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arrive over time. For a wide range of auction costs, the profit-maximizing mechanism se- 

quence is to post prices first and then to run auctions. The optimality of the prices-then- 

auctions mechanism sequence provides a new justification for the hybrid sales mechanism 

of allowing the “Buy It Now” option before a standard auction on eBay. 
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1. Introduction 

In theory, an auction with a carefully chosen reserve price maximizes the expected revenue when buyers have indepen- 

dent private values ( Myerson, 1981 ). In practice, running an auction can be more costly than posting a price. 

For example, on eBay, auction-style listings cost more than price-style listings. Available pricing choices on eBay are 

auction, Buy It Now (posted price), and hybrid Buy It Now auction (a “Buy It Now” price option before the auction starts).

Additional costs associated with an auction include reserve price fee, listing upgrade fees , and duplicate listing fee . 2 The reserve

price fee is applied if a positive reserve price is set. This fee is the higher of $5 and 7.5% of the reserve price, capped at

$250; the minimum, percentage, and maximum have increased over time. The listing upgrade fees include (i) $1 to have 

the auction last one or three days—rather than the default seven days—a preferred auction length because buyers more 

frequently search auctions that are closer to the deadline, and (ii) $0.70 ($0.35 for a more expensive listing) to list in the

Collectibles, Art, Pottery & Glass, and Antiques categories—some of the most popular categories for auctions. 3 The duplicate 
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at Stony Brook Game Theory Festival, Midwest Theory Conference, Econometric Society World Congress, and University of Chicago seminars. The financial 
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of Microsoft Research New England are gratefully acknowledged. I thank Jacob Schmitter for excellent research assistance. 
2 Appendix A shows the screenshots of options when listing an auction, a posted price, and a hybrid Buy It Now auction on eBay, respectively. 
3 For additional details, see selling fees on eBay, https://www.ebay.com/help/selling/fees- credits- invoices/selling- fees . Other fees that auctions and “Good 

Till Canceled” price listings both face—but fixed-length price listings do not face—include (i) $2–$6 to bold the title, (ii) $1.5–$6 to add a subtitle, (iii) 

$0.1-$0.6 to list designer, (iv) $0.1-$0.5 for international site visibility, and (v) fees to list in two categories. 
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Fig. 1. The declining role of auctions on eBay from 2003 to 2015; reproduced from Einav et al. (2018) . The figure shows each month’s average daily share 

of active eBay listings and revenues from January 2003 to December 2015, comparing pure auctions listings to all pure auction and posted prices listings; 

hybrid Buy It Now auctions are excluded. During that time period, the auction share of active listings has decreased from 96% to 7.2%, and the auction 

share of revenues has decreased from 90.2% to 25.0%. After posted prices were allowed to be permanent—i.e., “Good Till Canceled” listings—in September 

2008, the listing and revenue shares of auctions drastically declined (from 65.4% in August to 33.4% in December and from 62.4% to 49.3%, respectively). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

listing fee associated with listing duplicate identical auction-style listings varies by the item but is used to allow the buyer

to have different buying options, whether it be different types of auctions or fixed price listings. Altogether, these fees 

accumulate to a considerably higher operational cost for auctions than for posted prices. 4 

Evidence suggests that these additional costs associated with auctions fundamentally change eBay sellers’ pricing choices. 

Fig. 1 illustrates the gradually declining role of auctions, relative to prices, on eBay from January 2003 to December 2015.

During that time span, the auction share of active listings decreased from 96% to 7.2%, and the auction share of revenue

decreased from 90.2% to 25.0%. When posted prices were allowed to be permanent—i.e., “Good Till Canceled” listings—in 

September 2008, the listing and revenue shares of auctions drastically declined (from 65.4% in August to 33.4% in December 

and from 62.4% to 49.3%, respectively). Einav et al. (2018) use granular data from 2003 to 2009 to show that the declined

role of auctions can be attributed to the change in sellers’ incentives rather than the change in seller composition. The key

trade-off, as they argue, is that “auctions enable price discovery and buyer competition, but are less convenient for buyers.”

This paper takes into account auction costs for a seller and investigates how she repeatedly chooses between prices and 

auctions to maximize her expected profit. Specifically, a seller sells one unit of an indivisible good within T periods, and

in each period, she either runs a reserve-price auction incurring a per-period auction cost or posts a price for free. The

deadline T can be finite, infinite, or stochastic. Buyers with independent private values enter the market each period and 

pay a cost to bid in an auction. Buyers can be short-lived or long-lived, myopic or forward-looking. 

Most interestingly, when the good has to be sold before a deadline and when the auction cost is within an intermediate

range of auction cost, the optimal mechanism sequence takes a neat form: prices then auctions. No other combination of 

prices and auctions, though feasible, is optimal; it is never optimal to run auctions then to post prices, or to alternate

between prices and auctions. The prices-then-auctions mechanism sequence resembles the hybrid Buy It Now auction: the 

seller posts a price at which any buyer can snatch the good before an auction starts. Empirically, such a selling format

accounted for a significant amount of listings on eBay: Of the 7382 baseball tickets listed for 2007 regular season Cincinnati

Reds home games, 38% (2794) were sold by the Buy It Now auctions while 50% (3698) were sold by auctions and 12% (890)

by prices ( Bauner, 2015 ). 

The main result, the optimality of the prices-then-auctions sequence, relies on the endogenously higher opportunity cost 

of an auction in the dynamic setting. In the static setting, the seller only faces the trade-off between (i) a higher revenue

for the optimal auction than for the optimal posted price and (ii) a higher cost for an auction than for a posted price. In

the dynamic setting, the seller faces an additional cost when she uses an auction. The good not sold today is worth the
4 Besides the monetary cost imposed by the platform, an auction is also more complex than a posted price ( Hart and Nisan, 2013 ). Despite its relevance, 

the intricacies of this complexity cost—an operational cost for sellers and a mental cost for buyers—are outside the scope of this paper. I focus on the 

consequences of additional monetary cost of the auction. In addition, another advantage of posted prices compared to auctions is their immediacy; this 

immediacy can be thought to be parsimoniously captured by the additional cost associated with auction ( Mathews, 2004 ). Posted prices are preferred to 

auctions for other reasons, too: Federal Reserve uses posted price (i.e., Discount Window) to lend to banks, and only uses an auction during a crisis ( Hu and 

Zhang, 2020 ). 
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expected revenue it generates in the next period. The probability of sale is higher using the optimal auction than using

the optimal posted price, because the optimal posted price is always higher than the optimal reserve price. 5 Consequently, 

using an auction in a dynamic setting incurs not only an operational cost but also a higher opportunity cost associated with

selling the good early. The operational cost stays constant but the opportunity cost decreases over time. Therefore, running 

an auction in a later period incurs a lower combined operational and opportunity cost than doing so in an earlier period. If

an auction is ever used, it is used in later periods. 

Having understood the auction’s endogenous declining opportunity cost, we can easily see that the optimal prices-then- 

auctions sequence persists in more general settings. The optimality of the prices-then-auctions sequence holds even when 

the sale deadline is stochastic, the seller becomes increasingly impatient, the seller faces declining auction costs, buyers ar- 

rive stochastically and have sequential outside options, the seller faces separate markets for prices and auctions, the mech- 

anism designer is procuring a contract rather than selling, and the seller sequentially sells multiple goods. 

Furthermore, the price-then-auction sequence is also shown to be optimal in two-period settings in which the buyers 

are long-lived and forward-looking. The key complication with long-lived buyers is that the seller’s dynamic problem does 

not seem to be able to be dissected into per-period problems because each period’s mechanism affects buyers’ strategies 

in current and subsequent periods. Using the results in Crémer et al. (2007) and Lee and Li (2020) , we can think of the

monopolist’s dynamic sales problem with short-lived buyers as an optimal search problem à la Weitzman (1979) , but this 

approach also seems to fall short of characterizing the problem with long-lived buyers. 

When the horizon is infinite so that there is no exogenous deadline to sell the good, the problem the seller faces in each

period is stationary, so the seller runs the same mechanism repeatedly in each period. A high-cost seller posts a constant

price and a low-cost seller runs auctions with a constant reserve price. An interesting comparative statics result is derived: 

More patient sellers are more likely to post prices. This comparative statics sheds light on the issue about the declining

use of auctions on eBay ( Bajari and Hortacsu, 2004; Einav et al., 2018 ). It shows that changes in market size and market

transaction alone, without changes in seller or buyer preferences, can shift the sellers’ choice of mechanisms. 

The setup intends to capture an individual seller’s problem in a large market such as eBay. For example, a person who

has bought a lyric opera ticket but could no longer attend the event scheduled in two weeks chooses between posting a

fixed price for the ticket and auctioning off the ticket before it loses its value. The item’s posting can last for a week (e.g., it

stays as a new item for a week on the front page of the website, the much more likely place for buyers to search). Potential

buyers browse the website and encounter the posting for the item on sale, and decide whether or not to buy the ticket

immediately. They have idiosyncratic values for the ticket. Although their individual values are unknown, their aggregate 

demand curve is known to the seller. Buyers are anonymous to the seller so the seller is restricted to use either prices or

auctions ( Zhang, Forthcoming ). 

The paper contributes to the theoretical literature that treats the participation cost as a sunk cost borne by the seller.

The literature formulates the mechanism design problem as an optimal search problem given asymmetric information, with 

the seller’s cost playing the role of the search cost: McAfee and McMillan (1988) , Burguet (1996) , Crémer et al. (2007) ,

Crémer et al. (2009) and Lee and Li (2020) . This paper departs from the literature by assuming that auctions are costly to

the seller while posted prices are not; compared to Crémer et al. (2007) that treats all mechanisms to be costless, this paper

considers the setting in which only posted prices are costless. Most importantly, most of the literature—with the exception 

of Lee and Li (2020) —consider only long-lived buyers, while the main model in this paper considers short-lived buyers. 

The optimal price-then-auction mechanism sequence resembles the Buy It Now auction, and provides a justification for 

its use. The declining opportunity cost that generates such a sequence has not been suggested as an explanation for the use

of Buy It Now auction. Previous explanations for the use of Buy It Now auction include reasons for both sellers and buyers.

Reasons for sellers include increased revenue due to risk aversive buyers ( Budish and Takeyama, 2001 ), their impatience

and risk aversion ( Hammond, 2013 ), increased competition forcing prices down using the Buy It Now feature ( Anwar and

Zheng, 2015 ). Reasons for buyers include impatience in waiting for an auction to end ( Mathews, 2004 ), experienced buyers’

ability to recognize Buy It Now prices below market price ( Standifird et al., 2005 ), risk aversion of the buyer ( Reynolds and

Wooders, 2009 ), and heterogeneous preferences in listing styles ( Bauner, 2015 ). 

