2(c

∗
2) > 0, c∗1 = c̃(π∗

2(c
∗
1)) < c̃(0) = c∗2. Therefore, the optimal mechanism sequence

can be characterized in three separate scenarios: c < c∗1, c∗1 ≤ c < c∗2, and c2 ≥ c∗2. When

c < c∗1, the optimal mechanism sequence is an auction in the first period followed by another

in the second period, with lower reserve price in the second period. If c∗1 ≤ c < c∗2, the

optimal mechanism sequence is a price in the first period followed by an auction in the

second period. If c ≥ c∗2, the optimal mechanism sequence is a price in the first period
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Figure 3.3: The expected revenues of different mechanism sequences as the auction cost
varies.

followed by a lower price in the second period. The optimal mechanism’s optimal reserve

price and optimal posted price are as illustrated in the figure below. Although any of the

four combinations is feasible, (Ar, Ar), (Ar, Pp), (Pp, Pp), (Pp, Ar), for any r and p, in this

example, the mechanism sequence (Ar, Pp) is never optimal.

The resulting optimal mechanism sequence continues to hold in more general settings:

for sufficiently low cost, a sequence of auctions with declining reserve prices is optimal; for

sufficiently high cost, a sequence of declining prices is optimal; and for intermediate cost, a

sequence of declining prices followed by a sequence of auctions with declining reserve prices

is optimal. Any mechanism sequence of auctions followed by prices is never optimal. The

optimal sequence of auctions for sufficiently low costs and the optimal sequence of prices for

sufficiently high costs are not surprising as they arise almost trivially from the assumption of

that auction costs more. However, for intermediate auctioning costs, it is not straightforward

to arrive at the conclusion that such a nice sequence of mechanisms is the only optimal

mechanism, as any combination of prices and auctions in any order is feasible.
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Figure 3.4: The optimal reserve price and the optimal posted price as the auction cost varies.

Although the auction’s revenue is always higher, economically, for even economically

relevant small cost, the optimal price dominates the optimal auction. In the current example,

only when c < 0.007, or when the cost is smaller than 1.5% of the expected revenue, auctions

are used in both periods. When the cost is between 0.007 and 0.03, a price followed by an

auction is optimal. If the costs of the sellers are uniformly drawn between 0 and 0.1, we

see roughly that 7% of the sellers use sequential auctions, 25% of the sellers use buy-it-now

options, and the majority of the sellers will simply adjust prices. These percentage roughly

match the current distribution of selling mechanisms on eBay in magnitude.

Another pattern worth mentioning is that the optimal prices adjust downward over time.

Mathematically, we can easily see from the optimal price determination: The optimal reserve

prices are determined by r∗2 = α−1(0) and r∗1 = α−1(π∗
2), and the optimal posted prices are

determined by p∗2 = ρ−1(0) and p∗1 = ρ−1(π∗
2). Economically, the optimal prices equate the

marginal revenue to the opportunity cost of selling the good. Since the opportunity cost of

selling the good decreases from π∗
2 in the first period to 0 in the second period, the optimal
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reserve and posted prices also decrease accordingly.

The rest of the paper is geared towards characterizing the optimal mechanism sequence in

more general settings. In particular, we establish in a variety of extensions the optimality of

the buy-it-now option with prices preceding auctions, and the sub-optimality of the reverse

mechanism sequence - auctions preceding prices.

3.4 Finite Horizon

In this section, we solve the seller’s profit maximization problem when T is finite and fixed.

For any t = 1, · · · , T − 1, the seller’s discounted sum of payoffs at period t < T is her

expected profit in the current period plus her discounted payoff if the good is not sold in the

current period,

π(mt,mt+1, · · · ,mT ) = π(mt) + δk(mt)π(mt+1, · · · ,mT ).

By the Principle of Optimality, we can solve the problem backwards. We have already solved

the period T problem, as it has the same solution as the one-period problem. We restate

Proposition 10 in the T -period problem.

Lemma 4. Suppose T is finite. Let r∗T = α−1(0), p∗T = ρ−1(0), and c∗T = R(Ar∗T
)− R(Pp∗T

).

The seller’s optimal mechanism in the last period, period T , is m∗
T (c) = Ar∗T

if c < c∗T ,

m∗
T (c) = Pp∗T

if c > c∗T , and m∗
T (c) = Ar∗T

= Pp∗T
if c = c∗T .

The maximized expected profit is the larger of the expected profit of running the optimal

auction and of posting the optimal price,

π∗
T (c) = max

{
R(Ar∗T

)− c, R(Pp∗T
)
}
. (3.4)

Given the optimal solution in period T , we can solve for the seller’s in period T − 1. Her
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problem in period T − 1 is

max
mT−1

π(mT−1) + δk(mT−1)π
∗
T (c) .

If she chooses an auction Ar in period T − 1, then her expected profit is

π(Ar,m
∗
T (c)) = R(Ar)− c+ k(r)δπ∗

T (c)

=

ˆ 1

r

α(v)dF n(v)− c+ F n(r)δπ∗
T (c)

= δπ∗
T (c) +

ˆ 1

r

[α(v)− δπ∗
T (c)]dF

n(v)− c.

If she chooses a posted price Pp in period T − 1, then her expected profit is

π(Pp,m
∗
T (c)) = R(Pp) + k(p)δπ∗

T (c)

=

ˆ 1

p

ρ(v)dF n(v) + F n(p)δπ∗
T (c)

= δπ∗
T (c) +

ˆ 1

p

[ρ(v)− δπ∗
T (c)]dF

n(v).

Her optimal reserve price is r∗T−1(c) = α−1(δπ∗
T (c)) and her optimal posted price is p∗T−1(c) =

ρ−1(δπ∗
T (c)). The seller’s optimal profit in period T − 1 is then

π∗
T−1(c) = max

{
R(Ar∗T−1(c)

)− c+ k(r∗T−1(c))δπ
∗
T (c), R(Pp∗T−1(c)

) + k(p∗T−1(c))δπ
∗
T (c)

}
.

= δπ∗
T (c)

+max

{ˆ 1

r∗T−1(c)

[α(v)− δπ∗
T (c)]dF

n(v)− c,

ˆ 1

p∗T−1(c)

[ρ(v)− δπ∗
T (c)]dF

n(v)

}
.

There is a cutoff cost c∗T−1 such that the seller runs Ar∗T−1(c)
if her cost is lower than it and

runs Pp∗T−1(c)
otherwise. c∗T−1 is determined by

c∗T−1 =

ˆ 1

r∗T−1(c
∗
T−1)

[α(v)− δπ∗
T (c

∗
T−1)]dF

n(v)−
ˆ 1

p∗T−1(c
∗
T−1)

[ρ(v)− δπ∗
T (c)]dF

n(v)

=

ˆ 1

δπ∗
t (c

∗
T−1)

[x− δπ∗
T (c

∗
T−1)]d

[
F n(α−1(x))− F n(ρ−1(x))

]
.

120



The entire optimal mechanism sequence can be solved by iterating this procedure over all

periods t ≤ T − 1. The optimal mechanism sequence is summarized in Lemma 5.

Lemma 5. Suppose T is finite and t ≤ T − 1. Suppose that π∗
t+1(c) is the optimal expected

profit of a cost c seller in period t+ 1. Let r∗t (c) and ρ∗t (c) be uniquely determined by

α(r∗t (c)) = ρ(p∗t (c)) = δπ∗
t+1(c). (3.5)

And let

c∗t =

ˆ 1

δπ∗
t+1(c

∗
t )

[x− δπ∗
t+1(c

∗
t )]d

[
F n(α−1(x))− F n(ρ−1(x))

]
. (3.6)

A cost c seller’s optimal mechanism m∗
t (c) in period t ≤ T − 1 is Ar∗t (c) if c < c∗t (c), is Pp∗t (c)

if c > c∗t (c), and is Ar∗t (c) = Pp∗t (c) if c = c∗t (c).

Proof. We need to show that equation (3.6), rearranged as below, has a unique solution c∗t

for each t,

γ(c∗t ) ≡ c∗t −
ˆ 1

δπ∗
t+1(c

∗
t )

[x− δπ∗
t+1(c

∗
t )]d

[
F n(α−1(x))− F n(ρ−1(x))

]
= 0. (3.7)

It suffices to show that γ(c), is continuous, increasing in c, γ(0) < 0 and γ(1) > 0. γ(c) is

differentiable:

γ′(c) = 1 + δπ∗′
t+1(c)

ˆ 1

δπ∗
t+1(c)

d[F n(α−1(x))− F n(ρ−1(x))]

= 1− δπ∗′
t+1(c)[F

n(α−1(δπ∗
t+1(c)))− F n(ρ−1(δπ∗

t+1(c)))]

= 1− δπ∗′
t+1(c)[k(r

∗
t )− k(p∗t )]

The maximal profit is

π∗
t+1(c) = max{R(Ar∗t+1

)− c+ δk(r∗t+1)π
∗
t+2(c), R(Pp∗t+1

) + δk(p∗t+1)π
∗
t+2(c)}

Therefore,

π∗′
t+1(c) ≥ −1 + δk(r∗t+1)π

∗′
t+2(c),
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and

π∗′
t+2(c) ≥ −1 + δk(r∗t+2)π

∗′
t+3(c),

and so on for π∗′
τ (c) through T . Altogether, the inequalities, coupled with the inequalities

that r∗t > r∗t+1 for all t, imply that

π∗′
t+1(c) ≥ −[1 + δk(r∗t+1) + δ2k(r∗t+1)k(r

∗
t+2) + · · · ]

≥ −[1 + δk(r∗t+1) + δ2k2(r∗t+1) + · · · ]

= − 1

1− δk(r∗t+1)
≥ − 1

1− δk(r∗t )

Therefore,

γ′(c) ≥ 1− δk(p∗t )− δk(r∗t )

1− δk(r∗t )
> 0.

Finally, since
´ 1

δπ∗
t+1(c)

[x − δπ∗
t+1(c)]d [F

n(α−1(x))− F n(ρ−1(x))] is the revenue difference

between the optimal auction and the optimal price in a period, it is between 0 and 1 for any

c. γ(0) < 0 and γ(1) > 0 follow directly.

The optimal profit in period T is determined by equation (3.4), and the optimal profit

in period t ≤ T − 1 is

π∗
t (c) = max

{
R(Ar∗t (c))− c+ k(r∗t (c))δπ

∗
t+1(c), R(Pp∗t (c)) + k(p∗t (c))δπ

∗
t+1(c)

}
. (3.8)

The optimal mechanism sequence is thus completely characterized by the two lemmas and

each period’s optimal profit function.

Proposition 11. Suppose T is finite. The optimal mechanism sequence (m∗
1(c), · · · ,m∗

T (c))

is characterized by Lemmas 4 and 5, with π∗
t (c) defined by equations (3.4) and (3.8), and c∗t

determined by equation (3.6).

Although Proposition 11 completely solves the seller’s problem for any cost c seller, the

solution is not very informative. We only know that there is a cutoff cost c∗t in each period
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t such that a seller chooses a reserve price auction if her cost is smaller than c∗t and posts a

price if her cost is bigger than c∗t . In other words, all we know so far is that in each period

if the auction cost is low, use an auction, and if the auction cost is high, post a price.

A little bit more work gives us a much stronger result. We can show that the cutoff costs

increase over the periods. In other words, it is more and more likely a seller will run an

optimal auction in a later period. Furthermore, we can show that the posted prices and the

reserve prices fall over time.

Proposition 12. Suppose T is finite. The cutoff costs increase over time: c∗1 < c∗2 <

· · · < c∗T . That is, the optimal mechanism sequence is auctions when the auction cost is

smaller than c∗1, is prices-auctions when the auction cost is between c∗1 and c∗T , and is prices

when the auction cost is bigger than c∗T . Moreover, the optimal prices decrease over time:

r∗1 (c) > r∗2 (c) > · · · > r∗T and p∗1(c) > p∗2(c) > · · · > p∗T .

Proof. Equation (3.6) determines the cutoff cost c∗t in each period. In equation (3.6), the

cutoff cost c∗t is decreasing in δπ∗
t+1(c). That is, the lower the optimal discounted sequential

profit δπ∗
t+1(c) is, the higher the cutoff cost should be. Since the optimal profit decreases over

time, π∗
t+1 (c) > π∗

t (c). Therefore, c∗t < c∗t+1 for any t. The second part of the proposition

follows directly from the determination of optimal posted prices and reserve prices and the

facts that π∗
t+1 (c) > π∗

t (c) and the marginal revenue curves are increasing.

The first part of Proposition 12 shows that the cutoff costs are declining over periods so

that there is an optimal period of switch from posted prices to auctions. If the auction cost

is c, in the optimal mechanism sequence, the seller posts declining prices until period t∗ such

that ct∗ < c ≤ ct∗+1 (define c∗0 = −∞ and ct+1 = ∞) and then runs auctions from period

t + 1 on. In other words, it is more profitable paying the auction cost later than earlier. In

the earlier periods, there are still many more periods left and many opportunities to sell the

good. It is not worth paying an auction cost yet because the good has a retention value.
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However, as time passes on and the sale opportunities diminish, the auction cost, though

constant in absolute terms, is deemed more attractive relative to the risk of not selling the

good.

Furthermore, as δ increases, c∗t decreases for all t. In other words, if the seller is less

impatient the seller will post prices in more periods and use auctions in fewer periods. The

prices, both optimal fixed prices and reserve prices, are declining over time in equilibrium in

finite horizon, as opposed to be constant in infinite horizon. Therefore, fixed deadlines are

the main attributors to price declines in this model and in general (Board and Skrzypacz,

2014; Dilme and Li, 2012).

The second part of Proposition 12 shows that the optimal posted prices and the optimal

reserve prices are declining over time. The cutoff period t∗ can be 0 or T If the cost is too

high, the auctions phase does not exist and the seller posts a sequence of declining prices; if

the cost is too low, the posted prices phase does not exist and the seller runs a sequence of

auctions with declining reserve prices.

As a corollary of the result, it is impossible for any mechanism sequence that has an auc-

tion before a posted price to be optimal. In other words, all mechanism sequences consisting

of an auction and a posted price following it are always dominated strictly by at least one

alternative mechanism sequence - either dynamic pricing, or sequential auctions, or posted

price followed by auction.

Proposition 13. The auction-price mechanism sequence (Ar, Pp) is never optimal. Conse-

quently, a mechanism sequence with auctions before prices is never optimal.

We present a proof that is independent from previous results. It directly constructs the

mechanisms that dominate even the expected profit-maximizing auction-price sequence. The

marginal revenue curve representations of the expected revenues and the optimal prices are

key.
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Figure 3.5: Case 1: r1 > p2. (Ar1 , Pp2 ,m) cannot simultaneously dominate (Ar1 , Ap2 ,m) and
(Pr1 , Pp2 ,m).

Proof. Suppose T ≥ 2. Because the mechanisms chosen before period t do not affect the

optimal mechanism sequence after period t, without loss of generality, it suffices to show

that the mechanism sequence of an auction in the first period and a posted price in the

second period is never optimal. Suppose the seller runs the mechanism sequence m in

periods 3 through T and generates expected profit π (m); when there are only two periods,

π(m) = 0. It suffices to show that the optimal sequence (Ar1 , Pp2 ,m) is dominated by

at least one other mechanism sequence not consisting of the auction-price sequence. The

optimal r1 and p2 are determined respectively by ρ(p2) = δπ(m) and α (r1) = δπ(Pp2 ,m) =

δR (Pp2)+ δ
2k (p2) π(m). If the mechanism sequence is optimal, then π(Pp2 ,m) > π(m) > 0;

otherwise, the mechanism sequence (m, Ar∗T
) generates strictly higher expected profit. We

show separately in the case when r1 > p2 and in the case when r1 ≤ p2 that the mechanism

sequence (Ar1 , Pp2 ,m) is dominated by at least one other mechanism sequence not including

auction-price sequence.

Case 1: r1 > p2.

Suppose (Ar1 , Pp2 ,m) is optimal. The optimality of the mechanism sequence (Ar1 , Pp2 ,m)
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implies that (Ar1 , Pp2 ,m) dominates both (Ar1 , Ap2 ,m) and (Pr1 , Pp2 ,m),

π(Ar1 , Pp2 ,m)− π(Ar1 , Ap2 ,m) ≥ 0,

π(Ar1 , Pp2 ,m)− π(Pr1 , Pp2 ,m) ≥ 0.

where π(Ar1 , Pp2 ,m), π(Ar1 , Ap2 ,m) and π(Pr1 , Pp2 ,m) can be written out as

π(Ar1 , Pp2 ,m) = R(Ar1)− c+ δk(r1)R(Pp2) + δ2k (r1) k (p2) π(m),

π(Ar1 , Ap2 ,m) = R(Ar1)− c+ δk(r1)[R(Ap2)− c] + δ2k (r1) k (p2) π(m),

π(Pr1 , Pp2 ,m) = R(Pr1) + δk (r1)R(Pp2) + δ2k (r1) k (p2) π(m).

The two inequalities become

R(Pp2)− [R(Ap2)− c] ≥ 0,

[R(Ar1)− c]−R(Pr1) ≥ 0.

Adding the two inequalities up,

R(Ar1)−R(Pr1) ≥ R(Pp2)−R(Ap2).

Since R (Ar)−R (Pr) =
´ 1

r [α (v)− ρ (v)] dF n (v) is strictly decreasing in r, evident in Figure

3.5, when r1 > p2,

R (Ar1)−R (Pr1) < R (Pp2)−R (Ap2) ,

a contradiction with the premise that (Ar1 , Pp2 ,m) is optimal.

Case 2: r1 ≤ p2.

Suppose that (Ar1 , Pp2 ,m) is optimal. It dominates both mechanism sequences (Pp2 , Pp2 ,

m) and (Ar1 , Ar2 ,m) where α (r2) = δπ(m),

π(Ar1 , Pp2 ,m)− π(Pp2 , Pp2 ,m) ≥ 0,
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Figure 3.6: Case 2: r1 ≤ p2. (Ar1 , Pp2 ,m) cannot simultaneously dominate (Pp2 , Pp2 ,m) and
(Ar1 , Ar2 ,m)

π(Ar1 , Pp2 ,m)− π(Ar1 , Ar2 ,m) ≥ 0,

where

π(Ar1 , Pp2 ,m) = R(Ar1)− c+ δk(r1)R(Pp2) + δ2k (r1) k (p2) π(m),

π(Pp2 , Pp2 ,m) = R(Pp2) + δk (p2)R(Pp2) + δ2k (p2) k (p2) π(m)

π(Ar1 , Ar2 ,m) = R(Ar1)− c+ δk (r1) [R(Ar2)− c] + δ2k (p1) k (r2) π(m)

Plugging in the profit functions, we can rewrite the two inequalities as

R(Ar1)− c−R(Pp2)− δ [k(p2)− k(r1)] π(Rp2 ,m) ≥ 0

R(Pp2)−R(Ar2) + c− δ [k(p2)− k(r2)] π(m) ≥ 0

Summing the two inequalities,

R(Ar1)−R(Ar2)− δ [k(p2)− k(r1)] π(Rp2 ,m)− δ [k(p2)− k(r2)] π(m) ≥ 0.

r1 and r2 satisfy α(r2) = δπ(m) and α(r1) = δπ(Pp2 ,m). By the optimality of (Ar1 , Pp2 ,m),

π(Pp2 ,m) > π(m). As illustrated by Figure 3.1, r∗T ≤ r2 < r1, so R(Ar1) < R(Ar2). Coupled
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with the inequality r2 < r1 ≤ p2,

R(Ar1)−R(Ar2)− δ [k(p2)− k(r1)] π(Rp2 ,m)− δ [k(p2)− k(r2)] π(m) < 0.

