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Abstract
This paper studies the use of posted prices and auctions in a large dynamic market
with many short-lived sellers and long-lived buyers. Although a reserve-price auc-
tion maximizes the expected revenue, the optimal revenue decreases when the market
becomes more buyer-friendly; namely, when buyers survive longer, face fewer com-
petitors, and become more patient. As the market becomes more buyer-friendly, the
revenue advantage of a reserve-price auction over posting a price also decreases, but
using posted prices would lead to sale and allocative inefficiencies.

Keywords Optimal mechanism · Reserve price · Auction · Posted price

JEL Classification D44 · C73 · C78

1 Introduction

In theory and practice, a standard auctionwith awell-chosen reserve price is a desirable
revenue-enhancing choice for unit-supply sellers who face buyers with independent
private valuations. This paper confirms the revenue optimality of the reserve-price auc-
tion in dynamic markets, but the optimal revenue decreases when the market becomes
more competitive for sellers.

I study the steady-state equilibrium of a dynamic market in which infinitely many
short-lived sellers and long-lived buyers who potentially have many chances to obtain
a good are matched randomly. When sellers have no fixed cost of running any mech-
anism, a reserve-price auction is expected-revenue maximizing. The reserve price is
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shown to indicate market competitiveness: The equilibrium reserve price and auction
revenue are lower in a more buyer-friendly market; a market is said to be more buyer-
friendly if buyers survive longer, face fewer competitors, and become more patient.
I generalize the monopolist’s problem of Myerson (1981) by introducing a market in
which buyers may have subsequent opportunities to buy a perfect substitute of the
good. Along the way, I generalize virtual utility (Myerson 1981), which is interpreted
as the auction marginal revenue curve (Bulow and Roberts 1989).

Although in theory an auction with an optimally chosen reserve price generates the
highest expected revenue, in practice there is increasing use of alternative mechanisms
in many markets of goods with close substitutes. This is because these alternative
mechanisms have other operational advantages while, at the same time, achieving
revenues close to optimal. For example, used car dealers use secret reserve-price
auctions followed by bargaining (Larsen 2020); central banks offer liquidity loans
via price menus and only use auctions during special times (Hu and Zhang 2020);
and bargaining is prevalent in housing and labor markets (Atakan and Ekmekci 2014;
Ekmekci and Zhang 2020; He et al. 2020). The effects of subsequent competition
offer a plausible explanation, which I will elaborate on, for the rise of alternative
mechanisms; in particular, posted price mechanisms, which rapidly took over eBay
after they were introduced in the 2000s (Reynolds and Wooders 2009; Einav et al.
2018; Backus et al. 2020). In addition, many desirable properties of dynamic and
double auctions have been suggested (Campbell and Levin 2006; Kagel et al. 2007;
Peters and Severinov 2008).

A posted pricemechanism has the desirable properties of immediacy and simplicity
comparedwith an auction,which involvesmore active organization by sellers andmore
active participation by buyers over a longer period of time. The gain in revenue from
an auction over a posted price is caused by buyer competition, but is reduced when
the market becomes more buyer-friendly. More precisely, the difference between the
expected revenue of the reserve-price auction and that of simply posting the reserve
price as the transaction price decreases when the distribution of buyers’ potential
price offers improves first-order stochastically in favor of buyers.1 When a buyer has
subsequent opportunities to purchase a good, herwillingness to pay each seller is driven
below her intrinsic value for the good. This, in turn, affects the expected revenues of
different sales mechanisms and possibly alters a seller’s profit-maximizing choice if
there is a higher fixed cost associated with running an auction.

When sellers have heterogeneous costs of running auctions, some of them may
switch to simpler mechanisms. For a sufficiently large cost of running an auction,
sellers who live for one period post prices.2 However, posted prices result in sale and
allocative inefficiencies: Compared with the optimal reserve-price auction, (i) a good
is less likely to be sold by the seller using the optimal price mechanism, and (ii) there

1 This result is related to the key insight of Wang (1993) that the choice between an auction and a posted
price depends on the steepness of the marginal revenue curve.
2 Sellers who can live longer may first try to auction repeatedly, sell the item at a fixed price before they
use an auction, or dynamically adjust prices. An auction followed by a posted price if it is not sold via
the auction is never profit-maximizing (Crémer et al. 2009; Zhang 2015a, b, 2020). When buyers incur
costs and/or buyers are risk-averse, alternative mechanisms also arise (Lee and Park 2016; Cao et al. 2018;
Delnoij and De Jaegher 2020).
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is no guarantee that the buyer with the highest value will receive the good. These
inefficiencies result in market-wide externalities for future sellers and buyers.