The rest of the paper is organized as follows. Section 2 introduces the basic setup. Section 3 solves the seller’s static

problem. Section 4 demonstrates the key insight of the paper with a two-period example. Section 5 solves the seller’s

problem in the finite horizon when buyers are short-lived. Section 6 discusses the finite-horizon problem when buyers are 

long-lived. Section 7 concludes. Appendix A presents screenshots of options when an item is listed for sale using different

mechanisms on eBay. Appendix B demonstrates the robustness of the result when buyers are short-lived. Appendix C solves 

and discusses the seller’s problem without a deadline. Appendix D provides the proofs in the setting with long-lived buyers. 

2. Basic setup 

A (female) seller wants to sell one unit of an indivisible good for which she has zero consumption value. She must

sell the good within T periods, where T can be one, finite, stochastic, or infinite. She discounts each period by the same
5 The higher sale probability by auctions is in line with empirical findings. Of the baseball tickets investigated by Bauner (2015) , the sale probability is 

0.589 by auctions, 0.215 by posted prices, and 0.361 by Buy It Now auctions. 
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discount factor δ ∈ [0 , 1] . In each period t, n one-period-lived (male) buyers enter the market. Each buyer has a private

value v independently drawn from the identical value distribution F with positive density f on the entire support [ 0 , 1 ] . All

the agents are risk-neutral and have quasi-linear preferences in transfers. Everything is common knowledge except for the 

private value each buyer is born with. 

Throughout the paper we maintain the assumption that the virtual utility function is increasing. The sole purpose of the 

assumption is to guarantee that the optimal reserve price and the optimal posted price are uniquely determined so that we

do not have to deal with the complication that the optimal mechanism involves ironing. I will use auction’s virtual utility

( Myerson, 1981 ) and marginal revenue curve ( Bulow and Roberts, 1989 ) interchangeably to refer to α(v ) . 

Assumption 1. The virtual utility α(v ) ≡ v − (1 − F (v )) / f (v ) is increasing in v . 

At the beginning of each period t, the seller chooses a mechanism m t , either a posted price or any mechanism that

is not a posted price. It is free to post a price, and it costs c ≥ 0 to run any mechanism that is not a posted price. By

Myerson (1981) , when all mechanisms cost the same, it is optimal to run a standard (second-price) auction with a reserve

price. Hence, without the loss of generality, we can focus on the comparison between the posted price and auction. In a

posted price mechanism P p , the seller posts a fixed price p at the beginning of a period and the buyers with values higher

than p have equal chances of receiving the good. 

Let (m τ , · · · , m T ) denote the mechanism sequence of the seller who runs mechanism m t in period t if the good has not

been sold by the end of period t − 1 . The seller’s problem is to choose the optimal mechanism sequence m 

∗ ≡ ( m 1 , · · · , m T )
so that the expected profit from running (m τ , · · · , m T ) is maximized for any period τ . Since the buyer arrival process is

known and there is no learning by the seller, the seller essentially chooses a sequence of mechanisms at the beginning of

the first period, to be executed in each period if the good has not been sold. 

3. Static problem 

I solve the seller’s one-period problem as a building block for the subsequent multi-period problem. 

Myerson (1981) solved the optimal reserve price auction. I state the characterization of the optimal posted price in a 

parallel way. The introduction of posted price marginal revenue curve facilitates the exposition and the solution of the 

seller’s problem in the dynamic setting. 

The realized revenue of an auction A r is r if the second highest bid is lower than r, and is v if the second highest bid v
is greater than r. Therefore, the expected revenue of an auction is 

R (A r ) = rn [1 − F (r)] F n −1 (r) + 

∫ 1 

r 

v n (n − 1)[1 − F (v )] F n −2 (v ) f (v ) dv , 

which can be rearranged as 

R ( A r ) = 

∫ 1 

r 

α(v ) dF n ( v ) . 

The expected revenue maximizing mechanism among all direct revelation mechanisms is a reserve price auction with the 

optimal reserve price r ∗ uniquely determined by α(r ∗) = 0 . 6 

Posting price p results in revenue p if there is a buyer who values it more than p and 0 if no buyer values it more than

p. Its expected revenue can be written as R (P p ) = p[1 − F n (p)] . As Bulow and Roberts (1989) construct an auction marginal

revenue curve α(v ) , I construct here a posted price marginal revenue curve. In contrast to the auction marginal revenue

curve that is constructed for each buyer with value drawn from distribution F (v ) , the posted price marginal revenue curve

is constructed for the highest value buyer out of the n buyers. Note that the seller generates the same revenue from posting

a price to all buyers and from posting the same price to the highest value buyer. 7 The posted price marginal revenue curve

is the auction marginal revenue curve with respect to a buyer who draws his value from the first-order distribution F n , 

ρ(v ) = v − 1 − F n (v ) 
[ F n (v )] ′ . 

We can similarly write posted price P p ’s expected revenue as 

R (P p ) = 

∫ 1 

p 

ρ(v ) dF n (v ) . 
6 Since α(v ) is continuous, α(0) < 0 and α(1) = 1 , r ∗ exists. Since F satisfies the monotone hazard rate condition, α(v ) is strictly increasing, and r ∗ is 

uniquely determined. The probability the good is not sold is k (r ∗) = F n (r ∗) . 
7 At least one buyer is willing to pay price p if and only if the highest value buyer is willing to pay price p. The highest value is drawn from the first- 

order distribution F n (v ) . The highest value buyer’s inverse demand curve is v (q ) = (F n ) −1 (1 − q ) , and the marginal revenue is derived from d[ q · (F n ) −1 (1 −
q )] /dq . 

4 
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Fig. 2. The marginal revenues and expected revenues in the static problem. An auction marginal revenue curve is α(v ) = v − [1 − F (v )] / f (v ) and a posted 

price marginal revenue curve is ρ(v ) = v − [1 − F n (v )] / [ F n (v )] ′ . The optimal reserve price is r ∗ = α−1 (0) and the optimal posted price is p ∗ = ρ−1 (0) . The 

optimal auction’s expected revenue is R (A r ∗ ) = 

∫ 1 
r ∗ α(v ) dF n (v ) and the optimal posted price’s expected revenue is R (P p ∗ ) = 

∫ 1 
p ∗ ρ(v ) dF n (v ) . The difference 

between the optimal revenues can be written as R (A r ∗ ) − R (P p ∗ ) = 

∫ 1 
0 xd[ F n (α−1 (x )) − F n (ρ−1 (x ))] , and is depicted by the shaeded area in the figure (when 

the value distribution is uniform). 

 

 

 

 

 

 

 

 

 

 

 

The optimal posted price p ∗ is uniquely determined by ρ(p ∗) = 0 . 8 

Such a representation helps us see the similarities between the two classes of mechanisms. More importantly, the repre- 

sentation facilitates the exposition and eases our understanding of the optimal price determination in the dynamic setting. 

Fig. 2 provides an illustration of the two marginal revenue curves. The optimal reserve price and the optimal posted price

equate the marginal revenue to zero. The areas under the curves (weighted with respect to dF n (v ) ) depict the expected

revenues of the two mechanisms. 

Since 

ρ(v ) = v − F n −1 (v ) + · · · + 1 

nF n −1 (v ) 
· 1 − F (v ) 

f (v ) 
= α(v ) + 

[
1 − F n −1 (v ) + · · · + 1 

nF n −1 (v ) 

]
1 − F (v ) 

f (v ) 
, 

ρ(v ) is always smaller than α(v ) . Since α(r ∗) = ρ(p ∗) = 0 , the optimal posted price is always higher than the optimal

reserve price. Clearly from Fig. 2 , the optimal posted price’s expected revenue is smaller. Since α(r ∗) = ρ(p ∗) = 0 and α(1) =
ρ(1) = 1 , by change of variables, the optimal revenue difference can be expressed as 

R (A r ∗ ) − R (P p ∗ ) = 

∫ 1 

0 

xd 
[
F n (α−1 (x )) − F n (ρ−1 (x )) 

]
. (1) 

Although the optimal reserve price auction generates a higher revenue, the optimal posted price can generate a higher 

profit if there is a sufficiently high cost of running the auction. In general, running an auction is more appealing for the seller

if her cost is lower than a cutoff cost c ∗ and posting a price is more appealing if her cost is higher than the cutoff cost.

The cutoff cost equals the optimal revenue difference expressed in Eq. (1) . Proposition 1 characterizes the seller’s optimal 

mechanism in the static setting. 

Proposition 1. Suppose T = 1 . Let r ∗ and p ∗ be the unique solutions to α(r ∗) = ρ(p ∗) = 0 and c ∗ = R (A r ∗ ) − R (P p ∗ ) in Eq. (1) .

The seller’s optimal mechanism is A r ∗ if c < c ∗; is P p ∗ if c > c ∗; and is A r ∗ and P p ∗ if c = c ∗. 

4. Two-period problem with short-lived buyers 

For simplicity, suppose that the seller does not discount ( δ = 1 ). Her objective is to choose a selling mechanism m 1 in

the first period and a selling mechanism m 2 in the second period to maximize her expected profit π(m 1 , m 2 ) = π(m 1 ) +
k (m 1 ) π(m 2 ) , where k (m 1 ) is the probability that the good is kept to the second period (i.e., not sold after mechanism m 1 

in the first period). 

The seller’s profit-maximizing mechanism sequence (m 

∗
1 
, m 

∗
2 
) can be solved by backward induction. The seller’s problem 

in the last period is essentially a static problem, and the solution of the static problem, described in the previous section, is

found by determining the optimal price and the optimal reserve price, and comparing the revenue from the optimal price 

and the optimal auction when the continuation value is zero . In contrast, the seller’s problem in the first period is solving the
8 The optimal price p ∗ exists because ρ(v ) is continuous, ρ(0) < 0 , and ρ(1) = 1 . The optimal price p ∗ is unique because 

ρ(v ) = v − 1 − F n (v ) 
[ F n (v ) ] ′ 

= v − F n −1 (v ) + · · · + 1 

nF n −1 (v ) 
· 1 − F (v ) 

f (v ) 

is strictly increasing in v , as [ F n −1 (v ) + · · · + 1] / [ nF n −1 (v )] is strictly decreasing in v , and [1 − F (v )] / f (v ) is decreasing in v by Assumption 1 . The probability 

the good is not sold is k (p ∗) = F n (p ∗) . 
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Fig. 3. The marginal revenue curves and the expected revenues in the two-period setting. The revenue difference between the optimal auction and the 

optimal price is larger in the second period (the darkly sshsh shaded region I plus the lightly shaded region I I I ) than in the first period (the light red region 

I I I ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

optimal price and the optimal reserve price and comparing the optimal revenues when the continuation value is π ∗
2 
(c) , the

optimal revenue in the second period . As a result of different effective valuations for the good in the two periods, the seller

chooses a higher reserve price and posted price in the first period than in the second period. Consider Fig. 3 . The net gain

from holding the optimal auction rather than charging the optimal posted price (the dark red region I) is smaller than the

counterpart in the static problem (the dark red region I and light red region I I I ). 