We see that a seller’s mechanism choice depends crucially on her cost of running an

auction. If the cost is high, she will post prices and adjust prices downward as the deadline

to sell approaches. This has been the predominant selling mechanism in many markets.

However, with the development of Internet and less friction with information transmission,

the cost associated with organizing auctions has been reduced and in particular on sites such

as eBay where bidding can be automated and the sellers can set a variety of options to tailor

their mechanisms. Nonetheless, some disadvantages associated with auctions, mentioned in

the Introduction, cannot be eradicated by technological advances.

When the auction cost is at an intermediate level such that auctions and posted prices

are both considerably good mechanisms, mechanism sequences other than posting prices

become attractive and are implementable by new eBay mechanisms, in particular, bidding

with deadline and buy-it-now options. If the cost is very low possibly because she is an adept

and/or fervent auctioneer, she always runs auctions and adjusts her reserve price downwards

if no one has bought. When the buyers arrive continuously and randomly in the real world,

instead of having a short duration for bidding, the seller can specify the closing time of

the ascending auction to be dependent of the time of latest submission bid. If the auction

cost is still a significant consideration, we show that the seller will try to sell it by posting

prices first before considering auctions. On eBay, this can be very closely implemented by

an buy-it-now option by specifying a fixed price that can be immediately sold and a reserve

price for minimum bid. Although the time of switch to auction is determined by the buyers,

the essential cost-saving strategy of using prices first is captured by buy-it-now options.
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3.5 Extensions

In the previous, we show two main results: Proposition 12 and Proposition 13. We extend

the benchmark setting and show that both results hold in general. We allow the seller to

be increasingly impatient, the buyers to arrive stochastically and have outside options. We

also consider the cases when the buyers’ markets are separate for auctions and posted prices,

when the mechanism designer is procuring a contract from potential contractors rather than

selling a good to buyers, and when the seller sequentially sells more than one object. In the

next section, we show that the main results continue to hold even when buyers are long-lived

and forward-looking.

3.5.1 Perishable Good and Increasing Impatience

If the seller survives the market with probability µ < 1 to the next period, the stochastic

deadline may result from the seller’s uncertainty when or whether her good will be out of favor

or when it may be perished or banned to be sold. It has a similar effect as time discounting

δ, as the expected payoff of the future periods becomes µδπT+1; by redefining δ′ = µδ, the

problem is the same as before. Even when the seller survives the market less likely over time,

that is, µt decreases, the main results are unchanged. Because the assertion that discounted

payoff in a period is still greater than that in a later period, µtδπ∗
t (c) > µt+1δπ∗

t+1(c) for any

c, the decline of the cutoff c∗t over time is unaltered.

3.5.2 Stochastic Buyer Arrival

If in each period, the buyer arrival process is stochastic instead of deterministic, the results

do not change qualitatively. Suppose that the probability that the number of buyers is n is

q (n), then the probability of selling is s(p) = 1 −
∑

q (n)F n(p). The optimal posted price
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is then determined by

ρ(p∗t ) = p∗t −
1− F n(v)

[F n(v)]′
= p∗t +

s(p∗t )

s′(p∗t )
= δπ∗

t+1(c).

A posted price’s expected revenue is R (Pp) = ps (p) and an auction’s expected revenue is

R (Ar) =

ˆ 1

r

α (v) d
[∑

q (n)F n (v)
]
.

Since the determination of c∗t is not changed from equation (3.6), the results from the previous

section on the form of mechanism sequence carry over.

3.5.3 Buyers with Outside Options

If the buyers have type-dependent outside options in the latter periods, their willingnesses-

to-pay are depressed and the seller solves the problem with respect to the buyers’ reservation

values instead of their values. As long as the willingness-to-pay function w(v) is a concave

transformation of the value, the weighted marginal revenue curve is

α̃(v) = v − 1− F (v)

f(v)
w′(v).

α̃(v) is still increasing and the main results continue to hold. For example, the willingness-

to-pay function w(v) is concave in the setting of Zhang (2013b).

3.5.4 Separate Markets for Prices and Auctions

Suppose that the auction market and the posted price market are separate: nA buyers will

show up for an auction and nP buyers will show up for a posted price. The revenue difference

between running an optimal auction and an optimal price becomes

R(Ar∗t ,m)−R(Pp∗t ,m) =

ˆ 1

δπ(m)

[x− δπ(m)]d
[
F nA(α−1(x))− F nP (ρ−1(x))

]
≡ ∆(δπ(m)).
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∆(0) > 0 and ∆(1) = 0, and

∆′(π) = −
ˆ 1

π

d
[
F nA(α−1(x))− F nP (ρ−1(x))

]
= F nA(α−1(π))− F nP (ρ−1(π)).

When nA > nP , i.e. more buyers are in the auction market than in the price market, the

characterization of the optimal sequences remains.

In general, if the buyers arrive stochastically, let qA(n) denote the probability that n

buyers arrive when an auction is run, and qP (n) the probability that n buyers arrive when

a posted price is run. The difference between the optimal revenues is then

R(Ar∗t ,m)−R(Pp∗t ,m) =

ˆ 1

δπ(m)

[x−δπ(m)]d
[∑

qA(n)F
n(α−1(x))−

∑
qP (n)F

n(ρ−1(x))
]
.

We say that an auction faces a higher demand than a posted price if
∑n

i=1 qA(i) ≤
∑n

i=1 qP (i)

for all n. Propositions 12 and 13 continue to hold when an auction faces a higher than a

posted price.

On the other hand, when the auction market is smaller, the optimal mechanism sequence

is either a sequence of auctions or a sequence of prices. Neither the mixed sequence of

prices-auctions nor that of auctions-prices is optimal. In other words, while Proposition 13

continues to hold, Proposition 12 holds with the modification: there is a single cost cutoff

such that the seller will use a sequence of auctions if the cost is lower than it, and a sequence

of prices otherwise.

3.5.5 Procurement Contracts

Throughout, we have considered the setting in which a monopolist is selling a good. We

now turn our attention and consider the problem of a procurement contract in which the

monopolist is looking for contracts to complete a project with the lowest cost. We show that

the optimal mechanism sequence takes the same form. McAfee and McMillan (1988) consider

the procurement problem when the communication cost is high and similar to our argument,
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find that the principal may search sequentially for contractors if the communication is too

costly. A principal who needs a cost of 1 to complete the task, finds a contractor to finish a

task for a minimum compensation. Suppose n contractors whose true costs c for the project

are independently and identically distributed according to G arrive each period; assume

G has increasing hazard rate G/g. The principal’s choice is the same as the seller in the

previous sections. Her auction’s expected profit with a requirement of a maximum bid r is

π(Ar) =

ˆ r

0

[
1− c− G (c)

g (c)

]
dGn(c)− c.

The probability of sale becomes s(r) = Gn(r). A posted price Pp yields expected revenue

(1− p)Gn(p). The optimal reserve price and the optimal posted price are determined by

r∗t +G(r∗t )/g(r
∗
t ) = p∗t +Gn(p∗t )/(G

n(p∗t )
′) = δπ∗

t+1(c). (3.9)

In the static setting, the optimal auction yields more expected revenue than the optimal

posted price. In a finite horizon, the counterpart of equation (3.6) is

c∗t = R(Ar∗t (c
∗
t ))−R(Pp∗t (c

∗
t ))− [k(p∗t (ct))− k(r∗t (ct))] δπ

∗
t+1(ct). (3.10)

Therefore, the optimal sequence of mechanisms in the procurement problem depends on the

auction cost in the same way as the seller’s problem in the benchmark setting.

3.5.6 Multiple Objects

Suppose the monopolist has multiple identical copies of an object for sale, and she must sell

each object sequentially. The fundamental problem has not changed at all, so the optimal

mechanisms do not change. The only change is in notations to carry around another state

variable, the number of objects remaining K. An auction in period t yields expected revenue

RK
t (Ar) = R(Ar)− c+ δk(Ar)π

K−1
t+1 + δ[1− k(Ar)]π

K
t+1.
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πK
t is increasing in K and decreasing in t. The same proofs apply in the multiple-goods

setting.

3.6 Forward-Looking Buyers

Thus far, we have assumed that the buyers are short-lived. In this section, we consider

the much more complicated environment in which the buyers are long-lived and forward-

looking. Modify the simplest setting of Section 3.3 with two buyers in each of the two

periods. In this section, we assume that the two buyers born in the first period continue

to be around in the second period and have a chance to buy the good in the second period

if the good has not been sold. Furthermore, the seller and the buyers discount by δ (if

the seller does not discount, the optimal mechanism is trivial: wait until the last period to

run the static optimal auction or post the static optimal price). We solve one by one the

optimal price-price, price-auction, auction-auction, and auction-price sequences. Because

buyers are forward-looking, we can no longer solve the seller’s problem backwards like we

have done when buyers are short-lived. The mechanisms and prices chosen in the latter

periods affect buyers’ behavior in earlier periods and in turn the seller’s profit in the earlier

periods. The optimal prices are characterized by a system of equations. Nonetheless, the

main result remains: the optimal mechanism sequence is auction-auction when the auction

cost is sufficiently low, price-auction when the auction cost is intermediate, and price-price

when the auction cost is sufficiently high, and auction-price is never optimal. Figure 3.7

illustrates each mechanism sequence’s optimal revenue for different auction costs. For only

very small auction cost the auction-auction sequence is optimal.
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Figure 3.7: The optimal revenues of different mechanism sequences for different auction costs
when buyers are forward-looking.

3.6.1 Price-Price Sequence

Suppose the seller posts the price sequence (Pp1 , Pp2). We can restrict our attention to the

price sequence with declining, because (Pp1 , Pp2) with p1 ≤ p2 is never optimal. An upward

price path cannot capture the benefits of buyers living longer.

Lemma 6. (Pp1 , Pp2) with p1 ≤ p2 is never optimal.

Proof. When p1 ≤ p2, buyers who are born with values above p1 in the first period do not

wait until the second period to buy. They will buy in the first period. The expected revenue

for the seller is then

R(Pp1 , Pp2) =

ˆ 1

p1

ρ(v)dF n(v) + F n(v)

ˆ 1

p2

ρ(v)dF n(v).

The optimal prices are set by ρ(p∗1) = R(Pp∗2
) and ρ(p∗2) = 0. But ρ(·) is strictly increasing,

ρ−1(·) is strictly decreasing, p∗1 = ρ−1(R(Pp∗2
)) > ρ−1(0) = p∗2, contradicting the assumption
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that p∗1 ≤ p∗2.

Regardless of the price, there is a cutoff value ṽ > p1 such that first-period buyers with

values above ṽ will buy in the first period, and buyers with value below ṽ will wait to buy

in the second period. The wait lowers the probability the buyer gets the good, but the wait

increases the buyer’s utility when he gets the good because of the lower price in the second

period. Some buyers with values barely above p1 are willing to wait.

Lemma 7. Suppose that the seller runs the mechanism sequence (Pp1 , Pp2) with p1 > p2.

There is a cutoff value ṽ such that any buyer with value above ṽ > p1 will buy in the first

period, and any buyer with value below ṽ will wait to buy in the second period.

Proof. Fix a value v buyer. Suppose that his opponent uses a strategy such that he will

buy if his value falls into the (compact, possibly disconnected) set V ⊆ [p1, 1]. Let F (V ) ≡
´
v∈V f(v)dv be the probability that the opponent buys. Let V2 ≡ [p2, 1]\V be the set of the

values v such that the value v opponent will buy in the second period instead of the first

period. Then a value v > p1 buyer’s utility of buying in the first period is

uB(v|Pp1 , Pp2) = (v − p1)[1− F (V ) +
1

2
F (V )].

The utility uNB(v|Pp1 , Pp2) of not buying in the first period and waiting for the second period

is

(1− F (V ))(v − p2)

[
F 2(p2)

1− F (V )
F 2(p2) +

1

2

F (p2)

1− F (V )
2F (p2)(1− F (p2))

+
1

2
(F (V )− F (p2))F

2(p2) +
1

3

F (p2)

1− F (V )
(1− F (p2))

2

+
1

3

F (V )− F (p2)

1− F (V )
2F (p2)(1− F (p2)) +

1

4

F (V )− F (p2)

1− F (V )
(1− F 2(p2))

]
.

Both utilities are linear in v, so the two lines uB(v) and uNB(v) intersect at most at one

point. Furthermore, u′
B > 1−F (V ) and uNB < 1−F (V ). Since uB(p1) = 0 < uNB(p1), the
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intersection is either in [1,∞), or (p1, 1). In the first case, uNB(v) > uB(v) for all v ∈ [p1,

1], so no one buys in the first period: we let ṽ = 1. In the second case, the intersection

ṽ ∈ (p1, 1), so a buyer will buy in the first period if his value exceeds ṽ.

The two buyers will play symmetric strategies: he will buy if his value exceeds ṽ. A value

ṽ buyer is indifferent between buying and not buying in the first period. The utility from

buying is

uB(v|Pp1 , Pp2) = (ṽ − p1)[F (ṽ) +
1

2
(1− F (ṽ))].

The utility uNB(v|Pp1 , Pp2) of not buying in the first period is

(ṽ − p2)[F
3(p2) +

1

2
2F 2(p2)(1− F (p2)) +

1

2
(F (ṽ)− F (p2))F

2(p2)

+
1

3
F (p2)(1− F (p2))

2 +
1

3
(F (ṽ)− F (p2))2F (p2)(1− F (p2))

+
1

4
(F (ṽ)− F (p2))(1− F 2(p2))].

ṽ satisfies uB(ṽ|Pp1 , Pp2) = uNB(ṽ|Pp1 , Pp2). When F (v) = v,

(ṽ − p1)
1 + ṽ

2
= δ(ṽ − p2)[p

3
2 +

1

2
2p22(1− p2) +

1

2
(ṽ − p2)p

2
2

+
1

3
p2(1− p2)

2 +
1

3
2(ṽ − p2)p2(1− p2) +

1

4
(ṽ − p2)(1− p22)] (3.11)

It is possible that the price in period two is so low that no one is willing to buy in the first

period. In such a case, let ṽ = 1. The seller’s expected revenue is

R(Pp1 , Pp2 |p1 > p2) = [1− F 2(ṽ)]p1 + [F 2(ṽ)− F 4(p2)]p2. (3.12)

When F (v) = v, R(Pp1 , Pp2) = (1 − ṽ2)p1 + (ṽ2 − p42)p2. In comparison, the revenue when

p1 < p2 is

R(Pp1 , Pp2 |p1 ≤ p2) = [1− F 2(p1)]p1 + [F 2(p1)− F 2(p1)F
2(p2)]p2.
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3.6.2 Price-Auction Sequence

Suppose the seller’s mechanism sequence is (Pp1 , Ar2) with p1 > r2. Similarly, we can char-

acterize the buyers’ strategies by cutoffs. The utility of buying in the first period is

(ṽ − p1)[F (ṽ) +
1− F (ṽ)

2
].

The utility not buying in the first period is

F 3(ṽ)

[
ṽ −
ˆ ṽ

0

max{r2, v}dF 3(v)/F 3(ṽ)

]

= F 3(ṽ)

[
ṽ −
ˆ ṽ

r2

vdF 3(v)/F 3(ṽ)−
ˆ r2

0

r2dF
3(v)/F 3(ṽ)

]

= F 3(ṽ)

[
ṽ − (ṽ −

ˆ r2

0

r2dF
3(v)/F 3(ṽ)−

ˆ ṽ

r2

[F 3(v)/F 3(ṽ)]dv)−
ˆ r2

0

r2dF
3(v)/F 3(ṽ)

]

=

ˆ ṽ

r2

F 3(v)dv.

Therefore, ṽ satisfies

(ṽ − p1)
1 + F (ṽ)

2
=

ˆ ṽ

r2

F 3(v)dv. (3.13)

When F (v) = v, (ṽ − p1)(ṽ + 1)/2 =
´ ṽ

r2
v3dv. The expected revenue is

R(Pp1 , Ar2 |p1 > r2) = [1− F 2(ṽ)]p1 − F 2(ṽ)c− F 4(r2)r2

+

ˆ r2

0

r2[6(1− F (v)) + 6(F (ṽ)− F (v))]f(v)F 2(v)dv

+

ˆ ṽ

r2

v[6(1− F (v)) + 6(F (ṽ)− F (v))]f(v)F 2(v)dv

+

ˆ 1

ṽ

v2(1− F (v))f(v)F 2(ṽ)dv. (3.14)

When the seller’s mechanism sequence is (Pp1 , Ar2) with p1 ≤ r2, the forward-looking buyers

will not wait until next period and pay a higher price. The expected revenue

R(Pp1 , Ar2 |p1 ≤ r2) = p1[1− F 2(p1)] + F 2(p1)

[ˆ 1

r1

α(v)dF 2(v)− c

]
.
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3.6.3 Auction-Auction Sequence

Suppose the seller’s mechanism sequence is (Ar1 , Ar2) with r1 > r2. The utility of buying in

the first period is

F (ṽ)ṽ − F (r1)r1 −
ˆ ṽ

r1

vdF (v) =

ˆ ṽ

r1

F (v)dv.

The utility of not buying in the first period is
ˆ ṽ

r2

F 3(v)dv.

ṽ satisfies ˆ ṽ

r1

vdv =

ˆ ṽ

r2

F 3(v)dv. (3.15)

The expected revenue is

R(Ar1 , Ar2 |r1 > r2) = 2[1− F (ṽ)]F (ṽ)r1 +

ˆ 1

ṽ

v2(1− F (v))f(v)dv − c

−F 2(ṽ)c− F 4(r2)r2

+

ˆ r2

0

r2[6(1− F (v)) + 6(F (ṽ)− F (v))]f(v)F 2(v)dv

+

ˆ ṽ

r2

v[6(1− F (v)) + 6(F (ṽ)− F (v))]f(v)F 2(v)dv

+

ˆ 1

ṽ

v2(1− F (v))f(v)F 2(ṽ)dv. (3.16)

If r1 ≤ r2, then the first-period buyers will participate in the auction in the first period for

its lower reserve price and reduced competition. The seller’s revenue is

R(Ar1 , Ar2 |r1 ≤ r2) =

ˆ 1

r1

α(v)dF 2(v)− c+ F n(r1)

[ˆ 1

r2

α(v)dF 2(v)− c

]
.
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3.6.4 Auction-Price Sequence

Suppose the seller’s mechanism sequence is (Ar1 , Pp2) with r1 > p2. The utility from buying

is ˆ ṽ

r1

F (v)dv.

The utility not buying is

(ṽ − p2)[F
3(p2) + F 2(p2)(1− F (p2)) +

1

2
(F (ṽ)− F (p2))F

2(p2) +
1

3
F (p2)(1− F (p2))

2

+
1

3
(F (ṽ)− F (p2))2F (p2)(1− F (p2)) +

1

4
(F (ṽ)− F (p2))(1− F 2(p2))].

When F (v) = v, ṽ satisfies
ˆ ṽ

r1

vdv = δ(ṽ − p2)[p
3
2 +

1

2
2p22(1− p2) +

1

2
(ṽ − p2)p

2
2

+
1

3
p2(1− p2)

2 +
1

3
2(ṽ − p2)p2(1− p2) +

1

4
(ṽ − p2)(1− p22)] (3.17)

The expected revenue is

R(Ar1 , Pp2) = 2[1− F (ṽ)]F (ṽ)r1 +

ˆ 1

ṽ

α(v)dF 2(v)− c+ [F 2(ṽ)− F 4(p2)]p2. (3.18)

When r1 < p2, all buyers buy in the first period, and the expected revenue is

R(Ar1 , Pp2) =

ˆ 1

r1

α(v)dF 2(v)− c+ F 2(r1)[1− F 2(p2)]p2.