In summary, the paper makes three contributions. First, it characterizes the rev-
enue maximizing mechanism when buyers have subsequent purchasing opportunities.
Second, the equilibrium of the setting in which buyers have value-dependent outside
options is uniquely characterized, with definitive comparative statics results that offer
guidance for auction platform design. And third, it draws an analogue between auc-
tion and posted price marginal revenue curves, and investigates the welfare effects in
a dynamic setting when auctions and posted prices exist simultaneously.

The frictional matching process distinguishes the study from the directed search
literature that studies competing sellers who simultaneously announce mechanisms
to attract buyers who can choose which mechanism to participate in. In equilibrium,
with mild technical conditions, each seller runs an auction with a reserve price lower
than the Myerson (1981) reserve price (Burguet and Sákovics 1999; Pai 2010), and as
the number of sellers approaches infinity, the equilibrium mechanism is the efficient
auction (McAfee 1993; Peters and Severinov 1997). Although the literature yields
beautiful technical results, it is hardly applicable to the real world: Not all agents can
meet one another because of geographic or time constraints, and a lower reserve price
may be a result of buyers’ subsequent purchasing opportunities rather than a tool to
attract buyer participation.

Sale inefficiency—buyers who value the goods more than the sellers do not receive
the goods—is a result of the frictional matching process. Similar frictional matching
models explain natural unemployment (Diamond and Maskin 1979) as well as non-
trivial prices in bargaining (Rubinstein and Wolinsky 1985) and auctions (Wolinsky
1988).3

The idea that subsequent purchasing opportunities reduce buyers’ willingnesses to
pay is explored theoretically byWolinsky (1988), Kittsteiner et al. (2004), Zeithammer
(2006), and Said (2011). Said (2011) considers a dynamic market setting in which
bidders arrive randomly and incorporate beliefs about current and future dynamics
to shade their bids in efficient second-price auctions. He assumes that sellers are
restricted to running efficient auctions and buyers—receiving new value draws for
each imperfect substitute—have value-independent outside options. In comparison,
this paper studies a general equilibrium in which buyers have value-dependent outside
options, so that in equilibrium buyers with higher valuations have better opportunities
and exit the market faster.

More recently, markets with buyers with subsequent outside options are explored
empirically by Hendricks and Sorensen (2018), Backus and Lewis (2019), Coey et al.
(2019), and Bodoh-Creed et al. (2020). The general equilibrium approach renders the
problem technically more difficult, because equilibrium existence and uniqueness are
not easily guaranteed. For example, Hendricks and Sorensen (2018) resort to a partial
equilibrium. Coey et al. (2019) prove the existence of an equilibrium in a dynamic
model with endogenous entry and mechanism choices by sellers.

3 Relatedly, Satterthwaite and Shneyerov (2007, 2008) show that the transaction price converges to the
competitive Walrasian price as the length of trading period shortens to zero—in other words, as the search
frictions disappear.
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The rest of the paper is organized as follows. Section 2 introduces the basic dynamic
setup and defines the equilibrium. Section 3 solves a monopolist’s problem when buy-
ers have subsequent outside options, generalizing the symmetric independent private
values case of Myerson (1981), and examines the effects of changes in subsequent
outside options. Section 4 characterizes the unique equilibrium, and Sect. 5 presents
comparative statics results. Section 6 introduces the posted price and discusses the
welfare effects when auctions and posted prices coexist in the market. Section 7 con-
cludes, and the appendix collects omitted proofs and details.

2 Model

In this section, I describe the setup, comment on modeling choices, and define the
equilibrium.

2.1 Setup

There are countably infinite periods: t = 0, 1, . . . . At the beginning of each period,
there is a measure 1 of unit-supply (male) sellers and an integer measure n of unit-
demand (female) buyers in a homogeneous good market. I refer to n as the buyer–
seller ratio. All agents are risk-neutral, expected utility maximizers with quasilinear
preferences, and have a common discount factor δ for the next period. Each seller
lives for one period and has value zero for the good. Each buyer possibly lives forever
and has a persistent private value v, independently and identically drawn from value
distribution F with a positive density f on support [0, 1]. Let Ht denote period t’s
active buyer value distribution.Active buyers in each period consist of old and newborn
buyers, except in period 0, when all buyers are newborn (i.e., H0 = F).