Because of the declining retention value of the good over time, the revenue advantage of the optimal auction over the

optimal posted price increases. To see this, let c ∗t be the cutoff cost in period t such that the seller is indifferent between

the optimal auction and the optimal price, and let π ∗
2 

be the optimal profit in the second period. The cutoff cost c ∗
2 

=∫ 1 
0 (x − 0) d[ F n (α−1 (x )) − F n (ρ−1 (x ))] , on one hand, is simply the revenue difference between the optimal static auction and

the optimal static posted price. The cutoff cost c ∗1 = 

∫ 1 
π∗

2 
(x − π ∗

2 ) d[ F n (α−1 (x )) − F n (ρ−1 (x ))] , on the other hand, consists of

two terms. The first term, 
∫ 1 
π∗

2 
xd[ F n (α−1 (x )) − F n (ρ−1 (x ))] , is the difference in the first-period expected revenue between

the optimal first-period auction and the optimal first-period posted price. In Fig. 3 , the optimal first-period auction’s revenue

is areas I + II + I I I + I V, and the optimal first-period posted price’s revenue is areas I I + I V, so the revenue difference is areas

I + I I I . The second term, 
∫ 1 
π∗

2 
π ∗

2 
d[ F n 

(
α−1 (x ) 

)
− F n 

(
ρ−1 (x ) 

)
] , is the difference in the opportunity costs between the optimal

first-period auction and the optimal first-period posted price. The opportunity cost of an optimal auction is the probability of 

no sale in the first period times the expected profit from retaining the good for anther period, which generates the expected

profit of F n (r ∗
1 
) π ∗

2 
, areas I I I + I V . The opportunity cost of selling using optimal posted price is also the probability of no sale

times expected profit generated in the second period, so is F n (p ∗1 ) π
∗
2 , area IV . Together, the opportunity cost difference is

area IV . On net, the total expected revenue difference between the optimal first-period auction and the optimal first-period 

price is only area I, the darkly shaded region. 

The optimal prices adjust downward over time. Mathematically, we can easily see from the optimal price determination: 

the optimal reserve prices are determined by r ∗2 = α−1 (0) and r ∗1 = α−1 (π ∗
2 ) and the optimal posted prices are determined

by p ∗
2 

= ρ−1 (0) and p ∗
1 

= ρ−1 (π ∗
2 
) . Economically, the optimal prices equate the marginal revenue to the opportunity cost

of selling the good. Since the opportunity cost of selling the good decreases from π ∗
2 

in the first period to 0 in the second

period, the optimal reserve and posted prices also decrease accordingly. 

The rest of the paper is geared toward showing the robustness of the optimal mechanism sequence in more general

settings: for sufficiently low auction costs, a sequence of auctions with declining reserve prices is optimal; for sufficiently 

high auction costs, a sequence of declining prices is optimal; and for intermediate auction costs, a sequence of declining

prices followed by a sequence of auctions with declining reserve prices is optimal. Any mechanism sequence involving 

auctions followed by prices is never optimal. The optimal sequence of auctions for sufficiently low costs and the optimal 

sequence of prices for sufficiently high costs are not surprising as they arise almost trivially from the assumption that 

auction costs more. However, for intermediate auctioning costs, it is not straightforward to arrive at the conclusion that 

such a nice sequence of mechanisms is the only possible optimal sequence, as any combination of prices and auctions in

any order is feasible. 

4.1. A two-period example 

To illustrate, I present a two-buyer two-period example, which a reader can skip without loss. Suppose that there are two

buyers in each of the two periods. Their values are independently drawn from uniform [0,1] distribution, that is, F (v ) = v and

f (v ) = 1 . The optimal price to post in the second period is p ∗
2 

= 

√ 

3 / 3 ≈ 0 . 577 , determined by ρ(p ∗
2 
) = p ∗

2 
− 1 −(p ∗

2 
) 2 

2 p ∗
2 

= 0 , and

the optimal revenue is R (P √ 

3 / 3 
) = π(P √ 

3 / 3 
) = 2 

√ 

3 / 9 ≈ 0 . 385 . The optimal reserve price is r ∗
2 

= 1 / 2 , determined by α(r ∗
2 
) =

2 r ∗2 − 1 = 0 , and the optimal revenue is R (A r ∗
2 
) = 

∫ 1 
r ∗ (2 v − 1) dv 2 = 5 / 12 ≈ 0 . 417 . By Eq. (1) , the optimal revenue difference is

2 
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R (A r ∗
2 
) − R (P p ∗

2 
) , which is 

c ∗2 ≡
∫ 1 

0 

xd 

[ (
α−1 (x ) 

)2 −
(
ρ−1 (x ) 

)2 
] 

= 

5 

12 

− 2 

√ 

3 

9 

≈ 0 . 032 . (2) 

By Proposition 1 , the optimal mechanism is A r ∗
2 

= A 0 . 5 if c < c ∗
2 
, and is P p ∗ = P √ 

3 / 3 
if c > c ∗

2 
. 

Having solved the second period’s optimal mechanism, we can solve for the first period’s optimal mechanism. Let π ∗
2 

= 

π(m 

∗
2 
) > 0 denote the optimal second period profit. The total expected profit from posting price p 1 in the first period and

using m 

∗
2 in the second period is the expected profit posting price p 1 plus the expected profit using m 

∗
2 in case the good is

not sold. Since the probability that the good is not sold in the first period is p 2 
1 
, π(P p 1 , m 

∗
2 
) = R (P p 1 ) + p 2 

1 
π ∗

2 
. which can be

written as 

π(P p 1 , m 

∗
2 ) = 

∫ 1 

p 1 

ρ(v ) dv 2 + π ∗
2 −

∫ 1 

p 1 

π ∗
2 dv 2 = 

∫ 1 

p 1 

[ ρ(v ) − π ∗
2 ] dv 2 + π ∗

2 . 

The optimal price is thus determined by ρ(p ∗
1 
) = p ∗

1 
− [1 − (p ∗

1 
) 2 ] / 2 p ∗

1 
= π ∗

2 
; the optimal posted price is set so that the

posted price’s marginal revenue equates the opportunity cost of selling the good. Solving for the optimal posted price, we 

get p ∗
1 

= (π ∗
2 

+ 

√ 

(π ∗
2 
) 2 + 3 ) / 3 . The total expected profit from running an auction A r 1 in the first period is 

π(A r 1 , m 

∗
2 ) = R (A r 1 ) − c + r 2 1 π

∗
2 = 

∫ 1 

r 1 

[ α(v ) − π ∗
2 ] dv 2 + π ∗

2 − c. 

The optimal reserve price is determined by α(r ∗1 ) = r ∗1 − (1 − r ∗1 ) = π ∗
2 ; the optimal reserve price is set so that the auction’s

marginal revenue is equated to the opportunity cost of selling the good. Solving for the optimal reserve price, r ∗
1 

= (π ∗
2 

+
1) / 2 . Let c ∗

1 
satisfy π(P p ∗

1 
, m 

∗
2 
) = π(A r ∗

1 
, m 

∗
2 
) ; a cost c ∗

1 
seller is indifferent between P p ∗

1 
and A r ∗

1 
in the first period. 

c ∗1 = 

[∫ 1 

r 1 

[ α(v ) − π ∗
2 ] dv 2 + π ∗

2 

]
−

[∫ 1 

p 1 

[ ρ(v ) − π ∗
2 ] dv 2 + π ∗

2 

]

= 

∫ 1 

r ∗
1 

[ α(v ) − π ∗
2 ] dv 2 −

∫ 1 

p ∗
1 

[ ρ(v ) − π ∗
2 ] dv 2 . 

But remember that α(r ∗
1 
) = ρ(p ∗

1 
) = π ∗

2 
. With the same change of variable performed for Eq. (1) , 

c ∗1 = 

∫ 1 

π ∗
2 

xd 

[ (
α−1 (x ) 

)2 −
(
ρ−1 (x ) 

)2 
] 

−
∫ 1 

π ∗
2 

π ∗
2 d 

[ (
α−1 (x ) 

)2 −
(
ρ−1 (x ) 

)2 
] 
. (3) 

c ∗
1 

≈ 0 . 0075 . When c < c ∗
1 
, auction A r ∗

1 
is used, and when c ≥ c ∗

1 
, posted price P p ∗

1 
is used. 

Comparing Eqs. (2) and (3) , we can easily see that c ∗
1 

< c ∗
2 
. Therefore, the optimal mechanism sequence can be charac-

terized as follows. When c < c ∗
1 
, the optimal mechanism sequence is an auction in the first period followed by another in

the second period. If c ∗1 ≤ c < c ∗2 , the optimal mechanism sequence is a price in the first period followed by an auction in

the second period. If c ≥ c ∗
2 
, the optimal mechanism sequence is a price in the first period followed by a lower price in the

second period. The optimal mechanism’s optimal reserve price and optimal posted price are as illustrated in Fig. 4 . Although

auction-auction, auction-price, price-price, and price-auction sequences are all feasible, an auction-price sequence is never 

optimal. 

5. Finite-horizon problem with short-lived buyers 

In this section, we solve the seller’s profit maximization problem when T is finite and fixed. The seller’s discounted sum

of payoffs at period t < T is her expected profit in the current period plus her discounted payoff if the good is not sold in

the current period, 

π(m t , m t+1 , · · · , m T ) = π(m t ) + k (m t ) δπ(m t+1 , · · · , m T ) . 

Theorem 1. Suppose T is finite. The optimal mechanism sequence for a cost c seller is characterized by a sequence of strictly

increasing cutoff costs, c ∗
1 

< c ∗
2 

< · · · < c ∗
T 
, such that in period t an auction is optimal if c ≤ c ∗t and a posted price is optimal

if c ≥ c ∗t . Therefore, the optimal mechanism sequence is a sequence of auctions when the auction cost is smaller than c ∗1 , is a

sequence of prices then a sequence of auctions when the auction cost is between c ∗1 and c ∗T , and is a sequence of prices when the

auction cost is bigger than c ∗
T 

. 

By Principle of Optimality, we can solve the problem backwards. We have already solved period T ’s problem, as it has

the same solution as the one-period problem. We restate Proposition 1 in the T -period problem. 

Lemma 1. Suppose T is finite. Let r ∗
T 

= α−1 (0) , p ∗
T 

= ρ−1 (0) , and c ∗
T 

= R (A r ∗
T 
) − R (P p ∗

T 
) . The seller’s optimal mechanism in period

T is m 

∗
T 
(c) = A r ∗

T 
if c < c ∗

T 
, m 

∗
T 
(c) = P p ∗

T 
if c > c ∗

T 
, and m 

∗
T 
(c) = A r ∗

T 
= P p ∗

T 
if c = c ∗

T 
. 
7 
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Fig. 4. The optimal mechanism sequence’s revenue as the auction cost varies. When the auction cost is smaller than 0.0075, the optimal mechanism 

sequence is auction-auction. When the auction cost is between 0.0075 and 0.032, the optimal mechanism sequence is price-auction. When the auction cost 

is bigger than 0.032, the optimal mechanism sequence is price-price. 