3.7 Infinite Horizon

Unlike goods with expirations such as airline tickets and hotel rooms or seasonal clothes that

might fall out of favor in three months, many goods such as cellphones, stamps and books

do not lose value and do not have fixed deadlines to be sold, but nonetheless, the seller has

incentive to sell the good and realize the payment as soon as possible. In this section, the
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optimal sequence of mechanisms when in the infinite horizon is characterized. The solution

turns out to be relatively simple and straightforward: the optimal mechanism sequence is

an infinite repetition of the same mechanism. Different from the static setting, the optimal

reserve price depends on not only the buyer value distribution but also the number of buyers

per period and crucially the operational cost.

Although it is an infinite horizon problem, the seller faces the same problem in each

period. Therefore, she only needs to solve a static problem in a stationary setting, and her

optimal mechanism sequence is either an infinitely repeated auction or an infinitely repeated

posted price - running a reserve price auction until some buyers bid, or posting a constant

price until some buyers buy at the price. We will first calculate respectively the optimal

constant price and the optimal constant reserve price and then compare to see which infinite

mechanism sequence generates more expected profits. Finally, we verify that the better of

the two is indeed the expected revenue maximizing mechanism in each individual period.

First, we solve the optimal posted price p∗∞. Let πP
∞ denote the expected profit of posting

p∗∞ in each period. Together, p∗∞ and πP
∞ must simultaneously satisfy the following equations,

ρ(p∗∞) = δπP
∞, (3.19)

πP
∞ = π(Pp∗∞) + δk (p∗∞) πP

∞, (3.20)

where equation (3.19) equates the posted price marginal revenue to the expected profit, and

equation (3.20) shows that the optimal expected profit equals the profit of using Pp∗∞ plus the

expected profit if it is not sold. Rearranging equation (3.20) and plugging it into equation

(3.19),
1− δ

1− δk(p∗∞)
p∗∞ − 1− F n(p∗∞)

[F n(p∗∞)]′
= 0. (3.21)

Since the first term is strictly increasing in and the second term is strictly decreasing in p∗∞,

and when p∗∞ = 0, the LHS is negative (= −(1 − F n(0))/(F n(0))′), but when p∗∞ = 1, the
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LHS is positive (= 1), p∗∞ is uniquely determined by.

Similarly, we can calculate the optimal reserve price r∗∞(c) for a cost c seller. Let πA
∞ (c)

denote the continuation value of running Ar∗∞(c) each period. Together, r∗∞(c) and πA
∞ must

simultaneously satisfy the following two equations,

α(r∗∞(c)) = δπA
∞(c), (3.22)

πA
∞(c) = π(Ar∗∞(c)) + δk(r∗∞(c))πA

∞(c). (3.23)

Substitute equation (3.23) into equation (3.22) and rearrange,

1− δ

1− δk(r∗∞(c))
r∗∞(c) =

1− F (r∗∞(c))

f(r∗∞(c))
+
δ
[
R(Ar∗∞(c))−R(Pr∗∞(c))− c

]

1− δk(r∗∞(c))
. (3.24)

The LHS is increasing and the RHS is decreasing in r∗∞ (c); the LHS is 0 and the RHS

is 1/f (0) + δ[R(A0) − c]/ (1− δ) when r∗∞ (c) = 0 and the LHS is 1 and the RHS is −δc

when r∗∞ (c) = 1. Therefore, if c ≤ R(A0), r∗∞(c) is uniquely determined by the system of

equations. If c > R(A0), the seller chooses a posted price for sure, because for any r, Ar

generates strictly less expected profit than Pr, as

π(Ar)− π(Pr) ≤ π(A0)− π(P0) = R(Ar)− c < 0.

Therefore, there is a cutoff cost c∗∞ such that the seller runs Ar∗∞(c) if c > c∗∞, runs Pp∗∞ if

c < c∗∞ and is indifferent between the two if c = c∗∞. c∗∞ must satisfy πA
∞(c∗∞) = πP

∞. There is

an easy way to calculate c∗∞ than solving equations (3.23) and (3.24). r∗∞(c∗∞) is determined

by equation (3.23),

α(r∗∞(c∗∞)) = δπP
∞, (3.25)

but c∗∞ must satisfy that in any period, the seller is indifferent between posting the optimal

price and running the optimal auction instead, so πP
∞ = R(Ar∗∞(c∗∞))− c∗∞ + δk(r∗∞(c∗∞))πP

∞,
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Figure 3.8: The cutoff cost for different numbers of buyers and discount factors when the
buyers’ values are uniformly distributed between 0 and 1.

or

c∗∞ = R(Ar∗∞(c∗∞))− [1− δk(r∗∞(c∗∞))] πP
∞. (3.26)

The optimal mechanism sequence is summarized as follows.

Proposition 14. Suppose T = ∞. Let p∗∞ and πP
∞ be the unique solution to equations (3.19)

and (3.20). Let c∗∞ be the unique solution to equations (3.25) and (3.26). Fix any c ≤ R(A0),

let r∗∞ (c) be the unique solution to equation (3.24). The seller’s optimal mechanism sequence

is an infinitely repeated sequence of m∗
∞ (c). If c > c∗∞, then m∗

∞ (c) = Pp∗∞, if c < c∗∞, then

m∗
∞(c) = Ar∞(c), and if c = c∗∞, m∗

∞(c) = Pp∗∞ or m∗
∞(c) = Ar∗∞(c∗∞). Her expected payoff by

running the optimal mechanism is π∗
∞ (c) = max

{
πP
∞, πA

∞ (c)
}

where πA
∞ (c) is obtained from

equation (3.22).

Figure 3.8 shows c∗∞ for different combinations of n and δ when v ∼ Unif [0, 1]. For

example, if δ = 0.95, n = 5, c∗∞ ≈ 0.0026. Fixing any δ, the relationship between c∗∞ and

n is non-monotonic. Notice that fixing any n, as δ increases, i.e. when the seller becomes

more patient, c∗∞ decreases. When δ → 1, there is less discounting and because the seller
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lives forever, she essentially encounters infinitely many buyers over her life so the order

statistics effect dominates. Consequently, c∗∞ → 0. The monotonic relationship between c∗∞

and δ holds in general for any F and n. An implication of the result is that if the buyers

arrive over time, as δ is small, we can think of the dynamic buyer arrival as continuous and

stochastic (Poisson arrival, for example). We see that as δ becomes small, c∗∞ approaches 0,

so a constant price is optimal. The proof relies on the facts that as δ increases, both πP
∞ and

p∗∞ strictly increase, and the optimal reserve price r∗∞ (c∗∞) is always smaller than the posted

price p∗∞.

Proposition 15. Suppose T = ∞. When δ increases, c∗∞ strictly decreases. That is, when

the seller becomes more patient, an auction becomes less attractive.

Proof. For simplicity let r∗∞ ≡ r∗∞ (c∗∞) throughout the proof. Differentiate c∗∞ with respect

to δ in equation (3.26),

dc∗∞
dδ

= −α(r∗∞)k′ (r∗∞)− [1− δk(r∗∞)]
dπP

∞
dδ

− [−k (r∗∞)− δk′ (r∗∞)] πP
∞

= k (r∗∞)
[
−α (r∗∞) + δπP

∞
]
+ k (r∗∞) πP

∞ − [1− δk (r∗∞)]
dπP

∞
dδ

.

The first term k (r∗∞)
[
−α (r∗∞) + δπP

∞
]
= 0 by equation (3.25), so

dc∗∞
dδ

= k(r∗∞)

[
πP
∞ + δ

dπP
∞

dδ

]
− dπP

∞
dδ

. (3.27)

By equations (3.19) and (3.25), and the facts that α (·) ≥ ρ (·), we have r∗∞ ≤ p∗∞ and

consequently k (r∗∞) ≤ k (p∗∞). Therefore

dc∗∞
dδ

≤ k(p∗∞)

[
πP
∞ + δ

dπP
∞

dδ

]
− dπP

∞
dδ

.

It suffices to show that the RHS is negative.

Rearrange equation (3.20),

[1− δk(p∗∞)] πP
∞ = p∗∞ [1− k(p∗∞)] ,
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and differentiate it with respect to δ,

dπP
∞

dδ
[1− δk(p∗∞)]− πP

∞ [k(p∗∞) + k′(p∗∞)] = −p∗∞k′(p∗∞) + [1− k(p∗∞)]
dp∗∞
dδ

.

Rearrange, we obtain

k (p∗∞)

[
πP
∞ + δ

dπP
∞

dδ

]
− dπP

∞
dδ

=
[
ρ (p∗∞)− πP

∞
]
k′ (p∗∞)

dp∗∞
dδ

.

The RHS by equation (3.19) equals (δ − 1) πP
∞k′ (p∗∞) dp∗∞

dδ . Differentiate equation (3.19) with

respect to δ,

πP
∞ + δ

dπP
∞

dδ
=
∂ρ(p∗∞)

∂p∗∞

dp∗∞
dδ

> 0.

ρ′ > 0 implies dp∗∞/dδ > 0, which implies (δ − 1) πP
∞k′ (p∗∞) dp∗∞

dδ < 0 as δ < 1.

3.8 Conclusion

This paper studies a monopolist seller’s sequence of profit-maximizing choices between posted

prices and costly auctions when buyers arrive to the market over time. Most interestingly,

we find that in a variety of settings, posting a price before auctioning is desirable, but

auctioning before posting a price is not. An optimal auction has a low reserve price and

thus a high sale probability, so the use of an auction in an earlier period is associated with

a higher probability of giving up the good. An auction incurs not only a constant fixed

operational cost, it also incurs an endogenous opportunity cost of the retention value of the

good. Prices-auctions sequences are more desirable than auctions-prices sequences because

the retention value, the opportunity cost of selling through an auction, is decreasing over

time. On eBay in particular, a buy-it-now option that allows a buyer to snatch a good for a

fixed price before the seller starts an auction resembles the optimal price-auction sequence.

Finally, a constant price can be optimal when the seller does not have a deadline to sell the

good.
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Although we have explored the following extensions to different degrees, they are still

interesting and worthwhile to be explored to fuller extents. The cost of mechanisms is not a

consideration in any of the papers that has been ignored in other papers, so it is worthwhile

to explore how the mechanism cost and the mechanism choice can interact.

First, the seller may have multiple copies of the identical goods. We have explored the

possibility that the seller sells the good sequentially, but it is worthwhile to consider other

forms of auctions in which the seller can seller more than one good at a time. The dynamic

programming problem carries one more state variable besides the seller’s age - the number

of remaining objects she has. Given the complexity of the problem with even one good,

the multiple-goods extension should be treated as a separate pursuit complementary to the

current one.

Another nontrivial and interesting extension is to allow the buyers to be long-lived and

strategic in choosing their purchase times and may exit randomly. We have shown that

the main results hold in a numerical example. It is important to explore how the result

holds in general, when there are more than two periods, more than two buyers, and with

general value distributions. I suspect that the optimality of prices-auctions sequence and the

sub-optimality of the auction-prices sequence remain. The main difficulty is that we cannot

solve the problem period-by-period, and the optimal profit does not necessarily decrease over

time because new buyers arrive and old buyers stay. Deb and Pai (2012) and Pai and Vohra

(2013) study this problem in a costless environment and show that simple index rules and

ironing can be optimal. Said (2012) and Li (2009) show that open ascending auctions are

suitable for perishable and storable goods, respectively, when the buyers arrive over time

and stay and strategically time their purchases.

Finally, the seller has been assumed to commit to a particular sequence of mechanisms.

The seller’s commitment to future mechanisms. Dilme and Li (2012) consider the equilibrium

non-committal price paths of the seller. Skreta (2006) shows that simple prices can be
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optimal when the seller does not have commitment power.
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Chapter 4 Prices and Auctions in Dynamic Markets

Abstract: This paper studies the dynamic markets in which infinitely many unit-supply

short-lived sellers and unit-demand long-lived buyers with persistent private values are

matched according to a frictional process. Although reserve price auctions are expected

revenue maximizing in the unique steady state equilibrium, the optimal revenue decreases

when the market becomes more consumer friendly, namely when the buyers survive longer,

face fewer bidding competitors, and become more patient. In particular, the revenue ad-

vantage from running an auction with a reserve price over simply posting that reserve price

reduces as the market becomes more buyer friendly, making sellers more likely to use posted

prices whose prevalence however results in market-wide externalities and inefficiencies.

Keywords: optimal mechanism, reserve price auction, posted price, auction premium, equi-

librium existence

JEL: D44

4.1 Introduction

In theory and practice, a standard auction with a well-chosen reserve price has shown to

be desirable revenue-enhancing choice for unit-supply sellers facing buyers with independent

private valuations. Although this paper confirms theoretically the revenue optimality of the

reserve price auction in dynamic markets, the optimal revenue decreases when the market

becomes more competitive for the sellers. More importantly, the revenue advantage relative

to a simple posted price diminishes in such competitive environment.

We study steady states of the dynamic markets where infinitely many short-lived sell-

ers and long-lived buyers who have possibly many chances to obtain a good are matched
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uniformly randomly. When the sellers have no fixed cost of running any mechanism, stan-

dard reserve price auctions are expected revenue maximizing with the strictly positive reserve

prices indicating market competitiveness. The market becomes more consumer friendly when

the buyers survive longer, face fewer competitors and become more patient, and the equi-

librium reserve price and optimal auction revenue are lower in consumer friendly markets

where the sellers have less market power. We generalize the monopolist’s problem of Myerson

(1981) by introducing a sequential market in which buyers may have opportunities to buy

a perfect substitute of the good, and generalize the auction marginal revenue of Bulow and

Roberts (1989) in this setting.

Although an auction with an optimally chosen reserve price generates the most expected

revenue, we witness the prevalent and increasing uses of alternative mechanisms in many

markets of goods with close substitutes because they have other operational advantages

while achieving revenues sufficiently close to be optimal. For example used auto dealers

use sequential bargaining followed by secret reserve price auctions (Larsen, 2013), treasury

bill sales implement multi-unit auctions and price menus, and alternating bargaining are

prevalent in housing markets. The effects of sequential competition offer a particularly

plausible explanation to the rises of alternative mechanisms, in particular, the posted prices

which rapidly take over eBay market (Einav et al., 2013).

Posted price mechanisms have the desirable properties of immediacy and simplicity com-

pared with auctions which involve active organization of sellers and participation of buyers

over a longer period of time. The gain in revenue from auction caused by buyer competi-

tion is depressed when the market becomes consumer friendly; more precisely, the difference

between the expected revenue of the reserve price auction and that of simply posting the

reserve price as the price, decreases as distribution of the buyers’ potential price offers im-

proves first-order stochastically in favor of the buyers. This result resonates that the choice

between an auction and posted price depends on steepness of the marginal revenue curve
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in Wang (1993). When a buyer has multiple sequential opportunities to purchase a good,

her willingness-to-pay to each seller is driven below her intrinsic value for the good, con-

sequently affecting expected revenues of different sales mechanisms and possibly altering

a seller’s profit-maximizing choice if there is higher fixed cost associated with running an

auction.

We also consider the dynamic markets with simultaneous existence of posted prices and

auctions. When sellers have heterogeneous costs of running auctions, the sellers may switch

to simpler mechanisms involving posting prices. The sellers who live for one period post

prices, and those who can live longer use Buy-It-Now options and dynamically adjust prices,

while auction followed by a posted price if it is not sold is never profit-maximizing. There are

inefficiencies associated with posted prices, however, as it is less likely to be sold by seller,

and it is not guaranteed that the buyer with the highest value receives the good. These

inefficiencies result in market-wide externalities to future sellers and buyers.

The frictional matching process distinguishes the current work from the simultaneous

auctions literature which studies competing sellers who simultaneously announce mechanisms

to attract buyers to participate. In equilibrium, with mild technical conditions, each seller

runs auction with reserve price lower than that in the monopoly case (Burguet and Sákovics,

1999; Pai, 2009), and as the number of sellers approaches infinity, the equilibrium mechanism

is the efficient auction (McAfee, 1993; Peters and Severinov, 1997). Although the literature

yields beautiful technical results, it is hardly applicable to real world: not all the agents

can meet one another because of geographic or time constraints, and lower reserve price is a

result of buyers’ sequential opportunities rather than a tool to attract buyer participation.

The sale inefficiency that buyers who value the goods more than the sellers do not receive

the goods is a result of the frictional matching process. Similar frictional matching mod-

els explain nontrivial prices in bargaining (Rubinstein and Wolinsky, 1985) and auctions

(Wolinsky, 1988), as well as inevitable natural unemployment (Diamond and Maskin, 1979)
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despite of excess demand or supply. Another related paper, Satterthwaite and Shneyerov

(2008), shows that the transaction price converges to the competitive Walrasian price.

The idea that sequential opportunities reduce buyers’ willingnesses-to-pay is explored in

Said (2011). It considers a dynamic setting where bidders randomly arrive and incorporate

beliefs of current and future dynamics in their bids shading in efficient second price auctions.

However, it takes a partial equilibrium approach by assuming that the sellers are restricted to

run efficient auctions in addition to that the buyers have value independent outside options

as they receive new value draws for each imperfect substitute, an assumption maintained in

Wolinsky (1988) as well. This paper studies a general equilibrium when buyers have value

dependent outside options so that in equilibrium the buyers with higher valuations have

better opportunities and exit the market faster.

In summary, the main contributions of the paper are three-fold. First, it characterizes

the revenue-maximizing mechanism when buyers have sequential outside options. Second,

equilibrium of the dynamic settings where buyers have value dependent outside options,

previously deemed infeasible to solve, is uniquely characterized with definitive comparative

statics results which offer guidance to auction platform design. Finally, analogues are drawn

between posted price mechanisms and reserve price auctions with their revenues directly

compared, and it is probably the first paper to consider simultaneous existence of posted

prices, auctions, and Buy-It-Now options to investigate their welfare effects in dynamic

settings.

The paper is organized as follows. Section 4.2 introduces the basic dynamic setup and

defines the steady state solution concept. Section 4.3 solves a generalized monopolist’s

problem when buyers have sequential outside options and examines the effects of changes

in the outside options. Section 4.4 characterizes the stationary equilibrium and Section 4.5

presents comparative static results and their market implications. Section 4.6 introduces the

posted price mechanism with its revenue compared to auction’s and Section 4.7 discusses
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the welfare effects when posted prices are used. Section 4.8 concludes.

4.2 The Setup

In this section, we describe the dynamic setup and define the equilibrium. There are count-

ably infinite periods labeled by t = 0, 1, · · · . In the beginning of each period, there are

measure 1 continuum of unit-supply sellers and integer measure n continuum of unit-demand

buyers in a homogeneous good market. We refer to n as the buyer-seller ratio. All the

agents are risk-neutral, expected utility maximizers with quasilinear preferences, and have

common discount factor δ for the next period. Each seller lives for one period and has nor-

malized value zero for the good. Each buyer possibly lives forever and has persistent private

value v independently and identically drawn from value distribution F with positive density

f on support [0, 1]. Let Ht denote period t’s active buyer value distribution composed of old

and newborn buyers, except for that in period 0 when all the buyers are newborn (H0 = F ).

The market proceeds as follows. Buyers and sellers are randomly matched. Sellers each

choose a sales mechanism, and buyers participate in the mechanisms. The number of buyers

each seller is matched with is n.