The market proceeds as follows. At the beginning of each period t , buyers and
sellers are randomly matched. The number of buyers each seller is matched with is
deterministically n. Each seller chooses a sales mechanism.

Seller j chooses a direct anonymous mechanism (DAM) Mj,t in which buyers can-
not be distinguished by their ages or identities but only by reported values. It consists
of probability assignment and cost functions {Pi (·) ,Ci (·)}i , which, for any vector
of value reports z = (z1, . . . , zn), specifies each buyer’s probability of winning and
payment. Therefore, buyer i’s expected probability of winning and expected payment
by reporting zi are

Pi (zi ) =
∫
z−i

Pi (zi , z−i ) dH−i (z−i ) ,

and

Ci (zi ) =
∫
z−i

Ci (zi , z−i ) dH−i (z−i ) ,

respectively, where H−i (z−i ) =∏ j �=i H j
(
z j
)
.
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Buyer i of value v, after knowing what mechanism Mj,t she participates in, plays
a feasible strategy σi,t (v, Mj,t ) ∈ [0, 1]. If buyer i obtains the good from the seller
she is matched with, she is a winner (i ∈ Wt ) and exits the market; otherwise, she is a
loser (i ∈ Lt ) and survives with probability s to period t+1; I refer to s as the survival
rate. Newborn buyers enter the market at the beginning of period t + 1 to replace the
winners and exiting losers to keep a constant measure n of buyers.

Let li,t
(
v|σi,t

(
v, Mj,t

)
, σ−i,t

(·, Mj,t
)
, Mj,t

)
denote value v buyer i’s expected

probability of losingwhen sheplaysσi,t
(
v, Mj,t

)
andher opponents playσ−i,t

(·, Mj,t
)

in the mechanism Mj,t she participates in, and lt ({σi (·, ·)}i , {Mj,t } j ) denote the pro-
portion of losers in period t given the agents’ behaviors. For expositional convenience,
I subsequently denote them by li,t (v) and lt , but keep in mind that they depend on the
behaviors of all active agents. Period t + 1 active buyers are composed of newborn
buyers and surviving losers from period t , so the expected value distribution of active
buyers in period t + 1 is

E
[
Ht+1 (v) |Ht

] = (1 − s · lt ) · F (v) + s · Ht (v|Lt ) , (1)

where Ht (v|Lt ) is the value distribution of losing buyers.

2.2 Remarks

Before defining the equilibrium, I remark on the following modeling choices: (i)
frictional matching technology with a deterministic number of buyers per seller, (ii)
potentially multiple goods held by a seller, (iii) a continuum of anonymous agents,
(iv) the restriction to direct anonymous mechanisms, and (v) the constant size of the
market. A reader comfortable with these assumptions can skip the justifications in this
subsection without loss of understanding of the setup.
Remark (i). Wolinsky (1988) employs a similar frictional matching technology to
reflect information and search frictions. All buyers are randomly matched to sellers in
his model, so the number of competitors each buyer faces is stochastic. If the matching
process is stochastic, the number of buyers a seller is matched with follows a Poisson
distribution. That is, the probability that a seller is matched with k ∈ {0, 1, 2, . . .}
buyers is nk · e−n/k!. Adopting the stochastic matching technology would only add
computational and expositional complexities but no additional insight to the paper, so
I restrict my attention to uniform matching with a deterministic buyer–seller ratio.
Remark (ii). A seller can holdmultiple goods in the same period, and as long as he does
not own a positive measure of the goods in the market, he has no market power and
his actions cannot alter subsequent market compositions. Without loss of generality,
each good can be considered to be sold separately.
Remark (iii). Two channels of learning arise in finitemarkets but not in infinitemarkets.
In a market with a finite number of buyers, there is a significant probability that a
buyer’s opponents may become her opponents again in subsequent periods. Thus, a
bidder can infer from her bid information about the values of her opponents, regardless
of whether the transaction price is announced in an auction (Kittsteiner et al. 2004).
In a market with a finite number of sellers (hence, a finite number of items for sale), a
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buyer who knows whether the item from the mechanism she participated in has been
sold helps her to learn about a nontrivial portion of themarket. Information asymmetry
arises in sellers facing markets with asymmetric bidders who know different amounts
of information from the history of actions and outcomes despite symmetric newborn
distributions.MilgromandWeber (2000) study the settingwith n buyers and the setting
with one seller holding k ≤ n goods, and show that these learning effects make the
expected price path a martingale. Said (2012) shows that a simultaneous ascending
auction can alleviate these effects resulting from stochastic arrival of the agents.
Remark (iv). The assumption of a continuum of agents and restriction to the direct
anonymous mechanisms guarantee information symmetry among all participating
agents. Bodoh-Creed et al. (2020) show that the equilibrium in a model with a contin-
uum of agents is approximated by that in a model with a finite number of agents, as
the number of agents approaches infinity. In the current setting, the sellers have sym-
metric beliefs about buyers’ values. Anonymous mechanisms further restrict sellers
from discriminating by buyers’ ages, which potentially reveal buyers’ losing histories
and thus values.
Remark (v). The assumption that the masses of buyers and sellers remain constant is
without loss of generality. Suppose instead that the market size grows each period so
that themasses of buyers and sellers both increase by g > 0. This market growth effect
is actually equivalent to decreasing the buyer’s survival rate by 1/ (1 + g). Instead of
s ·lt , there is only s ·lt/ (1 + g) of surviving losers in period t+1. The value distribution
of active buyers is then