Fig. 5. The optimal reserve price and posted price as the auction cost varies. When the auction cost is smaller than 0.0075, the optimal mechanism se- 

quence is auction with reserve price r ∗1 (c) and auction with reserve price 1 / 2 . When the auction cost is between 0.0075 and 0.032, the optimal mechanism 

sequence is price p ∗1 (c) and auction with reserve price 1 / 2 . When the auction cost is bigger than 0.032, the optimal mechanism sequence is price p ∗1 in 

the first period and price 
√ 

3 / 3 in the second period. 

Fig. 6. ( A r 1 , P p 2 , m ) when r 1 ≤ p 2 cannot simultaneously dominate (P p 2 , P p 2 , m ) and (A r 1 , A r 2 , m ) . 

8 
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Given the optimal solution in period T , we can solve for the seller’s problem in period T − 1 : 

max 
m T−1 

π(m T −1 ) + δk (m T −1 ) π
∗
T ( c ) , 

where the maximized expected profit is the larger of the expected profit of running the optimal auction and that of posting

the optimal price, 

π ∗
T ( c ) = max 

{
R (A r ∗

T 
) − c, R (P p ∗

T 
) 
}
. (4) 

If she chooses an auction A r in period T − 1 , then her expected profit is 

π(A r , m 

∗
T (c)) = δπ ∗

T (c) + 

∫ 1 

r 

[ α(v ) − δπ ∗
T (c)] dF n (v ) − c, 

where the first term is the net present value of the period T profit, and the second term is the revenue from holding the

auction in period T − 1 , and c is the auction cost. Similarly, if she chooses a posted price P p in period T − 1 , then her

expected profit is 

π(P p , m 

∗
T (c)) = δπ ∗

T (c) + 

∫ 1 

p 

[ ρ(v ) − δπ ∗
T (c)] dF n (v ) . 

Her optimal reserve price is r ∗
T −1 

(c) = α−1 (δπ ∗
T 
(c)) and her optimal posted price is p ∗

T −1 
(c) = ρ−1 (δπ ∗

T 
(c)) . The seller’s

optimal profit in period T − 1 is 

π ∗
T −1 (c) = δπ ∗

T (c) + max 

{∫ 1 

r ∗
T−1 

(c) 
[ α(v ) − δπ ∗

T (c)] dF n (v ) − c, 

∫ 1 

p ∗
T−1 

(c) 
[ ρ(v ) − δπ ∗

T (c)] dF n (v ) 
}

. 

There is a cutoff cost c ∗
T −1 

such that the seller runs A r ∗
T−1 

(c) if her cost is lower than it and runs P p ∗
T−1 

(c) otherwise, where 

c ∗T −1 = 

∫ 1 

δπ ∗
t (c ∗

T−1 
) 
[ x − δπ ∗

T (c ∗T −1 )] d 
[
F n (α−1 (x )) − F n (ρ−1 (x )) 

]
. 

The entire optimal mechanism sequence can be solved by iterating this procedure over all periods t ≤ T − 1 . The optimal

mechanism sequence is summarized in Lemma 2 . 

Lemma 2. Suppose T is finite. For any t ≤ T − 1 , let π ∗
t+1 (c) denote the optimal expected profit of a cost c seller in period t + 1 .

Let r ∗t (c) = α−1 (δπ ∗
t+1 (c)) and p ∗t (c) = ρ−1 (δπ ∗

t+1 (c)) , and let c ∗t be the unique solution to 

c ∗t = 

∫ 1 

δπ ∗
t+1 

(c ∗t ) 
[ x − δπ ∗

t+1 (c ∗t )] d 
[
F n (α−1 (x )) − F n (ρ−1 (x )) 

]
. (5) 

A cost c seller’s optimal mechanism m 

∗
t (c) in period t ≤ T − 1 is A r ∗t ( c ) if c < c ∗t (c) , is P p ∗t ( c ) if c > c ∗t (c) , and is A r ∗t (c) = P p ∗t (c) if

c = c ∗t (c) . 

Proof of Lemma 2.. We need to show that Eq. (5) rearranged as below has a unique solution c ∗t for each t, 

γ (c ∗t ) ≡ c ∗t −
∫ 1 

δπ ∗
t+1 

(c ∗t ) 
[ x − δπ ∗

t+1 (c ∗t )] d 
[
F n (α−1 (x )) − F n (ρ−1 (x )) 

]
= 0 . (6) 

It suffices to show that γ (c) is continuous and increasing in c, γ (0) < 0 , and γ (1) > 0 . Note that π ∗
t+1 

(c) is differentiable

except at a finite number of points, and at the non-differentiable points, the left derive and right derivative exist, and they

are monotonic. Hence, γ (c) is differentiable except at a finite number of points. At differentiable points c, 

γ ′ (c) = 1 + δπ ∗′ 
t+1 (c) 

∫ 1 

δπ ∗
t+1 

(c) 
d[ F n (α−1 (x )) − F n (ρ−1 (x ))] 

= 1 − δπ ∗′ 
t+1 (c)[ F n (α−1 (δπ ∗

t+1 (c))) − F n (ρ−1 (δπ ∗
t+1 (c)))] 

= 1 − δπ ∗′ 
t+1 (c)[ k (r ∗t ) − k (p ∗t )] . 

The maximal profit is 

π ∗
t+1 (c) = max { R (A r ∗

t+1 
) − c + δk (r ∗t+1 ) π

∗
t+2 (c) , R (P p ∗

t+1 
) + δk (p ∗t+1 ) π

∗
t+2 (c) } . 

Therefore, for any t, 

π ∗′ 
t+1 (c) ≥ −1 + δk (r ∗t+1 ) π

∗′ 
t+2 (c) , 

and 

π ∗′ 
t+2 (c) ≥ −1 + δk (r ∗t+2 ) π

∗′ 
t+3 (c) , 
9 
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and so on for π ∗′ 
τ (c) through T . Altogether, the inequalities, coupled with the inequalities that r ∗t > r ∗

t+1 
for all t, imply that 

π ∗′ 
t+1 (c) ≥ −[1 + δk (r ∗t+1 ) + δ2 k (r ∗t+1 ) k (r ∗t+2 ) + · · · ] 

≥ −[1 + δk (r ∗t+1 ) + δ2 k 2 (r ∗t+1 ) + · · · ] 

= − 1 

1 − δk (r ∗
t+1 

) 
≥ − 1 

1 − δk (r ∗t ) 
. 

Therefore, 

γ ′ (c) ≥ 1 − δk (p ∗t ) − δk (r ∗t ) 
1 − δk (r ∗t ) 

= 

1 − δk (p ∗t ) 
1 − δk (r ∗t ) 

> 0 . 

At the non-differentiable points, the steps above hold for left derivatives and right derivatives, respectively, so the proof 

shows that γ (c) is continuous and increasing everywhere. 

Finally, since 
∫ 1 
δπ∗

t+1 
(c) [ x − δπ ∗

t+1 
(c)] d 

[
F n (α−1 (x )) − F n (ρ−1 (x )) 

]
is the revenue difference between the optimal auction 

and the optimal price in a period, it is between 0 and 1 for any c, and γ (0) < 0 and γ (1) > 0 follow directly. �

The optimal profit in period T is determined by Eq. (4) , and the optimal profit in period t ≤ T − 1 is 

π ∗
t (c) = max 

{
R (A r ∗t (c) ) − c + k (r ∗t ( c ) ) δπ

∗
t+1 (c) , R (P p ∗t (c) ) + k (p ∗t (c)) δπ ∗

t+1 (c) 
}

(7) 

The optimal mechanism sequence is thus completely characterized by the two lemmas and each period’s optimal profit 

function. 

Lemma 3. Suppose T is finite. The optimal mechanism sequence (m 

∗
1 (c) , · · · , m 

∗
T (c)) is characterized by Lemmas 1 and 2 , with

π ∗
t (c) defined by Eqs. (4) and (7) , and c ∗t determined by Eq. (5) . 

Lemma 3 completely characterizes the seller’s problem for any cost c seller, but the solution is not very informative. We 

only know that there is a cutoff cost c ∗t in each period t such that a seller chooses a reserve price auction if her cost is

smaller than c ∗t and posts a price if her cost is bigger than c ∗t . In other words, all we know so far is that in each period

if the auction cost is low, use an auction, and if the auction cost is high, post a price. A little bit more work gives us the

final neater result. We can show that the cutoff costs increase over the periods. In other words, it is more and more likely

a seller will run an auction in a later period. 

Proof of Theorem 1.. Eq. (5) determines the cutoff cost c ∗t in each period. In Eq. (5) , the cutoff cost c ∗t is decreasing in

δπ ∗
t+1 (c) . Since π ∗

t+1 ( c ) > π ∗
t ( c ) for any t, c ∗t < c ∗t+1 for any t . �

It is more profitable paying the auction cost later than earlier. In the earlier periods, there are still many more periods

left and many opportunities to sell the good, and it is not worth paying an auction cost, because the good has a retention

value. However, as time passes on and the sale opportunities diminish, the auction cost, though constant in absolute terms, 

is deemed more attractive relative to the risk of not selling the good. 

5.1. Sub-optimality of auctions-and-prices sequences 

As a corollary of Theorem 1 , it is impossible for any mechanism sequence that has an auction before a posted price to

be optimal. In other words, all mechanism sequences consisting of an auction and a posted price following it are always

dominated strictly by at least one alternative mechanism sequence–either dynamic pricing, sequential auctions, or posted 

prices followed by auctions. 

Corollary 1. Suppose T is finite. An auctions-then-prices sequence is never optimal when buyers are short-lived. Consequently, 

any mechanism sequence with an auctions-then-prices sequence is not optimal. 

Here I present a proof independent of the previous proofs. I directly construct the mechanisms that dominate the profit- 

maximizing auction-price sequence. 

An Alternative Proof of Corollary 1.. Because the mechanisms chosen before period t do not affect the optimal mechanism 

sequence after period t, without loss of generality, it suffices to show that the mechanism sequence of an auction in the

first period and then a posted price in the second period is never optimal. Suppose the seller runs the mechanism sequence

m in periods 3 through T and generates expected profit π( m ) . It suffices to show that the optimal sequence (A r 1 , P p 2 , m ) is

dominated by at least one other mechanism sequence not consisting of the auction-price sequence. 

Suppose that (A r 1 , P p 2 , m ) is optimal and r 1 > p 2 . The optimal r 1 and p 2 are determined respectively by ρ(p 2 ) =
δπ(m ) and α( r 1 ) = δπ(P p 2 , m ) = δR 

(
P p 2 

)
+ δ2 k ( p 2 ) π(m ) . (A r 1 , P p 2 , m ) dominates both (A r 1 , A p 2 , m ) and (P r 1 , P p 2 , m ) . That

is, π(A r 1 , P p 2 , m ) ≥ π(A r 1 , A p 2 , m ) and π(A r 1 , P p 2 , m ) ≥ π(P r 1 , P p 2 , m ) , where 

π(A r 1 , P p 2 , m ) = R (A r 1 ) − c + δk (r 1 ) R (P p 2 ) + δ2 k ( r 1 ) k ( p 2 ) π(m ) , 

π(A r 1 , A p 2 , m ) = R (A r 1 ) − c + δk (r 1 )[ R (A p 2 ) − c] + δ2 k ( r 1 ) k ( p 2 ) π(m ) , 
10 
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π(P r 1 , P p 2 , m ) = R (P r 1 ) + δk ( r 1 ) R (P p 2 ) + δ2 k ( r 1 ) k ( p 2 ) π(m ) . 