Seller s chooses a direct anonymous mechanism (DAM) Ms,t in which the buyers cannot be

distinguished by their ages or identities but only by reported values. It consists of probability

assignment and cost functions {Pi (·) , Ci (·)}i which, for any vector of value reports z =

(z1, · · · , zn) specifies each buyer’s probability of winning and payment. Therefore, A buyer

i’s expected probability of winning and expected payment by reporting zi are

P i (zi) =

ˆ
z−i

Pi (zi, z−i) dH−i (z−i) ,

Ci (zi) =

ˆ
z−i

Ci (zi, z−i) dH−i (z−i)

where H−i (z−i) =
∏n

j=1 Hj (zj).
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A buyer i of value v, after knowing what mechanism Ms,t she participates in, plays a

feasible strategy σi,t (v,Ms,t) ∈ [0, 1]. If buyer i obtains the good from the seller she is

matched with, she is a winner (i ∈ Wt) and exits the market; otherwise, she is a loser

(i ∈ Lt) and survives with probability s to period t + 1, and we refer to s as the survival

rate. Newborn buyers enter the market in the beginning of period t + 1 to replace the

winners and exiting losers to to keep a constant measure n of buyers.

Let li,t (v|σi,t (v,Ms,t) , σ−i,t (·,Ms,t) ,Ms,t) denote value v buyer i’s expected probability

of losing when she plays σi,t (v,Ms,t) and her opponents play σ−i,t (·,Ms,t) in the mechanism

Ms,t she participates in, and lt
(
{σi (·, ·)}i , {Ms,t}s

)
is the proportion of losers in period t

given the agents’ behaviors. We subsequently denote them li,t (v) and lt, but keep in mind

that they depend on behavior of the active agents. Period t+1 active buyers are composed of

newborn buyers and surviving losers from period t, so the expected active value distribution

in period t+ 1 is

E [Ht+1 (v) |Ht] = (1− slt)F (v) + sHt (v|Lt) (4.1)

where Ht (v|Lt) is the value conditional distribution for losing buyers.

Before defining the equilibrium, we shall comment on some aspects of the model. Wolin-

sky (1988) employed similar frictional matching technology reflecting information and search

frictions. The stochastic matching however adds no further insights but computational com-

plexities, so we restrict our attention to the uniform matching with deterministic buyer-seller

ratio. Furthermore, a seller can hold multiple goods in the same period, and as long as he

does not own a positive measure of the goods in the market, his actions cannot alter the

subsequent market compositions.

Two tunnels of learning arise in finite markets but not in infinite and anonymous ones. In

a market with finite number of buyers, there is significant probability that a buyer’s oppo-

nents may become her opponents again in subsequent periods, so when the transaction price
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is not announced in an auction, a bidder can infer from her bid about the possible transaction

price and values of her opponents. In a market with finite number of items for sale (sellers),

a buyer knowing whether the item from the mechanism he has participated in is sold or not

helps her to learn about nontrivial portion of the market. Information asymmetry arises in

sellers facing markets of asymmetric bidders knowing different amounts of information from

history of actions and outcomes despite of symmetric newborn distributions. Milgrom and

Weber (2000) studies the setting of n buyers, and one seller with k ≤ n goods and shows

these learning effects make the expected price path a martingale. Said (2012) shows that a

simultaneous ascending auction can alleviate these effects resulted from stochastic arrival of

the agents.

Continuum of agents and restrictions to the direct anonymous mechanisms guarantee

information symmetry among all the participating agents. Numerical results show that the

learning effect is relatively small and vanishes rather quickly even in medium-sized markets1.

Furthermore, Bodoh-Creed (2012) shows that the equilibrium with continuum of agents is

approximated by that of finite markets. In this particular setting, the sellers have symmetric

beliefs about buyers’ values. Anonymous mechanisms further restrict sellers to discriminate

by the buyers’ ages that potentially reveal buyers’ losing histories and thus values. Learning

by bidding is also not plausible as the online market is so enormous that no buyer aims at

beating any particular opponent.

The assumption that masses of agents stay constant is nonrestrictive as well. Suppose

that the market size grows each period so that masses of sellers and buyers both increase by

g ≥ 0. This market growth effect is actually equivalent to decreasing the buyer’s survival

rate by 1/ (1 + g). Instead of slt, there is only slt/ (1 + g) of surviving losers in period t+1.
1The beneficial probability of learning from bidding and outcome is of order 1− (1− s/k)n−1 where k is

the total number of sellers. It vanishes rather quickly in market of small size with relatively low survival rate
s. For example, for s = 1/2, k = 10 and n = 5, the probability of a buyer encountering a previous opponent
in the next period is 20%, conditional on her own survival.
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The active value distribution is then

E [Ht+1 (v) |Ht] =

(
1− s

1 + g
lt

)
F (v) +

s

1 + g
Ht (v|Lt) .

When s′ = s/ (1 + g), the buyer value evolution coincides with (4.1). Although each buyer

survives with probability s, the market growth rate essentially makes the survival rate s′ =

s/ (1 + g).

For the remainder of the section, we define the equilibrium concept we want to solve, the

stationary symmetric sequential equilibrium (SSSE) where buyers and sellers of the same

value play the same utility maximizing strategies in each period when the expected active

buyer value distribution remains stationary, and the belief of the buyers and sellers updates

according to the equilibrium behavior.

Agents’ strategies and beliefs are defined as follows. Since all the sellers are identical and

the buyers symmetric, we restrict our attention to symmetric behavior where all the sellers

chooses the same mechanism Mt and each value v buyer behaves according to strategy

σt (v,Mt); that is, agents are only distinguished by their types but not by indices. In period

t, each agent has belief µt ({Ht′ ,Mt′ , σt′}∞t′=t) on the active buyer value distribution, the seller

mechanism choice and the buyer strategies for the current and every subsequent period.

The payoffs of the agents are specified as follows. Each seller gets expected revenue

r (Mt|µt) by choosing mechanism Mt under belief µt. Each value v buyer receives total

discounted expected utility u (v, σt (v,Mt) , σ−i,t (·,Mt) |Mt, µt) when her n − 1 opponents

play σ−i,t (·,Mt).

Subsequent active buyer value distributions E [Ht+1 (v) |Ht,Mt, σt] can be inferred from

the buyer and seller behavior and pre-specified market and matching dynamics. If the active

buyer value distribution is stationary, then the buyer composition will be expected to be

the same across periods, so the stationary value distribution is H∗ (v) ≡ E [Ht (v) |µ∗] =

E [Ht+1 (v) |µ∗].
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In particular, given the equilibrium mechanism M∗ and strategy σ∗ (·, ·), the stationary

value PDF is the weighted average of newborn PDF f and the previous period PDF h∗ in

stationary equilibrium. The stationary value PDF and CDF are respectively

h∗ (v) = (1− sl∗) f (v) + sl∗ (v)h∗ (v) (4.2)

H∗ (v) = (1− sl∗)F (v) + s

ˆ v

0

l∗ (z) dH∗ (z) (4.3)

where l∗ (·) and l∗ depend on the equilibrium seller and buyer behaviors and matching dy-

namics.

Now we can define the equilibrium where 1) all the agents play symmetric stationary

strategies, 2) the active value distribution is stationary, 3) agents’ beliefs about the equi-

librium behavior and active value distribution are correctly updated, and 4) every agent

maximizes the expected payoff given beliefs.

Definition 6. (M∗, σ∗, H∗, µ∗) constitutes a stationary symmetric sequential equilib-

rium (SSSE) where every seller runs the same mechanism M∗ and every value v buyer

plays according to strategy σ∗ (v,M) in mechanism M ∈ M and it satisfies the following

conditions.

1. (Stationarity) Stationary value distribution is a martingale with respect to the equi-

librium mechanism M∗ and strategy σ∗:

H∗ (v) = E [Ht+1 (v) |Ht = H∗,M∗, σ∗] ,

where the stationary value PDF and CDF are determined by (4.2) and (4.3), respec-

tively.

2. (Consistency) Every agent has the correct belief µ∗ about the stationary value dis-
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tribution, equilibrium mechanism and strategy:

µ∗ (H∗,M∗, σ∗) = 1.

3. (Sequential Rationality of Seller) M∗ maximizes seller’s expected profit with re-

spect to belief µ∗: ∀M ∈ M, π (M∗|µ∗) ≥ π (M |µ∗) .

4. (Sequential Rationality of Buyer) σ∗ (·,M) is a symmetric Bayes-Nash equilibrium

in every mechanism M : ∀v, ∀M ∈ M, ∀σ (·,M) ∈ ΣM ,

u (v|M,µ∗)≥ u
(
v, σ̃ (v,M) , σ−i,∗ (·,M) |M,µ∗

)
,

where u (v|M,µ∗) ≡ u
(
v, σ∗ (v,M) , σ−i,∗ (·,M) |M,µ∗

)
denotes value v buyer’s equi-

librium expected payoff in M .

Note in particular that the symmetry assumption does not need to be assumed but arises

as an equilibrium outcome. Since all the optimal incentive-compatible mechanisms yield

the same revenues and the same expected buyer payoffs, all the sellers will choose the same

mechanism in equilibrium and all the buyers will have the same expected equilibrium payoffs.

Characterizing the equilibrium requires 1) characterizing the stationary value distribu-

tion, 2) solving the monopolist profit-maximizing problem with value-dependent outside

options, and 3) solving the buyers’ equilibrium strategies when they have sequential oppor-

tunities. In essence, in the dynamic setting, the existence of sequential markets affects both

seller mechanism choice and buyer behavior, and the sequential market conditions depend

on buyer composition H∗.

In Section 4.3, we solve a general version of the monopolist’s problem and specifies the

buyer’s equilibrium strategy in the optimal mechanism and the agents’ expected equilibrium

payoffs. The SSSE is characterized and proven to uniquely exist in Section 4.4 and compar-

ative statics results on the survival rate, the buyer-seller ratio and the discount factor are
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presented in Section 4.5.

4.3 Seller’s Problem Generalized

In this section, we study revenue maximization of a monopolist who faces symmetric buyers

in the presence of a sequential market where the identical good is expected to be sold by

other sellers. We show that the optimal mechanism is implementable by a standard reserve

price auction, but the reserve price changes with respect to the sequential market condition.

In particular, the reserve price is always lower than the monopoly reserve price in Myerson

(1981), an extreme setting of the current setup which incorporates the monopolist problem

in the SSSE as a special case. We generalize the marginal revenue curve defined by Bulow

and Roberts (1989) to this sequentially competitive setting to determine optimal reserve

prices. The general revenue maximizing mechanism with ex-ante asymmetric buyers and

related results regarding incentive-compatibility, buyer indifference and revenue-equivalence

of different mechanisms are derived and presented in Appendix 4.9.

Suppose that there are n buyers and one seller which we call a monopolist. In addition to

the assumptions defined above, the value distribution is assumed to have decreasing inverse

hazard rate.

Assumption 2. dη (F (v)) /dv ≤ 0 where η (F (v)) ≡ (1− F (v)) /f (v).

In particular, the setting so far is the same as Myerson (1981), which we refer to as the

pure monopoly setting. We introduce a sequential market where each buyer is expected

to receive a price offer drawn from distribution Λ with support [x, x] and density λ. Since

Λ incorporates all the information about the subsequent period, we simply refer to the

sequential market by the distribution Λ. Not to be interrupted by technical details, we

assume that the buyers are symmetric and the sequential market distribution is continuous

and differentiable.

157



The presence of a sequential market incorporates a wide range of settings. Myerson

(1981) solves the monopolist’s problem when there is no price offer (lower than 1) in the

sequential market (Λ (x) = 0∀x ≤ 1), or the buyers discount the sequential market infinitely

(δ = 0). In the SSSE, a buyer’s continuation payoff is her total discounted expected utility

from all mechanisms she participates in the future periods. Any outcome she faces can

be characterized by the expected payment with the probability of such payment. The set

of outcomes can be summarized by a probability distribution, thus a sequential market.

In particular, the sequential opportunities each buyer faces in the stationary equilibrium

are captured by an equilibrium sequential market. In addition, the sequential market can

be viewed as signals buyers receive to update their valuations of the good. The dynamic

mechanism design literature takes this particular stance and yield analogous results as this

current section (Esö and Szentes (2007)).

Although all the buyers face the same sequential market, they may receive different

realized price offers and may make different decisions based on their own valuations even

if the realized price offers are the same. A buyer purchases the good if and only if her

value exceeds the realized price offer she receives, so a value v buyer’s expected payoff in the

sequential market Λ is

uΛ (v) =

ˆ v

x

(v − x) dΛ (x) =

ˆ v

x

Λ (x) dx.

It increases whenever the buyers receive lower price offers with higher probability, so we

say that Λ is more buyer-friendly than Λ̃ if Λ is first-order stochastically dominated by Λ̃.

Definition 7. A sequential market is more buyer-friendly than another if and only if it

is first order stochastically dominated by the other: Λ ≽B Λ̃ if and only if Λ (x) ≥ Λ̃ (x) ∀x.

A value v buyer will not pay more than the expected utility if she waits, so her willingness-
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to-pay (WTP) to the monopolist is

wΛ (v) = v − δuΛ (v) ,

and it is differentiable, weakly increasing and weakly concave2. The monopolist’s problem

with a sequential market corresponds to a monopolist’s problem with buyers’ values trans-

formed according to an increasing, concave function. Conversely, for any concave value trans-

formation ṽ (·), there is a sequential market Λ that induces a WTP function wΛ (·) = ṽ (·).

In essence, the monopolist maximizes expected revenue with respect to n buyers who

have WTP w (v) drawn from the WTP distribution F̃Λ (ṽ) = F
(
w−1

Λ (ṽ)
)

and f̃Λ (ṽ) =

f
(
w−1

Λ (ṽ)
)
/w′ (w−1

Λ (ṽ)
)
, so by Myerson (1981), the optimal mechanism is to run a standard

auction with reserve price determined by a transformed virtual utility curve. The virtual

utility in this setting is defined as the competitive auction marginal revenue (MR) in

the presence of sequential market Λ

MRA
Λ (v) = wΛ (v)− η

(
F̃Λ (wΛ (v))

)
= wΛ (v)− η (F (v))w′

Λ (v) . (4.4)

In section 7, we will define the competitive posted price marginal revenue and compare

those with the auction’s when the sequential market changes to derive results regarding

changes in revenues of different mechanisms and provide further economic insights, especially

parallels between auctions and posted prices. Since WTP is increasing and concave, and

inverse hazard rate is decreasing, the competitive auction marginal revenue is continuously

increasing, so the optimal reserve type exists and is unique.

Proposition 16 (The Optimal Mechanism). Let A (ρ) represent a standard auction that

implements reserve price wΛ (ρ) in the presence of sequential market Λ. The revenue-

maximizing mechanism in the presence of the sequential market Λ is A∗
Λ ≡ A (ρ∗Λ) where

MRA
Λ (ρ∗Λ) = 0.

2w′
Λ (v) = 1− δu′

Λ (v) = 1− δΛ (v) ≥ 0 and w′′
Λ (v) = −δu′′

Λ (v) = −δλ (v) ≤ 0.
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Not all the buyers who have values above the reserve price will participate in the auction,

but the reserve price screens for participation of buyers with willingness-to-pay above it, who

have values above ρ which we call the the reserve type. Without the sequential market,

a buyer’s value is her WTP, so the pure monopoly reserve price and reserve type coincide.

When there is a nontrivial sequential market, the optimal competitive reserve price is lower

than the pure monopoly reserve price. The importance of determining the reserve type is

its relation with the probability of sale, 1− F n (ρ): the bigger the optimal reserve type, the

lower the probability of sale and the higher the expected sale efficiency to transform the

good from seller to buyers.

Proposition 17. The optimal competitive reserve price in the presence of a sequential mar-

ket is lower than the optimal pure monopoly reserve price.

Remark 1. The optimal competitive reserve price is equal to the pure monopoly reserve

price when there is no price offer (weakly) lower than the pure monopoly reserve price in the

sequential market, because the competitive auction marginal revenue curve is unchanged for

values below the pure monopoly reserve price.

The following numerical example illustrates that we can not compare optimal reserve

type across different markets as a more buyer-friendly sequential market does not guarantee

a lower optimal reserve price or reserve type.

Example 2. Suppose there are two buyers (n = 2) with values drawn uniformly from

[0, 1] (F (x) = x). In the first market, they may receive a uniform price offer from 0 to

1 (Λ1 (x) = x), and in the second market, they may receive a lower price offer with lower

probability (Λ2 (x) = 2x2∀x ∈ [0, 0.5] ; x∀x ∈ [0.5, 1]). Therefore, the first market is more

buyer-friendly. However, the optimal reserve type and price are higher in the first market

(ρ∗Λ1
≈ 0.4227 > ρ∗Λ2

≈ 0.4221 and wΛ1

(
ρ∗Λ1

)
≈ 0.333 > wΛ2

(
ρ∗Λ2

)
≈ 0.303).
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Finally, we can calculate the buyers’ equilibrium strategies and payoffs in the standard

auctions in the presence of a sequential market. The first price and second price auctions

(as well as Dutch and English, and all-pay auctions) with the same reserve prices generate

the same revenues, from the generalized revenue equivalence and buyer indifference result

(Corollary 1), a corollary of the characterization of incentive compatible mechanisms (Propo-

sition 26), and both are presented in Appendix 4.9. In the second price auction, buyers bid

their WTPs rather than their values (which are equivalent in the setting without sequential

market). In the first price auction, buyers continue to shade their bids, but according to

their WTPs as well.

Proposition 18 (Equilibrium in Standard Auctions). Consider a standard reserve price

auction A (ρ) with n buyers in the presence of Λ. A value v ≥ ρ buyer in the second price

auction bids her willingness-to-pay wΛ (v). In the first price auction, the equilibrium bidding

strategy of buyer v ≥ ρ is

σ (v,A (ρ)) = wΛ (v)−
ˆ v

ρ

F n−1 (z) dwΛ (z) /F
n−1 (v) . (4.5)

A value v buyer’s total discounted payoff is

u (v|A (ρ)) =

ˆ v

ρ

F n−1 (z) dwΛ (z) + δuΛ (v) , (4.6)

and the seller’s expected revenue is

r (A (ρ)) =

ˆ 1

ρ

MRA
Λ (v) dF n (v) . (4.7)

These equilibrium characterizations, along with the characterization of the optimal auc-

tion, directly apply to the dynamic setting.
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4.4 Stationary Symmetric Sequential Equilibrium

In this section, we characterize the stationary symmetric sequential equilibrium and prove

its existence and uniqueness under mild technical conditions. Based on the results from the

previous section, every seller runs the same reserve price auction. Higher value buyers are

more likely to win the auctions and to exit the market, resulting in lower value buyers staying

longer and a stationary value distribution that is first order stochastically dominated by the

newborn value distribution. Such an equilibrium exists and is unique under mild conditions,

and convergence of equilibrium from initial period is also discussed.

The equilibrium is characterized by the optimal reserve type and the stationary distri-

bution. Since the buyers’ sequential options in the SSSE can be summarized by a sequential

market Λ∗ which we will characterize, Proposition 16 shows the optimal mechanism is a

standard auction with reserve type ρ∗ determined by the equilibrium auction MR,

MRA
∗ (ρ∗) ≡ w∗ (ρ∗)−

1−H∗ (ρ∗)

h∗ (ρ∗)
w′

∗ (ρ∗) = 0,

where w∗ (v) is value v buyer’s equilibrium WTP. However, since the buyers’ realized pay-

ments are all higher than ρ∗, by Remark 1, and the equilibrium reserve type is the same as

the equilibrium reserve price, and is determined by

ρ∗ −
1−H∗ (ρ∗)

h∗ (ρ∗)
= 0. (4.8)

The equilibrium reserve price is always positive, in contrast to the result obtained by

McAfee (1993) that it converges to zero. As results from the next section demonstrate,

the equilibrium reserve price varies with different parameters of the model, indicating level

of market competitiveness. These competitive forces alleviate the frictions in matching by

reducing the equilibrium reserve price to be close to the efficient level. The sellers are

able to set nontrivial prices even if there is no excess demand which resonate the natural
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unemployment resulted from frictional search and matching models (Diamond and Maskin,

1979). When n = 1, this setting is a dynamic bargaining setting with equal measure of

buyers and sellers, the model is similar to Rubinstein and Wolinsky (1985).