E
[
Ht+1 (v) |Ht

] =
(
1 − s

1 + g
· lt
)
F (v) + s

1 + g
Ht · (v|Lt ) . (2)

When s′ = s/ (1 + g), the buyer value evolution coincides with Eq. 1. Although each
buyer survives with probability s, the addition of a market growth rate of g > 0
essentially changes the survival rate to s′ = s/ (1 + g).

2.3 Equilibrium

For the remainder of the section, I define the solution concept I intend to solve, sta-
tionary symmetric sequential equilibrium (SSSE). In equilibrium, buyers and sellers
of the same value play the same payoff-maximizing strategies in each period when the
expected active buyer value distribution remains stationary, and buyers’ and sellers’
beliefs are updated according to equilibrium behavior.

Agents’ strategies and beliefs are defined as follows. Since all sellers are identi-
cal and all buyers are symmetric, I restrict my attention to symmetric behavior in
which every seller chooses the same mechanism Mt and every value v buyer behaves
according to the same strategy, σt (v, Mt ); that is, agents are only distinguished by
their types but not by indices. In period t , each agent has belief μt

({Ht ′ , Mt ′ , σt ′ }∞t ′=t

)
about the active buyer value distribution, the seller mechanism choice, as well as the
buyer strategies for the current period and for every subsequent period.
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Agents’ payoffs are specified as follows. Each seller gets expected revenue
r (Mt |μt ) by choosing mechanism Mt under belief μt . Each value v buyer receives
total discounted expected utility u

(
v, σt (v, Mt ) , σ−i,t (·, Mt ) |Mt , μt

)
when her

opponents play σ−i,t (·, Mt ).
Subsequent active buyer value distributions, E

[
Ht+1 (v) |Ht , Mt , σt

]
, can be

inferred from the buyers’ and sellers’ behaviors and prespecified market and matching
dynamics. If the active buyer value distribution is stationary, the buyer composition
will be expected to be the same across periods, so the stationary value distribution is
H∗ (v) ≡ E [Ht (v) |μ∗] = E

[
Ht+1 (v) |μ∗

]
.

In particular, given the equilibrium mechanism M∗ and strategy σ∗ (·, ·), the sta-
tionary value PDF is a weighted average of newborn PDF f and the previous period
PDF h∗ in stationary equilibrium. The stationary value PDF and CDF satisfy

h∗ (v) = (1 − s · l∗) · f (v) + s · l∗ (v) · h∗ (v) (3)

and

H∗ (v) = (1 − s · l∗) · F (v) + s ·
∫ v

0
l∗ (z) dH∗ (z) , (4)

respectively, where the losing probabilities l∗ (·) and l∗ depend on the equilibrium
seller and buyer behaviors and matching dynamics.