The two inequalities become 

R (P p 2 ) − [ R (A p 2 ) − c] ≥ 0 , 

[ R (A r 1 ) − c] − R (P r 1 ) ≥ 0 . 

Adding the two inequalities up, 

R (A r 1 ) − R (P r 1 ) ≥ c ≥ R (P p 2 ) − R (A p 2 ) . 

Since R ( A r ) − R ( P r ) = 

∫ 1 
r [ α( v ) − ρ( v ) ] dF n ( v ) is strictly decreasing in r, and since r 1 > p 2 , 

R ( A r 1 ) − R ( P r 1 ) < R ( P p 2 ) − R ( A p 2 ) , 

a contradiction with the inequality above and the premise that 
(
A r 1 , P p 2 , m 

)
is optimal. 

Suppose that 
(
A r 1 , P p 2 , m 

)
is optimal and r 1 ≤ p 2 . It should dominate all other alternative mechanism sequences, 

in particular both (P p 2 , P p 2 , m ) and (A r 1 , A r 2 , m ) where r 2 = α−1 (δπ(m )) . That is, π(A r 1 , P p 2 , m ) ≥ π(P p 2 , P p 2 , m ) and

π(A r 1 , P p 2 , m ) ≥ π(A r 1 , A r 2 , m ) , where 

π(A r 1 , P p 2 , m ) = R (A r 1 ) − c + δk (r 1 ) R (P p 2 ) + δ2 k ( r 1 ) k ( p 2 ) π(m ) , 

π(P p 2 , P p 2 , m ) = R (P p 2 ) + δk ( p 2 ) R (P p 2 ) + δ2 k ( p 2 ) k ( p 2 ) π(m ) , 

π(A r 1 , A r 2 , m ) = R (A r 1 ) − c + δk ( r 1 ) [ R (A r 2 ) − c] + δ2 k ( p 1 ) k ( r 2 ) π(m ) . 

We can plug in and rewrite the two inequalities as 

R (A r 1 ) − c − R (P p 2 ) − δ[ k (p 2 ) − k (r 1 ) ] π(R p 2 , m ) ≥ 0 , 

R (P p 2 ) − R (A r 2 ) + c − δ[ k (p 2 ) − k (r 2 ) ] π(m ) ≥ 0 . 

Summing the two inequalities, 

R (A r 1 ) − R (A r 2 ) − δ[ k (p 2 ) − k (r 1 ) ] π(R p 2 , m ) − δ[ k (p 2 ) − k (r 2 ) ] π(m ) ≥ 0 . (8) 

r 1 and r 2 satisfy α(r 1 ) = δπ(P p 2 , m ) and α(r 2 ) = δπ(m ) . By the optimality of (A r 1 , P p 2 , m ) , π(P p 2 , m ) > π(m ) . As illustrated

by Fig. 2 , r ∗T ≤ r 2 < r 1 , so R (A r 1 ) < R (A r 2 ) . Coupled with the inequality r 2 < r 1 ≤ p 2 , 

[ R (A r 1 ) − R (A r 2 )] − δ[ k (p 2 ) − k (r 1 ) ] π(R p 2 , m ) − δ[ k (p 2 ) − k (r 2 ) ] π(m ) < 0 , 

contradicting inequality (8) above. �

5.2. Extensions 

The main result holds when the deadline is stochastic, the seller is increasingly impatient, auction costs are decreasing, 

buyer arrival is stochastic, buyers have outside options, buyers pay bidding costs, there is a separate market for prices and

auctions, the seller is procuring contracts, and/or the seller is selling multiple goods sequentially. Appendix B presents the 

extensions that are straightforward. Here I include two extensions in which the continuation value is decreasing. 

5.2.1. Increasingly impatient seller 

Even when the seller survives the market less likely over time ( μt decreases) or becomes increasingly impatient ( δt 

decreases), the main results are unchanged. Because the assertion that discounted payoff in a period is still greater than 

that in a later period, μt δt π ∗
t (c) > μt+1 δt π ∗

t+1 (c) for any c, the result that the optimal cutoff c ∗t increases over time is

unaltered. 

5.2.2. Decreasing auction costs 

The result continues to hold even when the auction cost is not constant. Instead, it either declines over time, or declines

whenever the seller uses an auction an additional time. To understand the result, remember the key trade-off between an 

auction and a posted price. The revenue advantage of an auction over a posted price increases in later periods, and the

opportunity cost of selling a good by an auction over that by a posted price decreases in later periods. If the originally

constant auction cost becomes smaller in later periods, the result that an auction is more profitable to be used in a later

period than in an earlier period is reinforced. 

6. Long-lived buyers 

Thus far I have assumed that the buyers are short-lived. In this section, I consider the environment in which the buyers

are long-lived (and the rest of the setting stays the same). First, I consider a dynamic programming approach to solve the

general problem and state its limitations. Then I solve the two-period problem with long-lived buyers being either myopic 

or forward-looking. The main result remains: No auction-price sequence is optimal. 
11 
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6.1. A dynamic programming approach 

6.1.1. Short-lived buyers 

Thanks to the results in Crémer et al. (2007) and Lee and Li (2020) , we can think of the monopolist’s dynamic sales

problem with short-lived buyers as an optimal search problem à la Weitzman (1979) . Weitzman (1979) considers a problem 

in which Pandora incurs search costs to sequentially open boxes with uncertain returns to maximize her expected payoff

from choosing the box with the highest realized return. He shows that each box can be assigned a worth that only depends

on the box’s own characteristics (namely, the distribution of return of the box), and the optimal search procedure is to start

searching from the box of the highest worth and stop whenever the realized return exceeds the highest worth of the boxes

not yet opened. Crémer et al. (2007) show that any incentive feasible mechanism—a mechanism that has a perfect Bayesian

equilibrium in which every invited bidder participates and is truthful—can be cast as an optimal search mechanism that 

uses the symmetric-information optimal search procedure of Weitzman (1979) relative to virtual utility functions (instead of 

actual values in Weitzman (1979) ). Specifically, in the current setting, costly running an auction in a period is like spending

a search cost c and opening a Pandora box containing n buyers with virtual utilitys α(v ) , so the worth of the box is the

highest virtual utility α
(
max i =1 , ··· ,n v i 

)
( Lee and Li, 2020 ). Costlessly posting a price is like spending no search cost and

opening a box containing one buyer with virtual utility ρ(v ) , because the transaction is complete if and only if the buyer

with the highest value is willing to buy. The problem can be formulated as the following dynamic programming problem. 9 

Let z denote the highest virtual value among the buyers at the end of a period. The seller can obtain the fallback revenue

from the buyer, or continue to search by using an auction or using a price, so the dynamic programming problem for t < T 

can be written as 

J t (z) = max { z, δ[ E x J t+1 (α(x )) − c ] , δE x J t+1 (ρ(x )) } , 
where x ∼ F n , and J T (z) = max { z, 0 } and J T +1 (z) = 0 . 

Hence, in every period, there is a threshold virtual vale z such that the seller is indifferent between obtaining the fallback

revenue z and continuing to search. the threshold in the last period is z T = 0 , and in every period t < T , the threshold is 

z t = δ max { E x J t+1 (α(x )) − c, E x J t+1 (ρ(x )) } . 
In every period t, the seller is choosing between the costly auction with reserve price α−1 (z t ) and the price ρ−1 (z t ) . Our

previous analysis shows that z t is decreasing over time, and furthermore, as z t decreases, the revenue difference between 

the costly auction and the price increases, so the costly auction is a more desirable choice. 

6.1.2. Long-lived buyers 

First, consider the dynamic programming approach. In every period t, the seller can choose to search n value v ∼ F 

buyers with a cost c, or one value v ∼ F n buyer with no cost. These buyers will stay in the game. The seller’s dynamic

programming problem in period t < T becomes 

J t (z) = max { z, δ[ E x J t+1 ( max { z, α(x ) } ) − c ] , δE x J t+1 ( max { z, ρ(x ) } ) } , 
and J T (z) = max { z, 0 } and J T +1 (z) = 0 . In every period t < T , the seller is indifferent between obtaining the fallback revenue

z A and choosing n buyers, where z A satisfies 

z A = δ

[∫ 1 

0 

max { z A , α(x ) } dF n (x ) − c 

]
, 

and analogously, the seller is indifferent between obtaining the fallback revenue z P and choosing n buyers, where z P satis- 

fies 

z P = δ

[∫ 1 

0 

max { z P , ρ(x ) } dF n (x ) 

]
. 

The values of the “boxes” are determined by z A and z P , respectively, so the seller will choose n buyers or the one buyer

accordingly, and since the choices are the same in different periods, the seller will choose the same “box” every period. 

Hence, the thresholds are z t = max { z A , z P } for t < T , and z T = 0 . 

However, to obtain the optimal profit, second-price auctions need to be run in every period (see Section 4 of Lee and

Li (2020) for details). Namely, if z A ≥ z P , the optimal sequence of mechanisms is second-price auctions that result in buyers

with values greater than α−1 (z t ) participating in the auction in every period, where the reserve prices are constant from

periods 1 to T − 1 , and drop to the Myerson reserve price α−1 (0) in period T . If z A < z P , one additional buyer is invited in

every period, and the optimal sequence of mechanisms is essentially a sequence of constant prices before period T , and a

(costless) fire sale auction in period T in which all buyers from previous periods can participate and may obtain the object

with positive probabilities, because ρ−1 (0) < ρ−1 (z P ) . 
9 I thank a referee for this great insight. 
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Fig. 7. The optimal profits of different mechanism sequences for different auction costs when buyers are long-lived and myopic. When the auction cost 

is smaller than 0.007, the optimal mechanism sequence is auction-auction. When the auction cost is between 0.007 and 0.08, the optimal mechanism 

sequence is price-auction. When the auction cost is bigger than 0.08, the optimal mechanism sequence is price-price. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore, the dynamic programming approach cannot be applied to solve for the finite-horizon problem with long-lived 

buyers in which the seller chooses between a costly auction and a costless price every period. There are three problems

associated with transforming the current problem with long-lived buyers to a costly search problem. First, the cost on the 

mechanism cannot be directly translated to be a cost on searching for buyers in the setting with long-lived buyers. This is

not a problem in the setting with short-lived buyers, because the cost on the static mechanism and the buyers participating

in that mechanism are relevant for one period only, but the long-lived buyers who participate in a mechanism will continue

to participate in all subsequent mechanisms. The cost of the mechanism in a period can be directly interpreted as the cost

of inviting the buyers in that period in the short-lived setting but not in the long-lived setting. Second, the fallback revenue

cannot be guaranteed in the long-lived setting when auctions and prices are chosen. The fallback revenue can be obtained 

when the seller uses a second-price auction, but in the current setting, when a price is used in a period, that fallback

revenue cannot be guaranteed. Third, the posted price’s marginal revenue function ρ is difficult to interpret. The revenue 

of a posted price mechanism with symmetric buyers can be succinctly represented with the help of ρ, but when there

are asymmetric buyers across periods participating in the mechanism in the same period, the function loses an economic 

interpretation and its usefulness. 