As a result a value v buyer wins the auction if and only if her value is above ρ∗ and no

opponent has value above v, so her probability of winning is P ∗ (v) = 1 − 1v>ρ∗H
n−1
∗ (v).

Conversely, a value v buyer’s losing probability l∗ (v) is 1 if v ≤ ρ∗ and 1−Hn−1
∗ (v) if v > ρ∗.

Equilibrium loser proportion is then

l∗ =

ˆ 1

0

l∗ (v) dH∗ (v) = 1−
ˆ 1

ρ∗

Hn−1
∗ (v) dH∗ (v) = 1− 1

n
(1−Hn

∗ (ρ∗)) .

In order words, measure 1−Hn
∗ (ρ∗) of the sellers sell their goods.

The stationary value distributions can be determined by 4.2 and 4.3 by substituting

for l (v) = 1− P (v), a value v buyer’s expected probability of losing in a direct anonymous

mechanism. Value v buyer’s expected utility of reporting z is P (z) v−C (z) in the mechanism

and is P ∗ (v) v−C∗ (v) if she does not win. The stationary value distributions are determined

as follows.

h∗ (v) =

[
1− s

ˆ 1

0

(
1− P ∗ (z)

)
dH∗ (z)

]
f (v) + s

(
1− P ∗ (v)

)
dh∗ (v) (4.9)

H∗ (v) =

[
1− s

ˆ 1

0

(
1− P ∗ (z)

)
dH∗ (z)

]
F (v) + s

ˆ v

0

(
1− P ∗ (z)

)
dH∗ (z) (4.10)

Given the equilibrium losing probability and proportion of losers, the stationary value dis-

tributions characterized by (4.2) and (4.3) are

h∗ (v) =

[
1− s

(
1− 1

n
(1−Hn

∗ (ρ∗))

)]
f (v)

/(
1− s

(
1− 1v>ρ∗H

n−1
∗ (v)

))
, (4.11)

H∗ (v) =

[
1 +

s

1− s

1

n
(1−Hn

∗ (ρ∗))

]
F (v)− 1v>ρ∗

s

1− s

1

n
(Hn

∗ (v)−Hn
∗ (ρ∗)) .(4.12)
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In particular, the stationary distribution at the equilibrium reserve type is determined by

h∗ (ρ∗)

f (ρ∗)
=

H∗ (ρ∗)

F (ρ∗)
=

[
1 +

s

1− s

1

n
(1−Hn

∗ (ρ∗))

]
. (4.13)

As a consequence of the auction’s allocative efficiency that the buyer with the highest value

above the reserve type is allocated the good, higher value buyers exit the market faster,

resulting in a stationary value distribution that is first order stochastically dominated by the

newborn distribution3.

In summary, (A (ρ∗) , σ∗, H∗, µ∗) constitutes a SSSE. Each seller runs reserve price auc-

tion A (ρ∗) with ρ∗ determined by the system of equations, (4.8) and (4.13) which also pin

down H∗ (ρ∗). The stationary value distribution H∗ is characterized by (4.8) and (4.12)

given H∗ (ρ∗). Each buyer reports truthfully in each incentive-compatible direct anonymous

mechanism (bids w∗ (v) in second price auction by Proposition (18)) and the equilibrium

belief is the same across periods, µ∗ (A (ρ∗) , σ∗, H∗) = 1.

Such an equilibrium exists when losing buyers exit the market sufficiently fast. When

enough higher value newborns enter the market to ensure the active value distribution with

decreasing inverse hazard rate, the reserve price auction remain optimal. The exact sufficient

assumptions are as follows.

Assumption 3. The newborn value distribution is convex: F ′′ (v) ≥ 0.

Assumption 4. The survival rate is sufficiently small: s and δ satisfy δs2 − 2s + 1 ≥ 0.

Equivalently, s ≤
(
1−

√
1− δ

)
/δ for all δ.

These are reasonable assumptions. Although convex distribution assumption is more

restrictive than that of monotone hazard rate, it includes some standard distributions such
3Rearrange (4.12),

H∗ (v)

F (v)
=

[
1 +

s

1− s

1

n
(1−Hn

∗ (ρ∗))

]
/

[
1 + 1v>ρ∗

s

1− s

1

n

Hn
∗ (v)−Hn

∗ (ρ∗)

H∗ (v)

]
.

Since [Hn
∗ (v)−Hn

∗ (ρ∗)] /H∗ (v) achieves its maximum 1−Hn
∗ (ρ∗) at v = 1, RHS is bigger than 1.
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as uniform and exponential distributions. Although in this paper we do not have a buyer

entry stage, the equilibrium distribution resulted from a reasonable entry model should be

one where higher value buyers are more likely to enter. The assumption on the survival rate

and discount factor is not restrictive. First of all, as long as s ≤ 1/2, the equilibrium exists

regardless of δ. And for higher discount factor, the range of survival rate that supports

a unique equilibrium becomes larger. For example, for δ = 0.95, s ≤ 0.876 satisfies the

condition. Furthermore, note that these assumptions are by means necessary conditions

for existence or uniqueness but rather loose sufficient conditions. Finding the necessary

conditions for equilibrium existence is not key to the arguments of the paper. Furthermore,

they are conditions that not only guarantee equilibrium existence but also uniqueness.

Proposition 19. When Assumptions 3 and 4 hold, there exists a unique SSSE.

This equilibrium is reached from periods of plays where the reserve price monotonically

decreases. Starting with the initial period in which all the buyers are newborns, the sellers

post auctions with a reserve price higher than the equilibrium one, because buyers value

distribution FOSDs the stationary distribution and the buyers face worse sequential market

than the buyers in the steady state. However, as the time progresses, lower value buyers

congest the market and expect more buyer-friendly environment in the future periods, so

the sellers post lower reserve price in response. The sequence of reserve price monotonically

converges to the equilibrium reserve price. The monotonicity of adjusted inverse hazard

rate is guaranteed because the sequential market improves and the active buyer distribution

decreases as higher value buyers win more often and exit faster.

The equilibrium sequential market is

Λ∗ (x) = 1v>ρ∗

Hn−1
∗ (x)

1− δs
(
1−Hn−1

∗ (x)
) ∀x > ρ∗. (4.14)

It indicates market competitiveness or buyer-friendliness of the market as we have mentioned.
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In the next section, we partially use the change in the equilibrium sequential market to

explore effects of the changes in different parameters of the model - the survival rate, the

buyer-seller ratio, and the discount factor, on the equilibrium reserve price, stationary value

distribution, buyer utility, seller revenue, and sale efficiency.

4.5 Comparative Statics

In this section, we investigate how the equilibrium is affected by changes in the market

environment manifested in three parameters of the model - the buyer survival rate, the buyer-

seller ratio, and the discount factor. Although there are only three parameters (apart from

the newborn value distribution) in the model, each of them represents different characteristics

of the market which we shall elaborate on.

We consider the change in the equilibrium from three perspectives: the sellers’, the

buyers’, and the social planner’s. It should not be a surprise that the sellers and the buyers

always exhibit conflict of interests, but it is not directly obvious that the social planner’s

welfare aligns with the sellers’. In general, the changes that benefit the buyers and harm

the sellers include prolonging buyer expected age, decreasing competition, and making them

more patient. However, from the social efficiency point of view, benefiting the buyer worsens

the allocative efficiency as the probability of sale decreases.

A seller’s expected revenue from her optimally chosen auction A (ρ∗) is

r∗ =

ˆ 1

ρ∗

[w∗ (v)− η (H∗ (v))w
′
∗ (v)] dH

n
∗ (v) . (4.15)

We need to characterize the changes in the optimal auction, the stationary buyer value

distribution, and the buyer’s WTP. In addition, a value v buyer’s total discounted expected

utility is

u∗ (v) = 1v≥ρ∗

ˆ v

ρ∗

Hn−1
∗ (z)

1− sδ
(
1−Hn−1

∗ (z)
)dz. (4.16)
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There are different types of efficiencies associated with a sale mechanism. When the good

is transferred from the seller who values the good at zero to any of the buyers, we say the

transaction is sale efficient. When the sale occurs, and it is transferred to the buyer with

the highest value, then we say the sale is allocative efficient. A zero reserve price second

price auction is both sale efficient and allocative efficient as the good always ends up in the

hand of the buyer with the highest valuation. A positive reserve price auction is not always

sale efficient but is allocative efficient as the buyers’ competition results in the allocative

efficiency. However, an optimal posted price is neither sale nor allocative efficient. The

significant posted price results in more ex-post sale inefficient allocation than the optimal

auction because the optimal reserve price is lower than the optimal posted price, and it also

results in allocative inefficiency as the good does not necessarily end in the hand of the buyer

with the highest value.

The total social welfare is the discounted sum of the buyers and the sellers across all

periods, but with a little careful consideration reveals that the equilibrium probability of

sale is the key indicator of social efficiency. Since quasi-efficient auctions, the mechanisms

that assign the good to the highest valued agent if not withheld by the seller, are run, and

buyers and sellers divide the profit, transaction occurring is always preferred to otherwise

as the sellers holding onto the good being the most socially inefficient allocation. The social

efficiency monotonically increases in sale probability.

The platform designer’s profit closely ties in with sale and allocative efficiency. If his profit

is proportional to the total surplus he generates, given that a mechanism is allocative efficient

as it is the case in an auction, higher sale efficiency results in higher total welfare. The idea

that platform designer’s maximum profit is proportional to the total welfare is supported by

Oi (1971) and Armstrong (1999). If instead the designer charges a participation fee for new

agents who arrive in the market (shown to be a revenue maximizing fee structure in Bodoh-

Creed (2012)), he wishes that more new agents arrive, which is realized when equilibrium
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probability of sale increases.

Therefore, in order to consider the changes in the three perspectives, we solve the com-

parative statics of these variables - the seller’s chosen equilibrium reserve price, the seller’s

utility; the stationary buyer value distribution, the buyer’s utility; and the probability of sale.

We summarize these results in the next three Propositions. All of the changes have definite

signs and monotonic effects over the range as long as an additional convexity assumption on

the newborn value distribution is imposed in addition to the existing one. It further restricts

Assumption 3 of convex value distribution that guarantees the existence of equilibria, but

not by much: the uniform distribution and any distribution with CDF F (v) = vk, k ≥ 1 still

satisfies the assumption.

Assumption 5. The newborn value distribution satisfies that vf (v) /F (v) is increasing for

v < ρ∗mon.

First, let us look at the change in the survival rate. These variations in the survival rate

may reflect elasticities of demand across different types of goods: people are more likely to

keep searching for a cellphone until they get one, but people may quit searching for a novel if

they cannot find it at a satisfactory price. Furthermore, it can also represent search friction

in the market; higher survival rate means that the current buyers can easily find a perfect

substitute in the existing market. Lastly, recall that the market size growth rate is inversely

related to the survival rate, an increase in survival rate also corresponds to a slower market

expansion or faster market contraction.

Suppose that the survival rate increases so that the good becomes more inelastically de-

manded, the consumer’s search friction decreases, or the consumer base remains relatively

more stable. When the sellers survive to the next period with higher probability, the equi-

librium stationary value distribution will be depressed because lower type buyers crowd the

market, preventing newcomers to enter. The equilibrium reserve price the sellers choose goes
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down as a result. The probability of sale, positively related to the equilibrium reserve price,

decreases. The buyers’ expected utilities increase as they can search longer and the sellers

revenue decreases.

Proposition 20 (Survival Rate). When the survival rate increases, the equilibrium reserve

price decreases, the equilibrium probability of sale decreases, the stationary value distribution

shifts down first-order stochastically, and the buyer’s utility increases, and the seller’s revenue

decreases.

The proof relies on the two equations that pin down the equilibrium reserve price and the

stationary value distribution at the reserve price, (4.8) and (4.13). Algebraic rearrangements

of the differentiation by the Implicit Function Theorem with the continuity of the solution

guaranteed specifies the change in the reserve price, and with Assumption 5, the sign is

definite. The ensuing changes follow from the change in reserve price. The proofs of the

following two Propositions follow the same method, with the last one particularly easy as

the discount factor does not affect the equilibrium conditions.

Decrease in the buyer-seller ratio, reduction in relative number of buyers to sellers, in-

dicates that relative demand decreases or relative supply increases. Similar to the increase

in survival rate, if the buyer-seller ratio decreases, the buyers are better off and the sellers

are worse off. What is not obvious is that, although the reserve price decreases, the proba-

bility of sale decreases as well - the demand plummets more than what the supply side can

optimally adjust for.

Proposition 21 (Buyer-Seller Ratio). When the buyer-seller ratio increases, the equilibrium

reserve price decreases, the equilibrium probability of sale decreases, the stationary value

distribution shifts down first-order stochastically, the buyer’s utility increases, and the seller’s

revenue decreases.

Finally, let us examine the effects of change in discount factor. If the discount factor
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increases, the buyers become more patient, or the interval between the time periods decreases

and buyers have more sequential opportunities in the imminent future. The stationary value

distribution and the reserve price are not affected by the change in discount factor, as the

sellers do not change their optimal mechanism, as equilibrium reserve price only depends on

the survival rate and the buyer-seller ratio.

In particular, we need to distinguish the shrinking time interval interpretation of the

market expansion and the market growth rate as mentioned in Section 4.2. When the

interval shrinks, the market is being replicated more times, increasing measures of the old

buyers, the new buyers and the sellers. However, increasing the market growth rate only

increases the measure of newborn buyers and sellers, and in particular decreasing the relative

proportion of the old buyers whose opportunities are worsened rather than improved.

Proposition 22 (Discount Factor). When the discount factor increases, the equilibrium

reserve price, the equilibrium probability of sale, the stationary value distribution are not

affected, the buyer’s utility increases and the seller’s revenue decreases.

Overall, when the survival rate increases and/or the buyer-seller ratio decreases, the

buyers’ expected utilities increase as their WTPs are depressed. The revenue of the sellers

decreases, as they face a buyer composition that is first-order stochastically worse (of course,

as a result of the precedent sellers’ responses to buyer-friendly market environment). How-

ever, social sale efficiency decreases in response, resulting in lower probability of transactions.

When buyers become more patient, the market composition does not change, but the seller’s

revenue will be hit hard, as the buyers are more willing to wait for future chances.

4.6 Posted Prices and Their Market Effects

Despite of being sub-optimal, the posted prices are robust revenue preservers to sequential

price competitions. We define the posted prices marginal revenue and utilize it to explain

170



why posted prices are an increasingly attractive for sellers when the market becomes more

buyer friendly.

Let’s consider the widely used posted price mechanism and its relation with the reserve

price auction. A posted price P (φ) is the mechanism where a seller posts price wΛ (φ) and

the buyers who are willing to buy at the price enter the lottery to be picked as a winner with

equal chances. The posted price mechanism is an incentive compatible direct-revelation

mechanism: only the buyers with willingness-to-pay wΛ (φ), or values above φ enter the

lottery. The lottery seems unrealistic, but it is equivalent to the following natural selling

process when the buyers arrive stochastically. The seller posts price wΛ (φ) and the n buyers

uniformly randomly arrive within a time interval. The first buyer with willingness-to-pay

greater than wΛ (φ) takes the item and pays the posted price.

From the mechanism, all the buyers with value v above the posted type φ have the

same expected utility,

uΛ (v|P (φ)) =
1

n

1− F n (φ)

1− F (φ)
(v − wΛ (φ)) ,

and the seller’s expected revenue is

r (P (φ)) = (1− F n (φ))wΛ (φ) .

Define the posted price marginal revenue in the presence of sequential market Λ

to be

MRP
Λ (v) = wΛ (v)− η (F n (v))w′

Λ (v) . (4.17)

then the revenue-maximizing posted price mechanism in the presence of sequential market

Λ is P∗ = P (φ∗) with MRP
Λ (φ

∗) = 0.

The posted price and the reserve price auction have a lot of similarities in terms of the

marginal revenue curve. Both reserve type and posted type are determined by equating the
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marginal revenue to zero, and the types calculated specify the set of willing buyers. Together,

we call the reserve price auction and the posted prices critical type mechanisms.

Remark 2. A critical type mechanism (CTM) M (τ) is either a reserve price auction A (ρ)

or a posted price P (φ). Its revenue is

r (M (τ)) =

ˆ 1

τ

MRM
Λ (v) dF n (v)

and the optimal CTM is M (τ ∗) where MRM
Λ (τ ∗) = 0. The probability of sale is 1− F n (τ).

MRA (v) ≥ MRP (v) for all v because η (F n (v)) > η (F (v))4. Therefore, the auction MR

curve always dominates the posted price MR curve and the optimal posted type φ∗
Λ is always

greater than the optimal reserve type ρ∗Λ. The difference in revenues between the auction

and the posted price of the same critical type is positive, and we call it the auction premium

over posted price, ∆ (τ) ≡ r (A (τ))− r (P (τ)).

Whenever the sequential market becomes more buyer-friendly, the monopolist’s revenues

from the optimal auction and the optimal posted price decreases. Previous papers, realizing

the disadvantages of an auction facing sequential competition, show that in the limit when

the market is infinitely competitive, an auction and a posted price are equivalent, generating

the same revenue (Kultti, 1999; Rachmilevitch and Reisman, 2012).

Proposition 23. When the sequential market becomes more buyer-friendly or buyers become

more patient, the auction premium over posted price decreases for any critical type.

Wang (1993) shows in a stochastic setting that auction is more advantageous than posted

price when the MR is steeper, Proposition (23) shows that more buyer friendly sequential

market flattens the competitive auction marginal revenue more so that the gain in revenue

is reduced. In addition to listing a critical type (the price posted or the reserve price in the

auction), an auction involves additional procedures such as sorting the bids, announcing the
4η (Fn (v)) = η (F (v))

(
1 + F (v) + · · ·+ Fn−1 (v)

)
/
(
nFn−1 (v)

)
is greater than η (F (v)) and decreasing

when F (·) has decreasing inverse hazard rate.
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Figure 4.1: Critical type mechanisms.

winner and the payment calculated from the bids. The proof shows that the competitive

marginal revenues of auction and posted price are closer to each other when the market

becomes more buyer friendly or the buyers become more patient.

Proof of Proposition 23. The difference between the competitive marginal revenues is

MRA
Λ (v)− MRP

Λ (v) = [wΛ (v)− η (F n (v))w′
Λ (v)]− [wΛ (v)− η (F n (v))w′

Λ (v)]

= [η (F n (v))− η (F (v))] (1− δΛ (v))

The term in the square bracket is positive, so when Λ̃ (v) ≥ Λ (v),

MRA
Λ̃ (v)− MRP

Λ̃ (v) ≤ MRA
Λ (v)− MRP

Λ (v) .

Also, when the discount factor becomes larger, the difference becomes strictly smaller as

well as Λ (v) > 0. Take any critical type τ and the difference between the revenues in the

presence of Λ is

r (A (τ))− r (P (τ)) =

ˆ 1

τ

[
MRA

Λ (v)− MRP
Λ (v)

]
dF n (v) .

This result offers a possible explanation to the rapid demise of small auctions on eBay
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(Einav et al., 2013). The paper argues that auctions are widely used in the early 2000s

because the sellers are auction-fervent, but as time progresses with more entrance of general

sellers, they do not have an inclination for posted prices. Another effect as the general

population enters is increase in market liquidity so that buyers have more opportunities to

purchase. When there are more better purchasing opportunities for the buyers in sequential

periods, the revenue gain from running an auction, which declines as shown, may not cover

the extra cost associated with displaying and storage.