Now I can define the equilibrium in which (i) all agents play symmetric stationary
strategies, (ii) the value distribution of active buyers is stationary, (iii) agents’ beliefs
about the equilibrium behaviors of other agents and the value distribution of active
buyers are correctly updated, and (iv) every agent maximizes the expected payoff
given beliefs:

Definition 1 (M∗, σ∗, H∗, μ∗) constitutes a stationary symmetric sequential equilib-
rium (SSSE) if

1. (Symmetry) Every seller runs the same mechanism M∗ and every value v buyer
plays according to strategy σ∗ (v, M) in mechanism M ∈ M.

2. (Stationarity) Stationary value distribution is a martingale with respect to the equi-
libriummechanismM∗ and strategyσ∗:H∗ (v) = E

[
Ht+1 (v) |Ht = H∗, M∗, σ∗

]
,

where the stationary value PDF and CDF are determined by Eqs. 3 and 4, respec-
tively.

3. (Consistency) Every agent has the correct belief μ∗ about the stationary value
distribution, equilibriummechanism, and equilibriumstrategy:μ∗ (H∗, M∗, σ∗) =
1.

4. (Sequential Rationality)

(a) (Sequential Rationality of Sellers) Mechanism M∗ maximizes each seller’s
expected profit with respect to belief μ∗: ∀M ∈ M, π (M∗|μ∗) ≥ π (M |μ∗) .

(b) (Sequential Rationality of Buyers) Strategy σ∗ (·, M) is a symmetric Bayes-
Nash equilibrium in every mechanism M : ∀v, ∀M ∈ M, ∀σ (·, M) ∈ ΣM ,

u (v|M, μ∗)≥ u
(
v, σ̃ (v, M) , σ−i,∗ (·, M) |M, μ∗

)
,
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where u (v|M, μ∗) ≡ u
(
v, σ∗ (v, M) , σ−i,∗ (·, M) |M, μ∗

)
denotes value v

buyer’s equilibrium expected payoff in M .

Note that type-symmetric strategies do not need to be assumed, but rather arise as
an equilibrium outcome. Since all of the optimal incentive-compatible mechanisms
yield the same revenue and the same expected buyer payoffs, all sellers will choose
the same mechanism in equilibrium and all buyers will choose the same equilibrium
strategy.

Characterizing the equilibrium requires (i) characterizing the stationary value dis-
tribution, (ii) solving the monopoly profit-maximizing problem with value-dependent
outside options, and (iii) solving buyers’ equilibrium strategies when they have sub-
sequent purchasing opportunities. In essence, in the dynamic setting, the existence of
subsequent markets affects both sellers’ mechanism choices and buyers’ behaviors,
and subsequent market conditions depend on buyer composition H∗.

In Sect. 3, I solve a generalized version of the monopolist’s problem and specify
the buyer’s equilibrium strategy in the optimal mechanism and the agents’ expected
equilibrium payoffs. The SSSE is characterized and proven to exist uniquely in Sect. 4,
and comparative statics results on the survival rate, buyer–seller ratio, discount factor,
and buyer value distribution are presented in Sect. 5.

3 Seller’s problem

In this section, I study the revenuemaximization of a monopolist who faces symmetric
buyers in the presence of a subsequent market in which the identical good is expected
to be sold by other sellers. I show that the optimal mechanism is implementable by
a standard reserve-price auction, but the reserve price changes with respect to the
condition of the subsequent market. In particular, the reserve price is always lower
than the monopoly reserve price in Myerson (1981), whose symmetric independent
private values case is subsumed in the current setup. Moreover, the current setup
also incorporates the seller’s problem in the SSSE as a special case. I generalize the
marginal revenue curve defined by Bulow and Roberts (1989) to the current setting,
and use it to determine the optimal reserve price.4

Suppose there are n buyers and one seller, whom I refer to as a monopolist. In addi-
tion to the assumptions above, the value distribution is assumed to have a decreasing
inverse hazard rate:

Assumption 1 dη (F (v)) /dv ≤ 0, where η (F (v)) ≡ (1 − F (v)) / f (v).

The setting so far is the same as the symmetric independent private values setting in
Myerson (1981), which I refer to as the pure monopoly setting. I refer to the (unique)
ρmon that satisfies η (F (v)) = 0 as the pure monopoly reserve price or pure monopoly
reserve type; the distinction will become apparent when I add a subsequent market.