Nonetheless, this dynamic programming approach helps obtain some useful results. First, it can be deduced that when- 

ever z A ≥ z P , the optimal sequence of mechanisms is the sequence of costly auctions derived above, because even allowing

some costless auctions that generate higher optimal revenues than costless prices does not generate a higher revenue than 

the costly auctions specified. Second, when the problem takes an infinite horizon, this approach is valid, because the opti- 

mal sequence of mechanisms is either a sequence of constant prices or a sequence of auctions with constant reserve prices,

and the solution just obtained is the solution with long-lived buyers, and also coincides with the solution with short-lived 

buyers. Third, even in this relaxed setting, the optimal mechanism sequence only takes the form of auctions or prices then

auctions; no auctions-prices sequence is optimal. 

6.2. Two-period problems with long-lived buyers 

6.2.1. Long-lived myopic buyers 

Now we consider long-lived buyers who are myopic. They buy as if they only live for one period. The proposition below

shows the general result when there are two periods and an arbitrary number of buyers. The proofs leverage the alternative

proof of Corollary 1 . 

Proposition 2. Suppose there are two periods and buyers are long-lived and myopic. An auction-price sequence is never optimal. 

The optimal sequence is an auction-auction sequence when the auction cost is sufficiently small, is a price-price sequence when 

the auction cost is sufficiently large; and is a price-auction sequence otherwise. 

Fig. 7 shows that the optimal revenues of different mechanism sequences when there are two long-lived myopic buyers 

with uniform [0,1] distributions in each period and δ = 0 . 8 . 

6.2.2. Long-lived forward-looking buyers 

Now we consider the case with forward-looking buyers. Assume that the buyers born in the first period continue to be

around in the second period and have a chance to buy the good in the second period if the good has not been sold. Fur-
13 
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Fig. 8. The optimal profits of different mechanism sequences for different auction costs when buyers are long-lived and forward-looking. When the auction 

cost is smaller than 0.007, the optimal mechanism sequence is auction-auction. When the auction cost is between 0.007 and 0.15, the optimal mechanism 

sequence is price-auction. When the auction cost is bigger than 0.15, the optimal mechanism sequence is price-price. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

thermore, the seller and the buyers discount by δ < 1 (if the seller does not discount, the optimal mechanism is trivial: wait

until the last period to run the static optimal auction or post the static optimal price). Because buyers are forward-looking,

we can no longer solve the seller’s problem backwards like we have done when buyers are short-lived. The mechanisms 

and prices chosen in the latter periods affect buyers’ behavior in earlier periods and in turn the seller’s profit in the earlier

periods. The optimal prices are characterized by a system of equations. In the appendix, we solve one by one the optimal

price-price, price-auction, auction-auction, and auction-price sequences when there are two buyers. 

Despite of more complication, the main result remains: the optimal mechanism sequence is auction-auction when the 

auction cost is sufficiently low, price-auction when the auction cost is intermediate, and price-price when the auction cost 

is sufficiently high, and an auction-price sequence is never optimal. 

Proposition 3. Suppose there are two periods and the buyers are long-lived and forward-looking. An auction-price sequence is 

never optimal. The optimal sequence is an auction-auction sequence when the auction cost is sufficiently small, is a price-price 

sequence when the auction cost is sufficiently large; and is a price-auction sequence otherwise. 

Fig. 8 shows the optimal revenues of different mechanism sequences when two long-lived, forward-looking buyers arrive 

in each of the two periods with values drawn from the uniform [0,1] distribution, and the common discount factor is δ = 0 . 8 .

Note that for only very small auction costs ( c < 0 . 007 ) the auction-auction sequence is optimal, and for only very large

auction cost ( c > 0 . 15 ) the price-price sequence is optimal. For the most economically relevant range, the price-auction

sequence is optimal. 

7. Conclusion 

This paper studies a monopolist’s expected profit maximizing sequence of costless posted prices and costly auctions 

when buyers arrive to the market over time. Most interestingly, we find that in a variety of settings, posting a price before

auctioning is optimal. An optimal auction has a higher sale probability than an optimal posted price, so the use of an auction

in an earlier period is associated with a higher probability of giving up the good. An auction incurs not only a constant fixed

operational cost, but also an endogenously higher opportunity cost associated with the retention value of the good. A prices- 

then-auctions sequence is more desirable than an auctions-then-prices sequence because the endogenous opportunity cost 

of selling through an auction is decreasing over time. On eBay in particular, a Buy It Now option that allows a buyer to

snatch a good for a fixed price before the seller starts an auction resembles the optimal prices-then-auctions mechanism 

sequence presented in this paper. Finally, a constant price can be optimal when the seller does not have a deadline to sell

the good. When the market transaction speeds up, it is more likely to use posted prices, as we have observed on eBay. 

The following extensions are interesting and worthwhile to be explored. First, the seller may have multiple copies of the 

identical goods. We have explored the possibility that the seller sells the good sequentially, but it is worthwhile to consider

other forms of auctions in which the seller can sell more than one good at a time. The dynamic programming problem

carries one more state variable besides the seller’s age: the number of remaining objects she has. Given the complexity of

the problem with even one good, the multiple-goods extension should be treated as a separate pursuit complementary to 

the current one. 

Second, the seller has been assumed to commit to a particular sequence of mechanisms and the commitment as well 

as the mechanism are public knowledge. This assumption can be relaxed. Skreta (2006) shows that simple prices can be
14 
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Fig. A1. A screenshot of options when listing an auction on eBay. Figs. A.2 and A.3 in the appendix show screenshots of options when listing a Buy It Now 

price and a Buy It Now auction, respectively. A seller is allowed to automatically lower bids, allow offers below starting bids, schedule a listing start time, 

and set a reserve price with a considerable fee. 

 

optimal when the seller does not have commitment power. Dilmé and Li (2019) consider the equilibrium price paths of a 

non-committal monopolist in a revenue management setting. 

Appendix A. Screenshots of options when listing on eBay 

Fig. A.1 shows a screenshot of options when listing an auction on eBay. Fig. A.2 shows a screenshot of options when

listing a Buy It Now. Fig. A.3 shows a screenshot of options when listing a hybrid auction (auction and Buy It Now). 
15 
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Fig. A2. A screenshot of options when listing a Buy It Now on eBay. 

 

 

 

 

 

 

Appendix B. Finite-horizon extensions with short-lived buyers 

The previous section shows two main results: the optimality of the prices-then-auctions sequence in Theorem 1 and 

the sub-optimality of the auctions-then-prices sequence in Corollary 1 . This section extends the benchmark setting and 

shows that both results continue to hold. We show the robustness of the result when the seller has stochastic sale deadline,

increasing impatience, or declining auction cost, when the buyers arrive stochastically, have outside options, incur a bidding 

cost, when markets are separate for auctions and posted prices, when the mechanism designer is procuring a contract from 

potential contractors rather than selling a good to buyers, and when multiple goods are sold sequentially. 

B1. Stochastic sale deadline 

Suppose the seller survives the market with probability μ < 1 to the next period. The stochastic deadline may result from

the seller’s uncertainty about when or whether her good will be out of favor, or when it may be perished or banned to be

sold. It has a similar effect as time discounting. The expected payoff of the future periods becomes μδπT +1 ; by redefining

δ′ = μδ, the problem is the same as before. 

B2. Stochastic buyer arrival 

If in each period, the buyer arrival process is stochastic instead of deterministic, the results do not change. Suppose that

the probability that the number of buyers is n is q ( n ) , then the probability of selling is s (p) = 1 − ∑ 

q ( n ) F n (p) . The optimal
16 
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Fig. A3. A screenshot of options when listing a hybrid auction on eBay. 

 

posted price is then determined by 

ρ(p ∗t ) = p ∗t −
1 − F n (v ) 
[ F n (v )] ′ = p ∗t + 

s (p ∗t ) 
s ′ (p ∗t ) 

= δπ ∗
t+1 (c) . 

A posted price’s expected revenue is R 
(
P p 

)
= ps ( p ) and an auction’s expected revenue is 

R ( A r ) = 

∫ 1 

r 

α( v ) d 
[∑ 

n 

q ( n ) F n ( v ) 
]
. 

Since the determination of c ∗t is not changed from Eq. (5) , the results from the previous section on the form of mechanism

sequence carry over. 
17 
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Fig. A4. The effective marginal revenue curve when buyers pay a bidding cost c b . The auction’s marginal revenue curve shifts down to ̃  α(v ) . 
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B3. Buyers with outside options 

Suppose that buyers have other options to buy the good after the current period (e.g. Satterthwaite and Shneyerov, 2007;

Satterthwaite and Shneyerov, 2008 ). The buyers’ willingnesses-to-pay in the current period that determine their bids in the 

auction and their purchasing decision in the posted price are depressed. The seller solves the problem with respect to the

buyers’ willingness-to-pay instead of their values. As long as the willingness-to-pay w (v ) is a concave transformation of the

value v , the new marginal revenue curves become ˜ α(v ) = v − 1 −F (v ) 
f (v ) w 

′ (v ) and 

˜ ρ(v ) = v − 1 −F n (v ) 
F n (v ) w 

′ (v ) . ˜ α(v ) and 

˜ ρ(v ) are

still increasing and the main results continue to hold. 

B4. Buyers with bidding costs 

Suppose that in addition to the seller who incurs the auction cost c, each buyer also incurs a bidding cost c b ≥ 0 when

bidding. (Similar to the seller’s auction cost, the buyer’s cost is not necessarily an actual physical cost he pays, but could

also be a mental cost or an opportunity cost of participating in the current auction.) The seller who runs an auction A r is

effectively setting a higher reserve price than the actual reserve price r because only the buyers with values above some 
 r > r bid. ̃  r satisfies F n −1 ( ̃  r )( ̃  r − r) = c b . The expected profit of A r followed by a mechanism sequence which generates profit

π is ∫ 1 

˜ r 

[ 
α(v ) − c b 

F n −1 (v ) 
− δπ

] 
dF n (v ) + δπ. 

The bidding cost c b generates a new effective marginal revenue curve ̃  α(v ) = α(v ) − c b 
F n −1 (v ) , lower than the original marginal

revenue curve α(v ) . The bidding cost c b lowers the seller’s revenue by c b /F n −1 (v ) , even more than c b . The optimal effective

reserve price ˜ r is determined by ˜ α( ̃  r ) = δπ (the actual reserve price is r = ̃

 r − c b /F n −1 ( ̃  r ) ). Fig. A4 depicts the effective

marginal revenues and the optimal expected revenues. 

The reformulation of the problem with the effective marginal revenue curves easily shows that Theorem 1 continues to 

hold. 