It is also worth mentioning the change in optimal auction premium with respect to the

number of buyers as it is not a monotonic relationship. When there is only one buyer, the

seller essentially faces a bargaining problem: a buyer either accepts or rejects the price of-

fer the seller proposes, so the optimal auction and the optimal posted price yield the same

revenue. When there are several buyers, the auction yields the benefit that competition

between buyers drives up the transaction price. However, when the number of buyers ap-

proaches infinity, the two revenues are equal again. There is probability 1 that a buyer has

any arbitrarily high value, so full revenue of is guaranteed by posting a high price. What

the sequential market limits is the maximum revenue any mechanism obtains, which is the

willingness-to-pay of the highest value buyer, wΛ (1).

Figure 4.2 shows the ratio of the two revenues with respect to different number of buyers,

when the buyers’ values are drawn from uniform distribution (r (P∗
Λ) /r (A

∗
Λ), F (v) = v).

’X’ shows the ratio when it is a pure monopoly setting, and ’O’s shows the ratio when the

sequential market is Λ (x) = x, i.e., each buyer expects to receive a price offer drawn from the

uniform distribution. As the plot illustrates, the percentage of expected revenue the optimal

posted price attains with respect to the optimal auction increases when there is a sequential

market. For example, when there are five buyers, the seller can get 86% of the optimal

revenue from a posted price as a monopoly but almost 90% of the optimal revenue when a

sequential market is present. The absolute revenue difference exhibits a similar pattern - as
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Figure 4.2: The ratio of the optimal auction and the optimal price revenues.

the market gets more buyer friendly, the optimal auction premium is likely to decrease.

If the seller is impatient and buyers arrive stochastically over time, posted price brings

immediacy to transaction in the way that as soon as there is one willing buyer the trans-

action is realized and the payment is received, whereas the auction involves waiting longer.

Therefore, when the buyer arrival rate is low, an impatient seller is more inclined to post a

price instead of running the reserve price auction. Board and Skrzypacz (2014), for example,

shows with continuos stochastic arrival of buyers, the optimal mechanism is to dynamically

adjust prices with a reserve price auction in the end, so a posted price or an auction approx-

imates the optimal revenue a seller. Skreta (2006) shows that posted price is optimal when

the sellers cannot commit in a sequential setting.

We investigate market effects of such auction cost on equilibrium mechanism choice and

market efficiency in the next section.
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4.7 A Market with Heterogeneous Auction Costs

We have shown in the previous section that all the homogenous sellers run reserve price

auctions in equilibrium. In this section, we investigate how seller’s fixed cost of setting an

auction alters his mechanism choice and what effects the switch to alternative mechanisms

brings to the market.

Each seller chooses a critical type mechanism: M = {A (·) ,P (·)}, but has heterogenous

fixed cost associated with running an auction. The cost c is iid drawn from the cost dis-

tribution G (·) on support [−1, 1] with positive PDF g. The expected profit π (A (·)) is the

expected revenue r (A (·)) minus the cost c. The matching and market processes remain the

same as in the previous setting. We consider both settings in which the sellers live for one

period and two periods.

A SSSE (M∗ (·) , σ∗ (·, ·) , H∗ (·) , µ∗ (·)) in this setting only differs from Definition 6 by

that each cost c seller chooses a possibly different mechanism M∗ (c). In equilibrium, there

is a cutoff cost c∗ such that any seller with cost c > c∗ uses posts price mechanism P (φ∗)

and any other with cost c < c∗ runs reserve price auction A (ρ∗). Cost c∗ seller is indifferent

between the two mechanisms because he yields the same profit,
ˆ 1

ρ∗

MRA
∗ (v) dHn

∗ (v)− c∗ =

ˆ 1

φ∗

MRP
∗ (v) dH

n
∗ (v) .

The buyers with the highest values above exit slower than in the previous setting because all

the participating buyers have the same probability of winning in a posted price. Furthermore,

a posted price makes the sale probability smaller, resulting in more lower value buyers

crowding the market, bringing down the stationary value distribution. In particular, such

an equilibrium exists and is unique under the same assumptions as in the previous section.

The derivations and characterizations of the SSSE are included in the Appendix.

We are particularly interested in the market effects of the auction costs and the posted
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price mechanisms as a consequence of the auction costs. The introduction of posted prices

mechanisms reduces allocative efficiency possibly because sellers value immediacy of the sale

to some buyer who arrives the earliest, not necessarily of the highest value. However, even

though sale efficiency depreciates with the posted price mechanism compared to the auction

mechanisms, the downward change in stationary value distribution brought by the posted

prices actually improves sale efficiency of the equilibrium auction.

Proposition 24. Suppose Assumption 5 holds. When there is auction cost, allocative inef-

ficiency increases but change in sale efficiency is ambiguous.

Although analytically it is ambiguous, under most circumstances, the sale efficiency de-

creases as the decrease in sale efficiency brought about by the switch to posted price dom-

inates the gain in social efficiency in auctions. In the extreme case when every seller posts

price, sale efficiency depreciates the most.

Note that the high cost sellers are the ones using inefficient, suboptimal posted price

mechanisms. The sellers are gaining less from the posted price, because the sellers who use

auctions get strictly higher profit (r (A (ρ∗)) − c > r (P (φ∗))). The highest value buyers’

expected utilities are depressed too. If the sellers and buyers make decisions whether to

enter the market based on ex-ante expected utilities, expected prevalence of posted prices

mechanisms may deter their entrance, and possibly causes the market to collapse if there is

a sufficiently competitive rival who may offer market of auctions. As a result, incentivizing

the sellers to use auctions may be an attractive option. Facilitating buyer bids by allowing

bidding bots, reducing fixed cost of auctions for sellers and buyers, and deterring posted

prices may be options worth trying.

The theoretical predictions qualitatively match most qualitative results of empirical evi-

dence. On the market level, the relative proportion of auctions to posted prices has rapidly

decreased from over 95% in 2003 to only 25% in 2011 (Einav et al., 2013, Figure 1). However,
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share of revenues from auctions has not dropped as much, meaning that auctions generate

relatively higher average revenues.

Empirical evidence suggests that the speed of convergence to SSSE is rather fast - three

weeks in Ockenfels and Roth (2004). A deck of cards with each showing a most wanted

terrorist was issued by the US military to its solders on April 11, 2003, but was sold on eBay

and retail immediately (on day 2 - April 12, and on day 3 - April 13, respectively). The

deck, for its novelty, origin, and rarity, sold for nearly $70 in the first week, and mostly by

auctions. However, the US Playing Cards Company released the identical copies of the cards

for $5.95 and got publicly known, the prices gradually dropped to the competitive prices in

about three weeks and gradually higher proportion of decks were sold through posted prices.

4.8 Conclusion

The paper shows that reserve price auction remains a desirable choice for a seller facing

uncertain demand and uncertain future competition. The reserve price, determined by a

generalized marginal revenue curve, screens for buyers’ willingnesses-to-pay but also indicates

market competitiveness. The optimal posted price mechanism is shown to exhibit similar

critical type determination procedure.

Although the optimal mechanism remains reserve price auction, sequential outside op-

tions reduce the desirability of an auction as it curtails some of the most important features

of an auction. The advantage of running auction comes from the uniqueness of the item and

the surplus extracted from the possible high valuations of the buyers, but the sequential op-

portunities make the current item dispensable, especially to buyers with high values for the

item. A mechanism particularly immune to such turns in market conditions is posted price

mechanism that does not have the transaction price dependent on unique willing buyers.

Variants include dynamically adjusting prices and Buy-It-Now featured on eBay. However,
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posted prices are allocative inefficient and impose market externalities that affect sale effi-

ciency and affect active buyer composition that lowers profit for future sellers.

We make some concluding remarks focusing on the current work’s shortcomings and

possible amendments for future works. An issue is the seller’s commitment in case he does not

sell, which is embodied by the assumption that we have maintained throughout the majority

of the paper, sellers live only for one period and thus choose a static selling mechanism. When

transaction costs of posting to intermediaries are high, when the items for sale have high

depreciation rate or face intense competition from substitutable goods, a seller is better off

using one-shot mechanisms. Reputation and rating systems also punish sellers for selling low

quality goods for repeatedly many times. Furthermore, many goods that have substitutable

competitions and upgrades have steep price drops in short period which essentially prevents a

seller to choose a dynamically optimal pricing rule or repeated auctions. Zhang (2015b) shows

that even if sellers can adjust their mechanisms periodically, it is going to be some predictable

combination of auctions and posted prices. A dynamic model taking consideration of possible

resale is of important interest.

Although we suggest several possibilities to the rise of auction cost - risk aversion, dis-

count factor, fixed costs and idiosyncratic taste, the simple one-dimensional cost imposed

is seemingly ad-hoc and does not tackle the more fundamental question why auction is less

desirable to a rational agent who should supposedly only care about revenue. Works in

dynamic mechanism design and revenue management can offer some insights.

A SSSE is proven to exist uniquely in the settings but we have been ignorant of the speed

of convergence to such a stationary equilibrium behavior from an initial value distribution.

If the speed of convergence to the SSSE is low (as it might be, suggested by numerical

simulation of similar trading markets of Cho and Matsui (2012)), then it is important to

investigate the adjustment on the equilibrium path to see how sellers switch from auctions

to posted prices for example. Furthermore, we are agnostic about whether it is guaranteed
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that any change in the market environment results in global convergence to the new SSSE.

Furthermore, there is a line of empirical research that needs to be done, especially to the

two latter dynamic markets. Equilibrium characterizations are complicated enough already

that definitive comparative statics results were not obtainable because of complexity and non-

monotonicity resulted from sellers’ possible switch to alternative sub-efficient mechanisms.

Numerical simulations and empirical works can be done to investigate different inefficiencies

and externalities, to quantify the effects such as changes in revenues and probability of sale,

and to test validity of assumptions made in the paper.

4.9 The Monopolist’s Problem with Asymmetric Buyers

In this section, we solve the revenue-maximizing mechanism for n buyers with possibly asym-

metric value distributions. Each buyer i has independent private value drawn distribution Fi

on support [vi, vi] such that (1− Fi (v)) /fi (v) is weakly decreasing. The sequential market is

Λ, which is fixed throughout the section, so we do not include subscript. Let v = (v1, · · · , vn)

be the vector of values and F (v) =
∏

i Fi (vi) be the value distribution.

A DSM (P (·) , C (·)) ≡ (Pi (·) , Ci (·))ni=1 consists of a collection of probability assign-

ment functions and cost functions. The probability assignment functions take reports of the

buyers to assign each buyer a probability of obtaining the item, with the properties that

0 ≤ Pi (z1, · · · , zn) ≤ 1 and
∑n

i=1 Pi (z1, · · · , zn) ≤ 1 for each buyer i. The cost function

Ci (z1, · · · , zn) specifies the transfer from buyer i to the monopolist given all buyers’ reports.

Define the expected probability assignment and expected cost function as

P i (zi) ≡
ˆ
∏

j ̸=i zj∈
∏

j ̸=i[vj ,vj]
Pi (z1, · · · , zn)

∏

j ̸=i

dFj (zj) ,

Ci (zi) ≡
ˆ
∏

j ̸=i zj∈
∏

j ̸=i[vj ,vj]
Pi (z1, · · · , zn)

∏

j ̸=i

dFj (zj) .
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We want to restrict our attention to incentive-compatible (IC) mechanisms. Buyer i’s

expected utility of reporting zi in the mechanism is the expected utility when he gets the

object from the mechanism plus the expected utility if she does not get and waits until the

next period,

u (zi|vi) = P i (zi) vi − C i (zi) +
(
1− P i (zi)

)
u (vi) ,

Proposition 25. (Pi (·) , Ci (·))ni=1 is incentive-compatible if and only if for every buyer i,

1. P i (vi) is non-decreasing in vi, and

2. C i (vi) = C i (vi)− P i (vi)w (vi) + P i (vi)w (vi)−
´ vi
vi

P i (x) dw (x) for all vi ∈ [vi, vi].

Proof of Proposition 25. First I show that if the mechanism is IC, then both conditions 1

and 2 hold. Define benefit of lying,

ψi (z|vi) = ui (zi|vi)− ui (vi|vi) .

IC implies that for any vi, there is no benefit in lying, so ψi (zi|vi) ≤ 0 for all zi, vi, so

0 ≥ ψi (zi|vi) + ψi (vi|zi)

=
[
P i (zi)w (vi)− C i (zi) + (vi − w (vi))−

(
P i (vi)w (vi)− Ci (vi) + (vi − w (vi))

)]
−

[
P i (vi)w (zi)− C i (vi) + (zi − w (zi))−

(
P i (zi)w (zi)− C i (zi) + (zi − w (zi))

)]

=
[
P i (zi)w (vi)− C i (zi)−

(
P i (vi)w (vi)− Ci (vi)

)]
−

[
P i (vi)w (zi)− C i (vi)−

(
P i (zi)w (zi)− Ci (zi)

)]

=
(
P i (zi)− P i (vi)

)
(w (vi)− w (zi))

Since w (vi) is non-decreasing in vi, P i (vi) is non-decreasing in vi. Furthermore, IC implies

that ui (zi|vi) is maximized at zi = vi, then by envelope theorem,

∂ui (zi|vi)
∂zi

∣∣∣∣
zi=vi

= P
′
i (vi)w (vi)− C

′
i (vi) = 0.
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By fundamental theorem of calculus,

Ci (vi) = C i (vi) +

ˆ vi

vi

P
′
i (vi)w (vi) dvi

Integration by parts yields condition 2 as desired. The converse is shown directly by definition

of incentive-compatibility:

ψi (zi|vi) =
[
P i(zi)w (vi)− C i (zi) + (vi − w (vi))

]

−
[
P i (vi)w (vi)− C i (vi) + (vi − w (vi))

]

=
[
P i (zi)− P i (vi)

]
w (vi) + Ci (vi)− C i (zi)

Plugging in condition 2,

ψi (zi|vi) =
[
P i (zi)− P i (vi)

]
w (vi) + P i (vi)w (vi)−

ˆ vi

zi

P i (x) dw (x)− P i (zi)w (zi)

= P i (zi) [w (vi)− w (zi)]−
ˆ vi

zi

P i (x) dw (x) =

ˆ vi

zi

(
P i (zi)− P i (x)

)
dw (x)

Then by condition 1, the expression is non-positive.

Because the expected probability assignment function pins down the expected cost func-

tion, if the expected cost function of the buyer of the lowest value is the same across two

bidders and the expected probability assignment is the same, then the expected revenue

is the same for the seller, and all buyers are indifferent between the incentive-compatible

mechanisms the seller runs.

Corollary 1 (Buyer Indifference and Revenue Equivalence). If two incentive-compatible

mechanisms have 1) the same expected probability assignment functions, and 2) the same

expected costs for the buyer of the lowest value, then all the agents are indifferent between

the two mechanisms, as they yield the same expected revenue, and the same expected payoffs

for the buyers of the same value.
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Proof to Corollary 1. Denote the two mechanisms M I =
(
P

I
i (·) , C

I
i (·)

)n
i=1

and M II =
(
P

II
i (·) , CII

i (·)
)n
i=1

, respectively. In any IC mechanism M =
(
P i (·) , C i (·)

)n
i=1

, the ex-

pected cost function

Ci (vi) = Ci (vi)− P i (vi) ṽ (vi) + P i (vi)w (vi)−
ˆ vi

vi

P i (x) dw (x)

Because P
I
i (·) = P

II
i (·) for all i by condition 1 and C

I
i (vi) = C

II
i (vi) by condition 2,

C
I
i (vi) = C

II
i (vi) for all vi for all i. Expected utility of vi in mechanism M is

uM
i (vi|vi) = P i (vi)w (vi)− C i (vi) + vi − w (vi)

uMI

i (vi|vi) = uMII

i (vi|vi) for all vi for i. Revenue is determined by

r (M) =
n∑

i=1

ˆ v

v

C
M
(vi) dFi (vi)

Then as shown that C
I
i (vi) = C

II
i (vi) ∀vi ∀i, r

(
M I
)
= r

(
M II

)
.

The seller maximizes expected revenue subject to the incentive compatibility and indi-

vidual rationality constraints.

Definition 8. A revenue-maximizing IC, IR DSM is M = (Pi (·) , Ci (·))ni=1 that maximizes

r =
n∑

i=1

ˆ vi

vi

C i (vi) dFi (vi)

subject to ∀i: ũΛ (vi|vi) ≥ ũΛ (zi|vi) ∀zi ̸= vi and ũΛ (vi|vi) ≥ 0 ∀vi.

Proposition 26 (The Optimal Mechanism). The revenue-maximizing IC, IR DSM (P ∗
i (·),

C∗
i (·))ni=1 is that P ∗

i (v) = 1 if ṽ (vi) − 1−Fi(vi)
fi(vi)

w′ (vi) > max
{
ṽ (v)− 1−Fj(vj)

Fj(vj)
w′ (vi) , 0

}
and

= 0 otherwise, and

C
∗
i (vi) = C

∗
i (vi)− P

∗
i (vi) ṽ (vi) + P

∗
i (vi) ṽ (vi)−

ˆ vi

vi

P
∗
i (z) dṽ (z)
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The several key steps to the proof are i) characterizing the individual rationality con-

straint, ii) exchanging integrals, and iii) expanding expected probability assignment functions

to obtain a weighted average of probability assignment functions.

Proof of Proposition 26. The constraints are

1. IC1: P i (vi) ≥ P i (zi) ∀vi ≥ zi,

2. IC2: C i (vi) = C i (vi) +
´ vi
vi

P
′
i (vi)w (vi) dvi ∀vi, and

3. IR: ui (vi|vi) ≥ ui (vi).

In particular, The IR implies that Ci (vi)− P i (vi)w (vi) ≤ 0.

r =
n∑

i=1

ˆ vi

vi

[
P i (vi)w (vi)−

ˆ vi

vi

P i (z) dw (z)

]
dFi (vi) +

n∑

i=1

[
C i (vi)− P i (vi)w (vi)

]

where
ˆ vi

vi

[
P i (vi)w (vi)−

ˆ vi

vi

P i (x) dw (x)

]
dFi (vi)

=

ˆ vi

vi

P i (vi)w (vi) fi (vi) dvi −
ˆ vi

vi

ˆ vi

x

P i (x)w
′ (x) fi (vi) dvidx

=

ˆ vi

vi

P i (vi)w (vi) fi (vi) dvi −
ˆ vi

vi

P i (x)w
′ (x) (1− Fi (x)) dx

=

ˆ vi

vi

P i (vi)

[
w (vi)−

1− Fi (vi)

fi (vi)
w′ (vi)

]
fi (vi) dvi

=

ˆ v1

v1

· · ·
ˆ vn

vn

Pi (v)

[
w (vi)−

1− Fi (vi)

fi (vi)
w′ (vi)

]
dF (v)

Therefore,

r ≤
ˆ v1

v1

· · ·
ˆ vn

vn

n∑

i=1

Pi (v)

[
w (vi)−

1− Fi (vi)

fi (vi)
w′ (vi)

]
dF (v) ,

and any mechanism that implements the specified probability assignment function will

achieve the upper bound.
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4.10 Proofs

Proof of Proposition 16. It follows as a corollary of Proposition 26 when all the value distri-

butions are identically F . When the WTP function w (·) is not continuously differentiable,

the optimal reserve type ρ∗ satisfies that MRA (ρ∗+
)
≥ 0 and MRA (ρ∗−

)
≤ 0. The existence

and uniqueness of ρ∗ are guaranteed by the monotonicity of the auction marginal revenue

curve.

Proof of Proposition 17. The optimal reserve type is determined by

wΛ (ρ
∗
Λ) /w

′
Λ (ρ

∗
Λ) = η (F (ρ∗Λ))

The LHS is increasing and the RHS is decreasing. If we show that LHS is greater than ρ∗Λ,

then ρ∗Λ < ρ∗mon. wΛ (v) /w′
Λ (v) ≥ v if

wΛ (v)− vw′
Λ (v) = v − δ

ˆ v

x

Λ (x) dx− v (1− δΛ (v))

= vδΛ (v)− δ

ˆ v

x

Λ (x) dx ≥ 0

as Λ (x) ≤ Λ (v) for all x ≤ v.