4 The general revenue-maximizingmechanismwith ex ante asymmetric buyers and related results regarding
the incentive compatibility, buyer indifference, and revenue equivalence of differentmechanisms are derived
and presented in Appendix B.
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Prices versus auctions in large markets 1305

An auction with the pure monopoly reserve price maximizes the expected revenue
(Myerson 1981).

Now I add a subsequent market in which each buyer is expected to receive one
price offer drawn from distribution Λ with associated density λ on support

[
x, x

]
.

Since Λ incorporates all of the information about subsequent periods, I simply refer
to the subsequent market by the distribution Λ. To avoid interruptions by technical
details, I assume that buyers are symmetric and the subsequent market distribution is
continuous and differentiable.

The setting incorporating a subsequentmarket incorporates awide range of settings.
Myerson (1981) essentially solves the monopolist’s problem when there is no price
offer lower than 1 in the subsequent market (Λ(x) = 0 for all x ≤ 1) and/or buyers
discount any subsequent market infinitely (δ = 0). In the SSSE, a buyer’s continuation
payoff is her total discounted expected utility from all mechanisms she participates
in future periods. All subsequent opportunities she faces can be characterized by her
expected payment, and there is a probability assigned to each subsequent opportunity.
Hence, the set of all subsequent opportunities can be summarized by a cumulative
distribution function, namely, Λ. In particular, the set of all subsequent opportunities
each buyer faces in equilibrium is captured by the equilibrium subsequent market Λ∗.

Although all buyers face the same subsequent market, they may receive different
realized price offers and may make different decisions based on their own valuations
when facing the same realized price offers. In the subsequent market—when there is
no further purchasing opportunity—a buyer purchases the good if and only if her value
exceeds the realized price offer she receives; note that a buyer’s value and willingness
to pay coincide in the subsequent market because there is no future purchasing oppor-
tunity for the buyer. Therefore, a value v buyer’s expected payoff in the subsequent
market Λ is

uΛ (v) =
∫ v

x
(v − x) dΛ(x) =

∫ v

x
Λ(x) dx, (5)

where the second equality follows from integration by parts. The subsequent expected
payoff increases whenever the buyers receive lower price offers with higher probabil-
ities, so I say that Λ is more buyer-friendly than Λ̃ if Λ is first-order stochastically
dominated by Λ̃.

Definition 2 A subsequent market is more buyer-friendly than another if and only if
it is first-order stochastically dominated by the other: Λ �B Λ̃ if and only if Λ(x) ≥
Λ̃ (x) ∀x .

A value v buyer will not pay more than the discounted expected utility if she waits,
so her maximum willingness to pay (WTP) a seller is

wΛ (v) = v − δ · uΛ (v) .

123



1306 H. Zhang

The wΛ function is differentiable, weakly increasing, and weakly concave.5 The
monopolist’s problem with a subsequent market corresponds to a monopolist’s prob-
lem with buyers’ values transformed according to an increasing and concave function.
Conversely, for any concave value transformation ṽ (·), there is a subsequent market
Λ that induces a WTP function wΛ (·) = ṽ (·).

In essence, the monopolist maximizes expected revenue with respect to n buyers

who have WTP w (v) drawn from the distribution F̃Λ (ṽ) = F
(
w−1

Λ (ṽ)
)
, which has

a density of f̃Λ (ṽ) = f
(
w−1

Λ (ṽ)
)

/w′
(
w−1

Λ (ṽ)
)
. Therefore, by Myerson (1981),

the optimal mechanism is to run a standard auction with the reserve price determined
by a transformed virtual utility curve. The virtual utility in this setting is defined as
the competitive auction marginal revenue (MR) in the presence of subsequent market
Λ,

MRA
Λ (v) = wΛ (v) − η

(
F̃Λ (wΛ (v))

)
= wΛ (v) − η (F (v))w′

Λ (v) . (6)

Proposition 1 (The optimal mechanism) Let AΛ (ρ) represent a standard auction that
implements reserve pricewΛ (ρ) in the presence of subsequentmarketΛ. The revenue-
maximizing mechanism in the presence of subsequent market Λ is A∗

Λ ≡ AΛ

(
ρ∗

Λ

)
,

where MRA
Λ

(
ρ∗

Λ

) = 0.