B5. Separate markets for prices and auctions 

Suppose that the auction market and the posted price market are separate: n A buyers will show up for an auction and

n P buyers will show up for a posted price. The revenue difference between running an optimal auction and an optimal price

becomes 

R (A r ∗t , m ) − R (P p ∗t , m ) = 

∫ 1 

δπ(m ) 
[ x − δπ(m )] d 

[
F n A (α−1 (x )) − F n P (ρ−1 (x )) 

]
≡ �(δπ(m )) . 

�(0) > 0 and �(1) = 0 , and 

�′ (δπ(m )) = −δ

∫ 1 

π
d 
[
F n A (α−1 (x )) − F n P (ρ−1 (x )) 

]
= δ

[
F n A (α−1 (π )) − F n P (ρ−1 (π )) 

]
. 

The characterization of the optimal mechanism sequence remains. 

In general, if the buyers arrive stochastically, let q A (n ) denote the probability that n buyers arrive when an auction is

run, and q P (n ) the probability that n buyers arrive when a posted price is run. The difference between the optimal revenues

is then 

R (A r ∗t , m ) − R (P p ∗t , m ) = 

∫ 1 

δπ(m ) 
[ x − δπ(m )] d 

[ ∑ 

q A (n ) F n (α−1 (x )) −
∑ 

q P (n ) F n (ρ−1 (x )) 
] 
. 
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We say that an auction faces a higher demand than a posted price if 
∑ n 

i =1 q A (i ) ≤ ∑ n 
i =1 q P (i ) for all n . Theorem 1 continues

to hold. 

B6. Procurement contracts 

Throughout, we have considered the setting in which a monopolist is selling a good. We now turn our attention and

consider the problem of a procurement contract in which the monopolist is looking for contracts to complete a project with

the lowest cost. We show that the optimal mechanism sequence takes the same form. McAfee and McMillan (1988) consider

the procurement problem when the communication cost is high and similar to our argument, find that the principal may 

search sequentially for contractors if the communication is too costly. A principal who needs a cost of 1 to complete the task,

finds a contractor to finish a task for a minimum compensation. Suppose n contractors whose true costs c for the project

are independently and identically distributed according to G arrive each period; assume G has increasing hazard rate G/g. 

The principal’s choice is the same as the seller in the previous sections. Her auction’s expected profit with a requirement of

a maximum bid r is 

π(A r ) = 

∫ r 

0 

[
1 − c − G ( c ) 

g ( c ) 

]
dG 

n (c) − c. 

The sale probability becomes s (r) = G 

n (r) . Posted price P p yields expected revenue ( 1 − p ) G 

n (p) . The op timal r eserv e price

and the optimal posted price are determined by 

r ∗t + G (r ∗t ) /g(r ∗t ) = p ∗t + G 

n (p ∗t ) / (G 

n (p ∗t ) 
′ ) = δπ ∗

t+1 (c) . (9)

In the static setting, the optimal auction yields more expected revenue than the optimal posted price. In a finite horizon,

the counterpart of Eq. (5) is 

c ∗t = R (A r ∗t (c ∗t ) ) − R (P p ∗t (c ∗t ) ) − [ k (p ∗t (c t )) − k (r ∗t (c t )) ] δπ
∗
t+1 (c t ) . (10) 

Therefore, the optimal sequence of mechanisms in the procurement problem depends on the auction cost in the same way 

as the seller’s problem in the benchmark setting. 

B7. Multiple goods 

Suppose that a seller has multiple not necessarily identical goods (e.g. movie tickets of different seats) and must sell them

sequentially by a certain deadline. The revenue from selling these goods is the sum of the individual revenues. Therefore, 

each good is sold by the optimal sequence of mechanisms as characterized. The revenue from the remaining good enters 

as an additional continuation payoff in the seller’s sale decision. The existence of additional subsequently sold goods lowers 

the optimal reserve price or posted price of each good. 

Appendix C. Infinite-horizon problem 

Unlike goods with expirations such as airline tickets and hotel rooms or seasonal clothes that might fall out of favor in

three months, many goods such as cellphones, stamps and books do not lose value and do not have fixed deadlines to be

sold, but nonetheless, the seller has incentive to sell the good and realize the payment as soon as possible. In this section,

the optimal sequence of mechanisms in the infinite-horizon is characterized. The solution turns out to be relatively simple 

and straightforward: the optimal mechanism sequence is an infinite repetition of the same mechanism. 

Although it is an infinite-horizon problem, the seller faces the same problem in each period. Therefore, she only needs to

solve a static problem in a stationary setting, and her optimal mechanism sequence is either an infinitely repeated sequence 

of auctions or an infinitely repeated sequence of posted prices. 

Proposition 4. Suppose T = ∞ . Let p ∗∞ 

and πP ∞ 

be the unique solution to 

ρ(p ∗∞ 

) = δπ P 
∞ 

π P 
∞ 

= π(P p ∗∞ ) + δk ( p ∗∞ 

) π P 
∞ 

. 

Let c ∗∞ 

= R (A α−1 (δπP ∞ 

) ) −
[
1 − δk (α−1 (δπP ∞ 

)) 
]
πP ∞ 

. For any c ≤ R (A 0 ) , let r ∗∞ 

( c ) be the unique solution to 

1 − δ

1 − δk (r ∗∞ 

(c)) 
r ∗∞ 

(c) = 

1 − F (r ∗∞ 

(c)) 

f (r ∗∞ 

(c)) 
+ 

δ
[
R (A r ∗∞ (c) ) − R (P r ∗∞ (c) ) − c 

]
1 − δk (r ∗∞ 

(c)) 
. 

A cost c seller’s optimal mechanism sequence is an infinitely repeated sequence of P p ∗∞ 

if c > c ∗∞ 

, of A r ∗∞ 

( c ) if c < c ∗∞ 

, and of P p ∗∞ 

or A r ∗∞ 

(c ∗∞ 

) if c = c ∗∞ 

. 

Proof of Proposition 4.. We will first calculate respectively the optimal constant price and the optimal constant reserve 

price and then compare to see which infinite mechanism sequence generates more expected profit. First, we solve the 
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optimal posted price p ∗∞ 

. Let πP ∞ 

denote the expected profit of posting p ∗∞ 

in each period. Together, p ∗∞ 

and πP ∞ 

must

simultaneously satisfy the following equations, 

ρ(p ∗∞ 

) = δπ P 
∞ 

, (11) 

π P 
∞ 

= π(P p ∗∞ ) + δk ( p ∗∞ 

) π P 
∞ 

, (12) 

where Eq. (11) equates the posted price marginal revenue to the expected profit, and Eq. (12) equates the optimal expected

profit to the profit of using P p ∗∞ 

plus the expected profit if it is not sold. Rearranging Eq. (12) and plugging it into Eq. (11) ,

p ∗∞ 

is uniquely determined by 10 

1 − δ

1 − δ[1 − F n (p ∗∞ 

)] 
p ∗∞ 

− 1 − F n (p ∗∞ 

) 

[ F n (p ∗∞ 

)] ′ = 0 . (13) 

Similarly, we can calculate the optimal reserve price r ∗∞ 

(c) for a cost c seller. Let πA ∞ 

( c ) denote the continuation value of

running A r ∗∞ 

(c) each period. Together, r ∗∞ 

(c) and πA ∞ 

must simultaneously satisfy the following two equations, 

α(r ∗∞ 

(c)) = δπA 
∞ 

(c) , (14) 

πA 
∞ 

(c) = π(A r ∗∞ (c) ) + δk (r ∗∞ 

(c)) πA 
∞ 

(c) . (15) 

Substitute Eq. (15) into Eq. (14) and rearrange, 

1 − δ

1 − δk (r ∗∞ 

(c)) 
r ∗∞ 

(c) = 

1 − F (r ∗∞ 

(c)) 

f (r ∗∞ 

(c)) 
+ 

δ
[
R (A r ∗∞ (c) ) − R (P r ∗∞ (c) ) − c 

]
1 − δk (r ∗∞ 

(c)) 
. (16) 

The LHS is increasing and the RHS is decreasing in r ∗∞ 

( c ) ; the LHS is 0 and the RHS is 1 / f ( 0 ) + δ[ R (A 0 ) − c] / ( 1 − δ) when

r ∗∞ 

( c ) = 0 and the LHS is 1 and the RHS is −δc when r ∗∞ 

( c ) = 1 . Therefore, if c ≤ R (A 0 ) , r ∗∞ 

(c) is uniquely determined by

the system of equations. If c > R (A 0 ) , the seller chooses a posted price for sure, because for any r, A r generates strictly less

expected profit than P r , as 

π(A r ) − π(P r ) ≤ π(A 0 ) − π(P 0 ) = R (A r ) − c < 0 . 

Therefore, there is a cutoff cost c ∗∞ 

such that the seller runs A r ∗∞ 

( c ) if c > c ∗∞ 

, runs P p ∗∞ 

if c < c ∗∞ 

and is indifferent between

the two if c = c ∗∞ 

. c ∗∞ 

must satisfy πA ∞ 

(c ∗∞ 

) = πP ∞ 

. There is an easy way to calculate c ∗∞ 

than solving Eqs. (15) and (16) .

r ∗∞ 

(c ∗∞ 

) is determined by Eq. (15) , 

α(r ∗∞ 

(c ∗∞ 

)) = δπ P 
∞ 

, (17) 

but c ∗∞ 

must satisfy that in any period, the seller is indifferent between posting the optimal price and running the optimal

auction instead, so πP ∞ 

= R (A r ∗∞ 

(c ∗∞ 

) ) − c ∗∞ 

+ δk (r ∗∞ 

(c ∗∞ 

)) πP ∞ 

, or 

c ∗∞ 

= R (A α−1 (δπ P ∞ ) ) −
[
1 − δk (α−1 (δπ P 

∞ 

)) 
]
π P 

∞ 

. (18) 

�

We also have the following comparative statics result. 

Proposition 5. Suppose T = ∞ . When the seller is more patient, the cutoff cost c ∗∞ 

decreases. 

Proof of Proposition 5.. Let r ∗∞ 

≡ r ∗∞ 

( c ∗∞ 

) throughout the proof. Differentiate c ∗∞ 

with respect to δ in Eq. (18) , 

dc ∗∞ 

dδ
= −α(r ∗∞ 

) k ′ ( r ∗∞ 

) − [ 1 − δk (r ∗∞ 

) ] 
dπ P 

∞ 

dδ
−

[
−k ( r ∗∞ 

) − δk ′ ( r ∗∞ 

) 
]
π P 

∞ 

= k ( r ∗∞ 

) 
[
−α( r ∗∞ 

) + δπ P 
∞ 

]
+ k ( r ∗∞ 

) π P 
∞ 

− [ 1 − δk ( r ∗∞ 

) ] 
dπ P 

∞ 

dδ
. 