Proof of Proposition 18. The derivation modifies Jehle and Reny (2011). Value v buyer’s

utility bidding according to the strictly increasing bidding function σ (z) is

u (v, σ (z) , σ−i (·) |A (ρ)) = F n−1 (z) (v − σ (z)) + l (z) δuΛ (v) .

where l (z) = 1−1v≥ρF n−1 (z) is the expected probability of losing by reporting z. Rearrange,

u (v, σ (z) , σ−i (·) |A (ρ)) = F n−1 (z) (wΛ (v)− σ (z)) + δuΛ (v) (4.18)

Differentiate (4.18) with respect to z and the buyer optimality condition requires that it is

zero at z = v. Coupled with the boundary condition that σ (ρ) = wΛ (ρ), the equilibrium
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bidding function is obtained. The candidate bidding function is indeed the equilibrium as

the utility is maximized (rather than minimized) at z = v. The equilibrium payoffs are

obtained by replugging in the equilibrium bidding function, and revenue is obtained by the

MR curve by Riley and Samuelson (1981).

Proof of Proposition 19. We show first that there exists a unique solution of ρ∗ to (4.8)

and (4.13), and it is the only candidate equilibrium. It is then shown to be the unique

optimal reserve type that a seller chooses in the equilibrium. Coupled with the stationary

distributions determined by (4.11) and (4.12), it constitutes an equilibrium.

First we show the existence and uniqueness of ρ∗ and H∗ (ρ∗) for the system of equations,

(4.8) and (4.13). If every seller chooses the same reserve type ρ auction (not necessarily opti-

mal), the stationary value distribution resulted from it is characterized by (4.12) (substitute

ρ for ρ∗). In particular, x ≡ H∗ (ρ) is determined by (4.13),

x/

[
1 +

s

1− s

1

n
(1− xn)

]
= F (ρ) .

LHS is monotonically strictly increasing in x, ranging from 0 (when x = 0) to 1 (when x = 1).

Since RHS is a fixed number between 0 and 1 for any ρ, there is solution x (ρ) = H∗ (ρ) for

each ρ, and is strictly increasing in ρ.

In order to show that (4.8) has a solution, it is sufficient to show that LHS is increasing

in ρ, and it holds when 1/η (H∗ (ρ)) is increasing,

h∗ (ρ)

1−H∗ (ρ)
=

H∗ (ρ)

1−H∗ (ρ)

f (ρ)

F (ρ)
= f (ρ)

[
1

1−H∗ (ρ)
+

s

1− s

1

n

1−H∗
n (ρ)

1−H∗ (ρ)

]

where both equalities follow from (4.13). f is increasing by Assumption (3) and the second

term is increasing in ρ because H∗ (ρ) is increasing. Overall, LHS of (4.8) continuously and

monotonically increases from −1/f (0) to 1 as ρ increases from 0 to 1. Therefore, the solution

to the system of equations, ρ∗, is unique.

186



In fact, it is the only candidate equilibrium. Any ρ can be the symmetric equilibrium

reserve type but the stationary distribution from such choice of ρ is pinned down by solution

H∗ (ρ) = x (ρ). Only the pairs (ρ, x (ρ)) satisfy stationarity condition and only one pair is

candidate equilibrium by the seller’s optimality condition that determines the reserve price.

Finally, it is sufficient to show that under H∗ (ρ∗), ρ∗ is indeed the unique optimal reserve

price.

ρ∗ is optimal if MRA
∗ (v) is increasing, so it is sufficient to show that h∗ (v) /[(1 −

H∗(v))w′
∗(v)] is increasing.

d log [h∗ (v) / [(1−H∗ (v))w′
∗ (v)]]

dv
=

h′
∗ (v)

h∗ (v)
+

h∗ (v)

1−H∗ (v)
− w′′

∗ (v)

w′
∗ (v)

.

By (4.2),

(1− sl∗ (v))h∗ (v) = (1− sl∗) f (v) ⇒ (1− sl∗ (v))h
′
∗ (v)− sl′∗ (v)h∗ (v) = (1− sl∗) f

′ (v)

so
h′
∗ (v)

h∗ (v)
=

f ′ (v)

f (v)
+

sl′∗ (v)

1− sl∗ (v)

By differentiating (4.20),

w′′
∗ (v) = w′

∗ (v)
δsl′∗ (v)

1− δsl∗ (v)
.

Pulling together, we get

f ′ (v)

f (v)
+

sl′∗ (v)

1− sl∗ (v)
+

h∗ (v)

1−H∗ (v)
− δsl′∗ (v)

1− δsl∗ (v)

=
f ′ (v)

f (v)
+

h∗ (v)

1−H∗ (v)
+

(1− δ) sl′∗ (v)

(1− sl∗ (v)) (1− δsl∗ (v))

=
f ′ (v)

f (v)
+ h∗ (v)

[
1

1−H∗ (v)
− (1− δ) s

(1− sl∗ (v)) (1− δsl∗ (v))
(n− 1)Hn−2

∗ (v)

]

Note that 1
1−H∗(v)

≥
∑n−2

j=0 H
j
∗ (v) ≥ (n− 1)Hn−2

∗ (v), the term in the bracket is greater than
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0 if
(1− δ) s

(1− sl∗ (v)) (1− δsl∗ (v))
≤ 1

and the LHS is bounded by (1−δ)s
(1−s)(1−δs) when l∗ (v) = 1. The numerator is smaller than

the (positive) denominator when Assumption (4) holds. Coupled with Assumption (3) that

guarantees f ′ to be positive, the auction marginal revenue curve is strictly increasing, so ρ∗

is the only solution to MRA
∗ (ρ) = 0, thus the only equilibrium.

Calculations of Sequential Market, WTP, Equilibrium Buyer Utility and Seller

Revenue Because the equilibrium behavior and buyer composition are stationary, value

v > ρ∗ buyer’s total discounted expected payoff is the same as her continuation payoff, which

is the same as the equilibrium expected payoff in A (ρ∗), which by (4.6) is,

u∗ (v) = u (v|A (ρ∗)) =

ˆ v

ρ∗

Hn−1
∗ (z)w′

∗ (z) dz + sδu∗ (v) . (4.19)

Her WTP is her value net her present value of expected continuation payoff, depressed by

her survival rate and discount factor,

w∗ (v) = v − sδu∗ (v) = v − sδ

1− sδ

ˆ v

ρ∗

Hn−1
∗ (z)w′

∗ (z) dz (4.20)

where (4.20) is from plugging in (4.19). Differentiate both sides of (4.20) and rearrange, we

get that

w′
∗ (v) =

1− sδ

1− sδ
(
1−Hn−1

∗ (v)
) =

1− sδ

1− sδl∗ (v)
.

In equilibrium, value v buyer’s equilibrium WTP is

w∗ (v) = v − 1v≥ρ∗

ˆ v

ρ∗

sδHn−1
∗ (z)

1− sδ + sδHn−1
∗ (z)

dz. (4.21)

Proof of Proposition 20. The equilibrium ρ∗ and H∗ (ρ∗) simultaneously satisfy

H∗ (ρ∗) ≡
[
1 +

s

1− s

1

n
(1−Hn

∗ (ρ∗))

]
F (ρ∗) (4.22)

188



ρ∗ · h∗ (ρ∗) +H∗ (ρ∗) ≡ 1 (4.23)

Plugging in the equality H∗ (ρ∗) /h∗ (ρ∗) = F (ρ∗) /f (ρ∗) to (4.23),

H∗ (ρ∗) = F (ρ∗) / (F (ρ∗) + ρ∗f (ρ∗)) (4.24)

and plug that into (4.22),

1

F (ρ∗) + ρ∗f (ρ∗)
= 1 +

s

1− s

1

n

(
1−

(
F (ρ∗)

F (ρ∗) + ρ∗f (ρ∗)

)n)
(4.25)

This holds for all s, n at ρ∗ (s, n), the equilibrium reserve price at the respective environment.

By Implicit Function Theorem on (4.24),

dH∗ (ρ∗)

ds
=

(
1

1 + ρ∗f(ρ∗)
F (ρ∗)

)′
dρ∗
ds

(4.26)

has the opposite sign as dρ∗/ds, because the sign of the first term is negative by Assumption

5. By Implicit Function Theorem again, differentiate (4.25) with respect to s,
(

1

F (ρ∗) + ρ∗f (ρ∗)

)′ dρ∗
ds

=

(
s

1− s

)′ 1

n
(1−Hn

∗ (ρ∗))−
s

1− s
Hn−1

∗ (ρ∗)
dH∗ (ρ∗)

ds

Plug (4.26) in and rearrange,
[(

1

F (ρ∗) + ρ∗f (ρ∗)

)′

+
s

1− s
Hn−1

∗ (ρ∗)

(
1

1 + ρ∗f(ρ∗)
F (ρ∗)

)′]
dρ∗
ds

=

(
s

1− s

)′ 1

n
(1−Hn

∗ (ρ∗))

Since
(

s
1−s

)′
> 0, the sign of dρ∗

ds is the same as

(
1

F (ρ∗) + ρ∗f (ρ∗)

)′

+
s

1− s
Hn−1

∗ (ρ∗)

(
1

1 + ρ∗f(ρ∗)
F (ρ∗)

)′

.

The first term is negative because f ′ (v) ≥ 0 and the second term is negative by Assumption

5. Therefore, dρ∗/ds < 0: the sign is strict because ρ∗f (ρ∗) is strictly increasing.
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The change in probability of sale with respect to higher survival rate has opposite sign

as that of dH∗ (ρ∗) /ds which has opposite sign as dρ∗/ds, so it is negative.

By (4.12), for all v < ρ∗,

H∗ (v) = F (v)

[
1 +

s

1− s

1

n
(1−Hn

∗ (ρ∗))

]
.

Since the term in the bracket equals 1/ (F (ρ∗) + ρ∗f (ρ∗)), it increases as s increases:

d [1/ (F (ρ∗) + ρ∗f (ρ∗))]

ds
=

(
1

F (ρ∗) + ρ∗f (ρ∗)

)′ dρ∗
ds

> 0,

as both multiplicands are negative. For all v ≥ ρ∗,

H∗ (v) = F (v)

[
1 +

s

1− s

1

n
(1−Hn

∗ (ρ∗))

]
− s

1− s

1

n
(Hn

∗ (v)−Hn
∗ (ρ∗))

Rearrange,

H∗ (v) +
s

1− s

1

n
Hn

∗ (v) = F (v) + F (v)
s

1− s

1

n
(1−Hn

∗ (ρ∗)) +
s

1− s

1

n
Hn

∗ (ρ∗) (4.27)

Differentiate with respect to s and let x ≡ H∗ (v), the LHS is

dx

ds
+

s

1− s
xn−1dx

ds
+

(
s

1− s

)′ 1

n
Hn

∗ (v) ,

and the RHS is

F (v)

(
s

1− s

)′ 1

n
(1−Hn

∗ (ρ∗))+

(
s

1− s

)′ 1

n
Hn

∗ (ρ∗)+(1− F (v))
s

1− s

1

n
nHn−1

∗ (ρ∗)
dH∗ (ρ∗)

ds

Rearrange,
(
1 + s

1−sx
n−1
)

dx
ds equals

[
F (v)

1

n
(1−Hn

∗ (ρ∗))−
1

n
(Hn

∗ (v)−Hn
∗ (ρ∗))

](
s

1− s

)′

+(1− F (v))
s

1− s

1

n
nHn−1

∗ (ρ∗)
dH∗ (ρ∗)

ds

To show that dx/ds ≥ 0, it suffices to show that the first term in the bracket is positive,
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because dH∗(ρ∗)
ds ≥ 0 is already shown. By (4.12), the term equals

[H∗ (v)− F (v)] /

(
s

1− s

)
≥ 0

as the newborn distribution always first order stochastically dominates the stationary value

distribution in equilibrium.

The buyer’s utility then increases as the sequential market becomes more buyer-friendly.

For (4.16), the integrand increases as H∗ (v) increases for all v > ρ∗, s increases, and ρ∗

decreases. On the other hand, the seller’s revenue decreases because the willingnesses to pay

of the buyers all decrease, and the buyer stationary value distribution first stochastically

increases, resulting in less equilibrium probability of sale.

Proof of Proposition 21. The comparative statics results still derive from the equilibrium

conditions of (4.22) and (4.23). Differentiate (4.25) with respect to n, the LHS is
(

1

F (ρ∗) + ρ∗f (ρ∗)

)′ dρ∗
dn

and the RHS becomes

s

1− s

(
− 1

n2

)
(1−Hn

∗ (ρ∗)) +
s

1− s

(
−nHn−1

∗ (ρ∗)
dH∗ (ρ∗)

dn
−Hn

∗ (ρ∗) logH∗ (ρ∗)

)

= − s

1− s
nHn−1

∗ (ρ∗)
dH∗ (ρ∗)

dn
− s

1− s

1

n2
[1−Hn

∗ (ρ∗) +Hn
∗ (ρ∗) logH

n
∗ (ρ∗)]

Equating the two sides and rearrange,

−
[(

1

F (ρ∗) + ρ∗f (ρ∗)

)′

+
s

1− s
nHn−1

∗ (ρ∗)

(
1

1 + ρ∗f(ρ∗)
F (ρ∗)

)′]
dρ∗
dn

=
s

1− s

1

n2
[1−Hn

∗ (ρ∗) +Hn
∗ (ρ∗) logH

n
∗ (ρ∗)]

The two terms in the bracket in the LHS are both negative as shown in the previous proof

(first by Assumption 3 and second by Assumption 5). Therefore dρ∗
dn has the same sign as
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that of RHS. Since Hn
∗ (ρ∗) < 1,

Hn
∗ (ρ∗) (1− logHn

∗ (ρ∗))− 1 = (1 + x) / exp (x)− 1 < 0

for x = − logHn
∗ (ρ∗) > 0 as exp (x) > 1 + x by Taylor expansion. Differentiation of (4.22)

yields the same result as with s, so it is (4.26) with n replacing s, so dH∗ (ρ∗) /dn < 0.

Furthermore,

d (1−Hn
∗ (ρ∗)) /dn = −Hn

∗ (ρ∗) logH∗ (ρ∗)− nHn−1
∗ (ρ∗)

dH∗ (ρ∗)

dn

= −Hn−1
∗ (ρ∗)

(
H∗ (ρ∗) logH∗ (ρ∗) + n

dH∗ (ρ∗)

dn

)
> 0. (4.28)

In summary thus far, dρ∗/dn > 0, dH∗ (ρ∗) /dn < 0, and d (1−Hn
∗ (ρ∗)) /dn > 0.

Next, we show that dH∗ (v) /dn < 0 for all v. First,
[
1 + s

1−s
1
n (1−Hn

∗ (ρ∗))
]

is decreasing

because its change equals (
1

F (ρ∗) + ρ∗f (ρ∗)

)′ dρ∗
dn

which is negative, as the first term is negative and the second term positive. Therefore,

H∗ (v) decreases for all v < ρ∗ as n increases. Next, differentiate (4.27) with respect to n,

the LHS equals (x ≡ H∗ (v)),
[
1 +

s

1− s
Hn−1

∗ (v)

]
dx

dn
− s

1− s

1

n2
(Hn

∗ (v)−Hn
∗ (v) logHn

∗ (v)) .

The RHS equals the derivative of

s

1− s

1

n
− (1− F (v))

[
1− s

1− s

1

n
(1−Hn

∗ (ρ∗))

]

which is
s

1− s

[
− 1

n2
+ (1− F (v)) d

(
1

n
(1−Hn

∗ (ρ∗))

)
/dn

]

192



Rearrange the terms, then equals
[
1 +

s

1− s
Hn−1

∗ (v)

]
dx

dn
= − s

1− s

1

n2
[1−Hn

∗ (v) +Hn
∗ (v) logHn

∗ (v)]

+
s

1− s
(1− F (v)) d

(
1

n
(1−Hn

∗ (ρ∗))

)
/dn < 0

where the first term being negative follows from (4.28) and the second term being negative

follows from
[
1 + s

1−s
1
n (1−Hn

∗ (ρ∗))
]

decreasing in n.

Finally, the buyer’s utility decreases and the seller’s revenue increases because the WTP

increases for all buyers of different values.

Proof of Proposition 22. Change in δ does not affect the equilibrium reserve price, so the

equilibrium probability of sale and stationary value distribution are not affected either. The

buyer’s utility increases because the sequential market becomes more buyer-friendly: directly

by (4.16), increase in δ increases the integral. The seller’s revenue decreases as each buyer’s

WTP decreases and the buyer composition does not change. The reduction in WTP is by

(4.21),

w∗ (v) = v − 1v≥ρ∗

ˆ v

ρ∗

Hn−1
∗ (z)(

1
δs − 1

)
+Hn−1

∗ (z)
dz.

In the equilibrium, for a cost c seller facing n symmetric buyers whose WTP is determined

by w∗ (·), the profit-maximizing auction is A (ρ∗) where ρ∗ is determined by

ρ∗ −
1−H∗ (ρ∗)

h∗ (ρ∗)
= 0

and the expected profit from it is π (A (ρ∗)) = r (A (ρ∗))− c, where

r (A (ρ∗)) =

ˆ 1

ρ∗

[
w∗ (v)−

1−H∗ (v)

h∗ (v)
w′

∗ (v)

]
dHn

∗ (v) .
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The profit-maximizing posted price is P (φ∗) where φ∗ is determined by

w∗ (φ∗)−
1−Hn

∗ (φ∗)

(Hn
∗ (φ∗))

′ w
′
∗ (φ∗) = 0

and the expected profit and revenue from it is

π (P (φ∗)) = r (P (φ∗)) = (1−Hn
∗ (φ∗))w∗ (φ∗) .

Since a seller can only run an auction or post a price, he essentially makes a choice between

A (ρ∗) and P (φ∗), and he will choose the auction if and only if the auction generates higher

expected profit, or equivalent, the equilibrium auction premium is greater than the cost,

π (A (ρ∗)) ≥ π (P (φ∗)) ⇔ ∆∗ = r (A (ρ∗))− r (P (φ∗)) ≥ c,

and posts the optimal price otherwise. The cost c∗ ≡ ∆∗ seller is indifferent between the two

mechanisms, and we call c∗ the equilibrium cutoff cost such that measure p∗ = G (c∗) sellers

with cost lower than c∗ runs A (ρ∗) and measure 1 − p∗ of the sellers with cost higher than

c∗ chooses P (φ∗).

The total discounted payoff is the expected utilities from participation in auctions and

posted prices,

u∗ (v) = 1v≥ρ∗G (c∗) u (v|A (ρ∗)) + 1v≥φ∗ (1−G (c∗)) u (v|P (φ∗))

where the payoffs in the auction and the posted price are respectively,

u∗ (v|A (ρ∗)) = 1v≥ρ∗

[ˆ v

ρ∗

Hn−1
∗ (z) dw (z) + δsu (v)

]

u∗ (v|P (φ∗)) = 1v≥φ∗

[
1

n

1−Hn
∗ (φ∗)

1−H∗ (φ∗)
(v − w (φ∗)) +

(
1− 1

n

1−Hn
∗ (φ∗)

1−H∗ (φ∗)

)
δsu (v)

]

= 1v≥φ∗

[
1

n

1−Hn
∗ (φ∗)

1−H∗ (φ∗)
(w (v)− w (ρ)) + δsu (v)

]

For value v ∈ (ρ∗,φ∗), the derivation is similar to the previous section and only differs by
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the extra G (c∗) term.

u∗ (v|A (ρ∗)) =
1

1−G (c∗) δs

ˆ v

ρ∗

Hn−1
∗ (z) dw (z)

and

w′
∗ (v) =

1− sδG (c∗)

1− sδG (c∗) + sδG (c∗)H
n−1
∗ (v)

.