Not all buyers who have values above the reserve price wΛ (ρ) will participate
in the auction, but only buyers who have willingness to pay above the reserve price
will participate. They have values above ρ, which I call the reserve type. Absent
a subsequent market, a buyer’s value is her WTP, so the reserve price wΛ (ρ) and
reserve type ρ coincide. The optimal reserve price when there is a subsequent market
is lower than the pure monopoly reserve price. The relation of the reserve type to the
probability of sale, 1 − Fn (ρ), is apparent: The higher the optimal reserve type, the
lower the probability of sale, and the lower the expected sale efficiency to transfer the
good from sellers to buyers.

Proposition 2 The optimal reserve price in the presence of a subsequent market is
lower than the optimal pure monopoly reserve price.

Remark 1 The optimal competitive reserve price is equal to the pure monopoly reserve
price when there is no price offer (weakly) lower than the pure monopoly reserve price
in the subsequent market, because the competitive auction marginal revenue curve is
unchanged for values below the pure monopoly reserve price.

The following numerical example demonstrates that I cannot compare the optimal
reserve price and optimal reserve type across different markets, as a more buyer-
friendly subsequent market does not guarantee a lower optimal reserve price or reserve
type.

5 To see the weak monotonicity and weak concavity, take the first and second derivative of wΛ: w′
Λ (v) =

1 − δu′
Λ (v) = 1 − δ · Λ (v) ≥ 0 and w′′

Λ (v) = −δ · u′′
Λ (v) = −δ · λ (v) ≤ 0.
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Example 1 Suppose there are n = 2 buyers with values drawn uniformly from [0, 1],
that is, F (x) = x . In the first market, they may receive a uniform price offer between
0 and 1:

Λ1 (x) = x x ∈ [0, 1],

and in the secondmarket, theymay receive a lower price offerwith a lower probability:

Λ2(x) =
{
2x2 ∀x ∈ [0, 0.5]

x ∀x ∈ (0.5, 1]
.

Therefore, the first market is more buyer-friendly. However, the optimal reserve type
and price are higher in the first market: ρ∗

Λ1
≈ 0.4227 > ρ∗

Λ2
≈ 0.4221 and

wΛ1(ρ
∗
Λ1

) ≈ 0.333 > wΛ2(ρ
∗
Λ2

) ≈ 0.303.

Finally, I can calculate buyers’ equilibrium strategies and payoffs in the standard
auctions in the presence of a subsequent market. First-price and second-price auctions
(as well as Dutch, English, and all-pay auctions) with the same reserve prices generate
the same revenues, from the generalized revenue equivalence and buyer indifference
result (Corollary 1 in Appendix B), which is a corollary of the characterization of
incentive-compatible mechanisms (Proposition 12 in Appendix B). In the second-
price auction, a buyer bids her WTP rather than her value. In the first-price auction,
each buyer continues to shade her bid, but also according to her WTP.

Proposition 3 (Equilibrium in standard auctions) Consider a standard reserve-price
auction A (ρ) with n buyers in the presence of subsequent market Λ. A value v ≥ ρ

buyer in the second-price auction bids her willingness to paywΛ (v). In the first-price
auction, the equilibrium bidding strategy of buyer of value v ≥ ρ is

σ (v,A (ρ)) = wΛ (v) −
∫ v

ρ

Fn−1 (z)

Fn−1 (v)
dwΛ (z) . (7)

The total discounted payoff of a buyer of value v ≥ ρ is

u (v|A (ρ)) =
∫ v

ρ

Fn−1 (z) dwΛ (z) + δ · uΛ (v) , (8)

and the seller’s expected revenue is

r (A (ρ)) =
∫ 1

ρ

MRA
Λ (v) dFn (v) . (9)

These equilibrium characterizations of bidder behaviors and the characterization
of the optimal auction directly apply to the dynamic setting.
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4 Equilibrium

In this section, I characterize the equilibrium and prove its existence and uniqueness
under mild technical conditions. Based on results from the previous section, every
seller runs the same reserve-price auction. Higher-value buyers are more likely to win
the auctions and consequently exit the market at faster rates, resulting in lower-value
buyers staying longer and a stationary value distribution that is first-order stochastically
dominated by the newborn value distribution.6 Such an equilibriumexists and is unique
under mild conditions. The convergence to the equilibrium from the initial period is
also discussed.