The first term k ( r ∗∞ 

) 
[
−α( r ∗∞ 

) + δπP ∞ 

]
= 0 by Eq. (17) , so 

dc ∗∞ 

dδ
= k (r ∗∞ 

) 

[
π P 

∞ 

+ δ
dπ P 

∞ 

dδ

]
− dπ P 

∞ 

dδ
. (19) 

By Eqs. (11) and (17) , and the facts that α( ·) ≥ ρ( ·) , we have r ∗∞ 

≤ p ∗∞ 

and consequently k ( r ∗∞ 

) ≤ k ( p ∗∞ 

) . Therefore, 

dc ∗∞ 

dδ
≤ k (p ∗∞ 

) 

[
π P 

∞ 

+ δ
dπ P 

∞ 

dδ

]
− dπ P 

∞ 

dδ
. 
10 The first term of Eq. (13) is strictly increasing in and the second term is strictly decreasing in p ∗∞ , and when p ∗∞ = 0 , the LHS is negative but when 

p ∗∞ = 1 the LHS is positive. 
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It suffices to show that the RHS is negative. 

Rearrange Eq. (12) , 

[ 1 − δk (p ∗∞ 

) ] π P 
∞ 

= p ∗∞ 

[ 1 − k (p ∗∞ 

) ] , 

and differentiate it with respect to δ, 

dπ P 
∞ 

dδ
[ 1 − δk (p ∗∞ 

) ] − π P 
∞ 

[
k (p ∗∞ 

) + k ′ (p ∗∞ 

) 
]

= −p ∗∞ 

k ′ (p ∗∞ 

) + [ 1 − k (p ∗∞ 

) ] 
dp ∗∞ 

dδ
. 

Rearrange, we obtain 

k ( p ∗∞ 

) 

[
π P 

∞ 

+ δ
dπ P 

∞ 

dδ

]
− dπ P 

∞ 

dδ
= 

[
ρ( p ∗∞ 

) − π P 
∞ 

]
k ′ ( p ∗∞ 

) 
dp ∗∞ 

dδ
. 

The RHS by Eq. (11) equals ( δ − 1 ) πP ∞ 

k ′ ( p ∗∞ 

) 
dp ∗∞ 

dδ
. Differentiate Eq. (11) with respect to δ, 

π P 
∞ 

+ δ
dπ P 

∞ 

dδ
= 

∂ρ(p ∗∞ 

) 

∂ p ∗∞ 

dp ∗∞ 

dδ
> 0 . 

ρ′ > 0 implies d p ∗∞ 

/d δ > 0 , which implies ( δ − 1 ) πP ∞ 

k ′ ( p ∗∞ 

) 
dp ∗∞ 

dδ
< 0 as δ < 1 . �

The intuition of the result is as follows. Take the extreme case that the seller is infinitely patient ( δ = 1 ). As there is an

infinite number of periods, essentially there is an infinite stream of buyers. Then posting a price very close to 1 generates

as much revenue as running the optimal auction, which also gives an expected revenue close to 1. 

The result sheds light on the declining use of auctions on eBay. As eBay became a more popular platform, more and more

sellers switched to simple prices from auctions. In January 2002, more than 90% of the active listings on eBay were auctions,

but by late 2012, only 10% of the active listings were auctions, and the rest were simple posted prices and the hybrid Buy It

Now formats ( Einav et al., 2018 ). An increase in seller’s patience can be thought of as an increase in the transaction speed

or a reduction in the transaction period. The result implies that as the market becomes thicker, even without a change in

sellers’ cost composition, more sellers will choose to post prices. Simply an increase in the size of the market can alter the

seller’s choice of mechanism. 

Appendix D. Long-lived buyers 

D1. Long-lived myopic buyers 

Proof of Proposition 2. Suppose that (A r ∗
1 
, P p ∗

2 
) is optimal. 

If r ∗
1 

< p ∗
2 
, the first period buyers do not buy in the second period, so the mechanism sequence (A r ∗

1 
, P p ∗

2 
) generates the

same profit as in the setting where all the sellers are short-lived. As the proof of Corollary 1 has shown, (A r ∗
1 
, A p ∗

2 
) cannot

simultaneously dominate (A r ∗
1 
, A r ∗

2 
= α−1 (0) ) and (P p ∗

2 
, P p ∗

2 
) in short-lived buyers setting. (A r ∗

1 
, A r ∗

2 
) generates higher payoff in

the current long-lived myopic buyers setting than in the short-lived buyers setting since some buyers born in the first 

period buy in the second period. 

If r ∗
1 

≥ p ∗
2 
, then the following contradiction shows that (A r ∗

1 
, P p ∗

2 
) cannot be optimal. The optimal mechanism sequence

(A r ∗
1 
, P p ∗

2 
) must dominate (A r ∗

1 
, A p ∗

2 
) , 

π(A r ∗
1 
, P p ∗

2 
) − π(A r ∗

1 
, A p ∗

2 
) = −F n (r ∗1 )[ R 2 (P r ∗

1 
, A p ∗

2 
) − R 2 (A r ∗

1 
, P p ∗

2 
) − c] ≥ 0 

where R 2 (P r ∗
1 
, A p ∗

2 
) and R 2 (A r ∗

1 
, P p ∗

2 
) denote the second-period revenue with the mechanism sequence (P r ∗

1 
, A p ∗

2 
) and (A r ∗

1 
, P p ∗

2 
) .

(A r ∗
1 
, P p ∗

2 
) must also dominate (P r ∗

1 
, P p ∗

2 
) , 

π(A r ∗
1 
, P p ∗

2 
) − π(P r ∗

1 
, P p ∗

2 
) 

= [ R (A r ∗
1 
) − c + F n (r ∗1 ) R 2 (A r ∗

1 
, P p ∗

2 
)] − [ R (P r ∗

1 
) + F n (r ∗1 ) R 2 (P r ∗

1 
, P p ∗

2 
)] 

= R (A r ∗
1 
) − R (P r ∗

1 
) − c ≥ 0 

Therefore, we must have 

R (A r ∗
1 
) − R (P r ∗

1 
) ≥ c ≥ R 2 (P r ∗

1 
, A p ∗

2 
) − R 2 (P r ∗

1 
, P p ∗

2 
) . (20)

R (A r ∗
1 
) − R (P r ∗

1 
) ≤ R (A p ∗

2 
) − R (P p ∗

2 
) ≤ R 2 (P r ∗

1 
, A p ∗

2 
) − R 2 (P r ∗

1 
, P p ∗

2 
) , a contradiction. The second inequality holds because of the

extra buyers in the second period (for any x, the revenue difference between the reserve price x auction and the posted

price x increases in the number of buyers). 

In summary, the optimal auction-price sequence is shown to be dominated by at least one other mechanism. Therefore, 

such a sequence can never be optimal. 

Let R ∗
AA 

(c) denote the revenue of the optimal auction-auction sequence when the auction cost is c. Let R ∗
PA 

(c) and

R ∗PP (c) be similarly defined. We know that R ∗
AA 

(0) > R ∗
PA 

(0) > R ∗PP (0) . In addition, d R ∗
AA 

(c) /d c < −1 , −1 < d R ∗
PA 

(c) /d c < 0 , and

R ∗
PP 

(c) = 0 . The unambiguous ordering in the decreases in the slopes guarantees that there exist c ∗
1 

and c ∗
2 

such that for cost
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
c ≤ c 
1 
, R 

AA 
(c) ≥ R 

PA 
(c) , R 

PP 
(c) ; for cost c 

1 
< c ≤ c 

2 
, R 

PA 
(c) ≥ R 

AA 
(c) , R 

PP 
(c) ; and for c > c 

2 
, R 

PP 
(c) ≥ R 

AA 
(c) , R 

PA 
(c) . �
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D2. Long-lived forward-looking buyers 

Proof of Proposition 3.. Suppose that (A r ∗
1 
, P p ∗

2 
) is optimal. 

If r ∗
1 

≤ p ∗
2 
, the profit generated is the same as in the case when buyers are long-lived and myopic, and also the same as

in the case when buyers are short-lived. The proof that (A r ∗
1 
, P p ∗

2 
) cannot be optimal follows the proof of Proposition 2 . 

If r ∗1 > p ∗2 , let ̃  v ≥ r ∗1 denote the value of the buyer who is indifferent between buying and not buying in the first period

in the mechanism sequence (A r ∗
1 
, P p ∗

2 
) . Let (P p 1 , P p ∗2 

) be the price-price mechanism sequence where the buyer of value ̃  v is
indifferent between buying and not buying. The optimality of (A r ∗

1 
, P p ∗

2 
) implies that (A r ∗

1 
, P p ∗

2 
) dominates (P p 1 , P p ∗2 

) , i.e. 

π(A r ∗
1 
, P p ∗

2 
) − π(P p 1 , P p ∗2 ) = R (A ˜ v ) − R (P ˜ v ) − c > 0 . 

Let (A r ∗
1 
, A r 2 ) be the auction-auction mechanism sequence in which the buyer of value ̃  v is indifferent between buying and

not buying in the first period. 

π(A r ∗
1 
, P p ∗

2 
) − π(A r ∗

1 
, A r 2 ) = −F n ( ̃  v )[ R 2 (A r ∗

1 
, A r 2 ) − R 2 (A r ∗

1 
, P p ∗

2 
) − c] > 0 

where R 2 (A r ∗
1 
, A r 2 ) and R 2 (A r ∗

1 
, P p ∗

2 
) are the revenues. The two inequalities together imply 

R (A ˜ v ) − R (P ˜ v ) > c > R 2 (A r ∗
1 
, A r 2 ) − R 2 (A r ∗

1 
, P p ∗

2 
) > 0 . 

Since (A r ∗
1 
, P p ∗

2 
) is optimal, R 2 (A r ∗

1 
, P p ∗

2 
) is bigger than the revenue ˜ R generated by P r 2 when there are n buyers with values

smaller than 

˜ v and n new born buyers with values drawn from distribution F . R 2 (A r ∗
1 
, A r 2 ) − R 2 (A r ∗

1 
, P p ∗

2 
) > R 2 (A r ∗

1 
, A r 2 ) −˜ R . Since ˜ v > r 2 , R 2 (A r ∗

1 
, A r 2 ) − ˜ R > R (A ˜ v ) − R (P ˜ v ) , contradicting the inequality above. Therefore, an auction-price sequence

cannot be optimal. 

Let R ∗
AA 

(c) denote the revenue of the optimal auction-auction sequence when the auction cost is c. Let R ∗
PA 

(c) and

R ∗
PP 

(c) be similarly defined. We know that R ∗
AA 

(0) > R ∗
PA 

(0) > R ∗
PP 

(0) . In addition, d R ∗
AA 

(c) /d c < −1 , −1 < d R ∗
PA 

(c) /d c < 0 ,

and R ∗
PP 

(c) = 0 . The unambiguous ordering in the decreases in the slopes guarantees that there exist c ∗
1 

and c ∗
2 

such

that for cost c ≤ c ∗1 , R ∗
AA 

(c) ≥ max { R ∗
PA 

(c) , R ∗PP (c) } ; for cost c ∗1 < c ≤ c ∗2 , R ∗
PA 

(c) ≥ max { R ∗
AA 

(c) , R ∗PP (c) } ; and for cost c > c ∗2 ,
R ∗

PP 
(c) ≥ max { R ∗

AA 
(c) , R ∗

PA 
(c) } . �
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