For v ≥ φ∗, the calculation is more convoluted,

(1− δs)u (v) =

ˆ v

ρ∗

Hn−1
∗ (z) dw∗ (z) +

1

n

1−Hn
∗ (φ∗)

1−H∗ (φ∗)
(w∗ (v)− w∗ (φ∗)) .

In summary, an equilibrium (M∗ (·) , σ∗ (·, ·) , H∗ (·) , µ∗ (·)) is characterized by c∗, the

cutoff cost, φ∗, the optimal posted type, ρ∗, the optimal reserve type, and the stationary

value distribution H∗, where

1. Mass p∗ of sellers with cost c ≤ c∗ run the same optimal reserve price auction A (ρ∗)

and the other mass 1−p∗ of sellers with cost c > c∗ uses the same optimal posted price

mechanism P (φ∗), where ρ∗ and φ∗ are determined by MRA
∗ (ρ∗) = MRP

∗ (φ∗) = 0.

2. Value v buyer’s equilibrium WTP is

w∗ (v) = v − δs [1v≥ρ∗p∗u (v|A (ρ∗)) + 1v≥φ∗ (1− p∗)u (v|P (φ∗))]

1− δs
[
1− 1v≥ρ∗p∗H

n−1
∗ (v)− 1v≥φ∗ (1− p∗)

1
n
1−Hn

∗ (φ∗)
1−H∗(φ∗)

]

3. Stationary value distributions h∗ and H∗ are characterized by (4.2) and (4.3) with the

expected losing probability function l∗ (·),

l∗ (v) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 v ≤ ρ∗

p∗ (1−Hn−1
∗ (v)) v ∈ (ρ∗,φ∗]

p∗ (1−Hn−1
∗ (v)) + (1− p∗)

(
1− 1

n
1−Hn

∗ (φ∗)
1−H∗(φ∗)

)
v ∈ (φ∗, 1]
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4. The equilibrium belief µ∗ is

µ∗ (H∗ (·) , (p ◦ A (ρ∗) , (1− p) ◦ P (φ∗)) , σ∗ (·, ·)) = 1.

Proof of Proposition 24. Similar to the previous model, the equilibrium is

H∗ (ρ∗) =

{
1 +

s

1− s

1

n
[(1−Hn

∗ (ρ∗))G (c∗) + (1−Hn
∗ (φ∗)) (1−G (c∗))]

}
F (ρ∗)

=

[
1 +

s

1− s

1

n
(1−Hn

∗ (ρ∗)) +
s

1− s

1

n
(Hn

∗ (ρ∗)−Hn
∗ (φ∗)) (1−G (c∗))

]
F (ρ∗)

≡
[
1 +

s

1− s

1

n
(1−Hn

∗ (ρ∗))− ϵ (ρ∗)

]
F (ρ∗)

where ϵ (ρ∗) is strictly positive. As before, substitute in the equilibrium condition

H∗ (ρ∗) = F (ρ∗) / (F (ρ∗) + ρ∗f (ρ∗)) ,

1

F (ρ∗) + ρ∗f (ρ∗)
= 1 +

s

1− s

1

n

(
1−

(
F (ρ∗)

F (ρ∗) + ρ∗f (ρ∗)

)n)
− ϵ (ρ∗) . (4.29)

Compared with (4.25), the first two terms of RHS are increasing, but with the last term,

the curve shifts down and intersects the LHS at a bigger ρ∗ than before. However, bigger

ρ∗ means smaller H∗ (ρ∗) and bigger 1 −Hn
∗ (ρ∗). Therefore, sale probability and efficiency

increases for the auctions, but it increases when there are sellers switching to posted prices

which have sale efficiency 1−Hn
∗ (φ∗), so the total effect is ambiguous. However, more posted

price mechanisms bring more allocative inefficiency.
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Chapter 5 An Evolutionary Justification for Overconfi-

dence

Note: This paper has been published in Economics Letters in November 2013 (Zhang,

2013a).

Abstract: This paper suggests that the evolutionarily optimal belief of an agent’s intrinsic

reproductive ability is systematically different from the posterior belief obtained by the

perfect Bayesian updating. In particular, the optimal belief depends on how risk-averse

the agent is. Although the perfect Bayesian updating remains evolutionarily optimal for a

risk-neutral agent, it is not for any other. Specifically, the belief is always positively biased

for a risk-averse agent, and the more risk-averse an agent is, the more positively biased the

optimally updated belief is. Such biased beliefs align with experimental findings and also

offer an alternative explanation to the empirical puzzle that people across the population

appear overconfident by consistently overestimating their personal hereditary traits.

Keywords: Non-Bayesian belief, risk-aversion, evolutionary economics, overconfidence, bias

JEL: C73, D83

5.1 Introduction

Daily observations, empirical evidence, and experimental findings suggest that under many

circumstances human beings are not perfect Bayesian updaters, especially when they learn

about their personal traits such as beauty and intelligence. One particular systematic de-

viation from the perfect Bayesian updating is positive bias: people tend to over-react to

positive signals indicating their possibility of high ability and under-react to negative ones

indicating otherwise. As a consequence, people are unrealistically overconfident about their
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personal characteristics.

The fact that the asymmetric updating results in population-wide overestimation of per-

sonal ability and persistently hyped beliefs even with overwhelming contrary indications

is reflected in studies self-reporting many personal traits. 88% of American drivers believe

that they drive more safely than the median driver does (Svenson, 1981) and 75% of Harvard

undergraduate students think they have above median IQ among their peers, even with re-

peated informative signals indicating their true tested results (Möbius et al., 2012). Although

many attribute the result to cognitive limitations like selective recall and selective informa-

tion acquisition, while maintaining the perfect Bayes Rule evidence is too overwhelming and

magnitude is too colossal to refuse entertaining the possibility of an updating system other

than the perfect Bayesian and a resulting non-Bayesian posterior. This is especially true

for beliefs about own traits - it is after all the same group of Harvard undergraduates who

show perfect Bayesian updating behavior about other people’s abilities in the same study.

An increasing number of papers assume people have direct belief utilities because they care

about self-esteem (Benabou and Tirole, 2002; Kőszegi, 2006; Eil and Rao, 2011), but this

assumption almost directly implies positively biased beliefs.

This paper attempts to justify the seemingly imperfect human behavior - positively biased

updates and beliefs - from an evolutionary standpoint, without assuming a belief utility or

cognitive deficiencies. If such seemingly imperfect updating behavior is so prevalent, maybe

it is key to our survival, or those who have adopted such updating behavior are the fittest

and have adapted and survived to this date. The personal traits are esteemed because they

affect the reproductive efficiencies, so the belief should be formed in a way that achieves

maximal reproductive success. Although an agent cares about the survival of her offspring,

she wants to maximize her utility about the survival of offspring. When the agent is not

risk-neutral, utility maximization is not the same goal as the primary evolutionary goal of

maximizing the expected survival rates of offspring. When a principal has an unaligned goal
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with an agent, the literature in contract theory and mechanism design considers possible

compensation schemes by a principal to an agent to align the two goals so that the agent

takes the effort level the principal desires. In this paper, the possible financial scheme is

impossible, but the principal, in this case Nature, can choose to manipulate the agent’s

belief about her own ability. Nature achieves his goal of maximized growth while the agent

still maximizes her utility. The agents who have the evolutionarily optimal beliefs would

have the highest overall expected growth and survival rate. We will show concretely that

risk-averse agents exhibit positively biased beliefs, as the way that evolution corrects risk

deficiency.

Non-Bayesian updating has been widely studied by psychologists, evolutionary biolo-

gists, philosophers, and behavioral economists. This paper, in a broad sense, attempts to

explain phenomena observed from psychological and behavioral experiments, by abiding by

philosophical rules and utilizing techniques developed by evolutionary economists. Although

there are many experiments confirming the non-Bayesian behaviors of human in various set-

tings, the theoretical literature explaining such behaviors is relatively scant and they do not

provide or suggest an evolutionary link (Epstein, 2006; Epstein et al., 2008, 2010). There are

only a few papers providing evolutionary justifications to risk aversion and Bayesian updat-

ing. Okasha (2012) shows that Bayesian updating is evolutionarily optimal when the agents

are “rational” in a philosophical sense - essentially having von Neumann-Morgenstern utility.

Levy (2010) shows that constant relative risk-averse (CRRA) utility function is evolutionarily

optimal if the agent’s objective is to have descendants forever.

The result that non-Bayesian updaters and believers dominate the competition sharply

contrasts with some rational expectations results in the financial market. In the financial

market, those investors who make inaccurate predictions about the market partly due to

imperfect Bayesian updating are driven out in the competitive equilibrium (Sandroni, 2000).

However, in the reproduction market, the ones who make reproductive decisions from per-
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fectly updated beliefs are the ones who are driven out and will be extinct in the long run.

Section 5.2 defines and characterizes the evolutionarily optimal posterior. Section 5.3

shows that belief is consistently higher than true population proportion of high abilities.

Section 5.4 concludes by pointing out limitations of the current model and possible future

directions.

5.2 Evolutionarily Optimal Posterior

Let us introduce the setup and demonstrate the key results in a simple model with the

imperfectly observable reproductive trait taking two possible values. In particular, we show

that the evolutionarily optimal posterior is always higher than the perfect Bayesian posterior,

for all signals.

An agent chooses a reproductive action based on her belief about her reproductive trait

to maximize her expected utility about the survival of the offspring. The agent’s action a

and trait x determine the survival rate or the number of her offspring, which we call the

reproduction function. The trait can be either high (H) or low (L) but the agent does not

directly observe it. Assume the reproduction function F (a, x) is continuously differentiable,

increasing, and concave in a, with the boundary condition F (0, x) = 0. Furthermore, assume

that F (a,H) > F (a, L), i.e., exerting the same effort, an agent with high ability produces

more than an agent with low ability. It is increasingly costly to exert effort in mating

activities, so the cost function c (·) is assumed to be increasing and weakly convex, c′ (a) > 0,

c′′ (a) ≥ 0. The agent derives utility u (·) from the net benefit F (a, x)− c (a) she gets, with

u′ (·) > 0.

Since the agent does not perfectly observe the trait x she has, she forms a posterior belief

µ from a signal s coupled with a prior µ0 inherited possibly from her parent. The signal can
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be H or L, and the signal generating process is publicly known,

Pr (s = H|x = H) = p1,

Pr (s = H|x = L) = p2.

In particular, the perfect Bayesian posterior µB can be expressed as

logit
(
µB
)
= logit (µ0) + 1s=HλH + 1s=LλL,

where µB, µ0 are shorthands for µB (H) , µ0 (H) as a slight abuse of notation, and logit (µ) =

log
(

µ
1−µ

)
. λs = log

(
Pr(s|x=H)
Pr(s|x=L)

)
represents the log-likelihood of being high type given signal

s. In particular, λH = log
(

p1
p2

)
and λL = log

(
1−p1
1−p2

)
.

Agent’s Problem

Given the posterior belief µ, she chooses the effort level a to maximize expected utility,

uA (a|µ) = µu (F (a,H)− c (a)) + (1− µ)u (F (a, L)− c (a))

So the FOC is

0 = µu′ (F (a,H)− c (a)) (Fa (a,H)− c′ (a)) + (1− µ)u′ (F (a, L)− c (a)) (Fa (a, L)− c′ (a))

Or rearrange, a is chosen so that the following equation is satisfied,

µ

1− µ
=

∣∣∣∣
Fa (a, L)− c′ (a)

Fa (a,H)− c′ (a)

∣∣∣∣ ·
u′ (F (a, L)− c (a))

u′ (F (a,H)− c (a))
(5.1)

Nature’s Problem

Consider the agent’s problem regarding a reproductive decision. Consider that x is an

imperfectly observable reproductive trait (IQ, EQ, psychological fitness, for example), and

a is the agent’s effort spent in searching and mating with the convex cost of the effort that
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represents a reduction in one’s own survival and fitness (frequenting dating sites such as bars

and websites takes nontrivial effort and opportunity cost), with F (a, x) guiding the number

(and quality) of offspring an agent produces. The objective of Nature, a perfect Bayesian

updater, is then to maximize the overall expected growth of the population,

uN (a) = µB (F (a,H)− c (a)) +
(
1− µB

)
(F (a, L)− c (a))

Its FOC is
µB

1− µB
=

∣∣∣∣
Fa (a∗, L)− c′ (a∗)

Fa (a∗, H)− c′ (a∗)

∣∣∣∣ (5.2)

where a∗ is the evolutionarily optimal action Nature wants the agent to take, given prior µ0

and signal s.

If Nature can manipulate the agent’s belief to induce her to choose the evolutionarily

optimal action, then (5.1) becomes

µ∗

1− µ∗ =

∣∣∣∣
Fa (a∗, L)− c′ (a∗)

Fa (a∗, H)− c′ (a∗)

∣∣∣∣ ·
u′ (F (a∗, L)− c (a∗))

u′ (F (a∗, H)− c (a∗))
.

Plugging in (5.2),

logit (µ∗) = logit
(
µB
)
+ log

[
u′ (F (a∗, L)− c (a∗))

u′ (F (a∗, H)− c (a∗))

]
. (5.3)

Because F (·, L) < F (·, H), when u (·) is concave, the second term on RHS of (5.3) is

positive, which we refer to as the risk-averse bias B (a∗). The evolutionarily optimal

posterior belief of a risk neutral agent is the perfect Bayesian posterior, there is no bias; so

it is a bias stemmed from risk aversion of the agent. When the utility function is CRRA or

CARA, the bias perfectly correlates with the risk aversion factor, since a∗ does not depend

on the risk aversion factor but only on Bayesian posterior.

Example 3. If the utility is CRRA, u (C) = C1−ρ/ (1− ρ), ρ ≥ 1, u′ (C) = C−ρ,

B (a∗) = ρ log

∣∣∣∣
F (a∗, H)− c (a∗)

F (a∗, L)− c (a∗)

∣∣∣∣ .
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Example 4. If the utility is CARA, u (C) = K − exp (−αC), α ≥ 0, u′ (C) = α exp (−αC),

B (a∗) = α [F (a∗, H)− F (a∗, L)] .

The bias is positive for any risk-averse agent and negative for any risk-loving agent.

Proposition 27. When the agent is risk-averse (risk-loving), the evolutionarily optimal

posterior is a non-Bayesian posterior, positively (negatively) biased towards the high type

compared to the perfect Bayesian posterior.

Proof of Proposition 27. Because F (·, L) < F (·, H) and u (·) is concave (convex),

u′ (F (a∗, L)− c (a∗)) > (<)u′ (F (a∗, H)− c (a∗)) .

By (5.3),

B (a∗) = log

[
u′ (F (a∗, L)− c (a∗))

u′ (F (a∗, H)− c (a∗))

]
> (<) log 1 = 0.

A few comments are in order. The evolutionarily optimal posterior is invariant to the

order of arrival of a stream of i.i.d. signals. The perfect Bayesian posterior is invariant to

the order of arrival of a stream of i.i.d. signals, given {st} and prior µ0, the posterior µB is

logit
(
µB
)
= logit (µ0) + # {t : st = H}λH +# {t : st = L}λL,

Since a∗ only depends on µB, it is invariant to the order of arrival, then by (5.3), µ∗ is invariant

to the order of arrival of {st}. Therefore, whether the agent makes the reproductive decision

after appearance of one or more signals does not affect the reproductive outcome or the

personal posterior belief.

As a result of the evolutionary correction, the long run survival of an agent does not

depend on her risk aversion factor but only on her true trait. A non-Bayesian belief corrects

the possible evolutionary sub-optimal reproductive decision a risk-averse agent can make,
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and the level of correction depends on the degree of risk aversion so that agents with the

same Bayesian posterior make the same reproductive decision. Without sexual production or

mutation, only the agents of high type will survive, and the evolutionarily optimal updating

makes an agent realize that she is of high type faster, and of low type slower.

5.3 Population Posterior

Investigation of the population evolutionarily optimal posterior belief shows that regardless

of the population composition, as long as they are risk-averse, more people believe that

they are of high type than there really are. Since we are survivors and winners of millions

of years of evolutionary struggles, this result possibly explains the aforementioned findings

that people are overconfident about their intrinsic skills.

The result can be directly understood from the asymmetric belief. Every agent believes

she is more likely to be a high type than a perfect Bayesian would believe. Regardless of the

evidence (stream of signals) a person receives, her belief about herself being a high type is

always higher than the Bayesian posterior belief.

Suppose the population is composed of proportion q realized high type and proportion

1 − q realized low type agents after the previous action. Suppose that after each time an

agent takes an action, she observes the outcome of her action and infers her true type (since

F (a, x) is bijective, knowing what effort a she exerted and observing F is enough to uncover

her true trait x). After each action, there is a probability ϵ that she mutates: her true type

switches from one to another. Therefore, an agent’s prior µ0 after an action is 1− ϵ if she is

high or ϵ if low.

We construct a population posterior and use it as a criterion to evaluate the percentage of

people believing they are of high type. For any posterior µ = {µA}A, the expected population
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posterior is defined as the total population belief that they are a high type.

q (µ) =

ˆ
A

µAdA

If every agent is a perfect Bayesian, given the signal generating process, their population

posterior should be the same as the population prior, which is the same as the population

composition, q, qB ≡ q
(
µB
)
= q. On the other hand, any agent risk-averse A has µ∗

A > µB
A,

so in population, q (µ∗) > q
(
µB
)
, a relatively small portion of risk-seeking agents will not

alter the population belief.

Proposition 28. If most agents are risk-averse in the population, the evolutionarily optimal

population posterior belief about high type is strictly greater than the population composition

of high type.

Even though every agent knows that in the population, there is only a proportion q of high

type agents, the aggregate of individual beliefs is higher than it. This finding explains the

perverse scenario mentioned in Introduction that objective aggregates of desirable personal

characteristics are always lower than their subjective individual reports. The key to the

result is the imperfect observability of personal characteristics and possibility of mutation.

5.4 Conclusion

The paper shows that in order to maximize the expected number of offspring, an agent

with nonlinear preference has a belief different from the belief obtained by perfect Bayesian

updating. In particular, for any risk-averse agent, she thinks more highly of herself than she

does if she is a perfect Bayesian. Therefore, the results suggest that evolution and survival

play a role in the widespread existence of non-Bayesian belief, especially about a person’s

own trait that influences reproductive decisions.
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Although the paper provides a possible evolutionary channel to persistent overconfidence

across the population, it fails to characterize the exact way how this optimal overconfidence

is sustained. In terms of terminology of the model, the paper is able to rationalize the

misalignment of the optimal posterior and the perfect Bayesian posterior, but it fails to

characterize the updating rule1 that can consistently achieve and sustain the optimal pos-

terior. The problem is especially conspicuous when the agent updates after each of many

sequentially observed noisy signals. Characterizing or approximating such evolutionarily

optimal updating rule would be interesting and useful.

It is also interesting to explore why and how risk aversion and non-Bayesian belief/updating

rule could be evolutionarily optimal at the same time. If we treat the objective of having

descendants forever to be the goal for each individual as in Levy (2010) and the objective

of maximizing expected population growth to be the goal for the entire group, an evolu-

tionarily optimal non-Bayesian updating is justified. While each individual agent needs to

be risk-averse to have descendants forever, the ones who dominate the population are those

following a non-Bayesian updating rule that, coupled with risk-averse utility, maximizes the

expected number of descendants in each generation.

Finally, a model with multiple signals and/or attributes may be more realistic and may

help generate more insights including but not limited to conservative updating.

1I thank a referee for emphasizing the difference between an updating rule and an updated posterior.
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