The equilibrium is characterized by the optimal reserve type and the stationary value
distribution. Since buyers’ subsequent purchasing opportunities in the SSSE can be
summarized by a subsequentmarketΛ∗, which Iwill characterize, Proposition 1 shows
that the optimal mechanism is a standard auction with reserve type ρ∗ determined by
equating the equilibrium auction marginal revenue to zero:

MRA∗ (ρ∗) ≡ w∗ (ρ∗) − 1 − H∗ (ρ∗)
h∗ (ρ∗)

· w′∗ (ρ∗) = 0,

where w∗ (v) is value v buyer’s equilibrium WTP. However, since buyers’ realized
payments are all higher than ρ∗, by Remark 1, the equilibrium reserve type is the same
as the equilibrium reserve price, and is determined by

ρ∗ − 1 − H∗ (ρ∗)
h∗ (ρ∗)

= 0. (10)

The equilibrium reserve price is always positive, in contrast to the result obtained
by McAfee (1993) whereby it converges to zero. As the results in the next section will
demonstrate, the equilibrium reserve price indicates the level of market competitive-
ness and varies with different parameters of the model. Competitive forces alleviate
matching frictions by reducing the equilibrium reserve price to be close to the efficient
level of zero. Sellers are able to set positive reserve prices even if there is no excess
demand. When n = 1, this setting is a dynamic bargaining setting with an equal mea-
sure of buyers and sellers, so the model is similar to that of Rubinstein and Wolinsky
(1985).

As a result, a value v buyer wins the auction if and only if her value is above the
equilibrium reserve type ρ∗ and no opponent has a value above v, so her probability
of winning is P∗ (v) = 1 − 1v>ρ∗ · Hn−1∗ (v). Conversely, a value v buyer’s losing
probability l∗ (v) is 1 if v ≤ ρ∗ and is 1 − Hn−1∗ (v) if v > ρ∗. The equilibrium mass
of losing buyers is then

l∗ =
∫ 1

0
l∗ (v) dH∗ (v) = 1 −

∫ 1

ρ∗
Hn−1∗ (v) dH∗ (v) = 1 − 1

n
· [1 − Hn∗ (ρ∗)

]
.

6 Similarly, inHendricks and Sorensen (2018), the equilibriumvalue distribution is first-order stochastically
dominated by the newborn value distribution.
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In other words, measure 1− Hn∗ (ρ∗) of sellers sell their goods every period. Because
sellers live for one period, 1 − Hn∗ (ρ∗) is also the probability of sale of all goods in
the market.

The stationary value distributions can be determined by Eqs. 3 and 4 by substituting
for l (v) = 1 − P (v), a value v buyer’s expected probability of losing in a direct
anonymous mechanism. A value v buyer’s expected utility of reporting z is P∗ (z) ·
v − C∗ (z) in the mechanism and is P∗ (v) · v − C∗ (v) if she does not win. The
stationary value distributions are determined as follows.

h∗ (v) =
[
1 − s ·

∫ 1

0

(
1 − P∗ (z)

)
dH∗ (z)

]
· f (v)

+s · (1 − P∗ (v)
) · h∗ (v) , (11)

H∗ (v) =
[
1 − s ·

∫ 1

0

(
1 − P∗ (z)

)
dH∗ (z)

]
· F (v)

+s ·
∫ v

0

(
1 − P∗ (z)

)
dH∗ (z) . (12)

Given the equilibrium losing probability and the proportion of losers, the stationary
value distributions characterized by Eqs. 3 and 4 are

h∗ (v) =
[
1 − s · (1 − 1

n · (1 − Hn∗ (ρ∗)
))] · f (v)

1 − s ·
(
1 − 1v>ρ∗ · Hn−1∗ · (v)

) , (13)

H∗ (v) =
[
1 + s

1 − s
· 1
n

· (1 − Hn∗ (ρ∗)
)] · F (v)

−1v>ρ∗ · s

1 − s
· 1
n

· (Hn∗ (v) − Hn∗ (ρ∗)
)
. (14)

In particular, the stationary distribution at the equilibrium reserve type is determined
by

h∗ (ρ∗)
f (ρ∗)

= H∗ (ρ∗)
F (ρ∗)

= 1 + s

1 − s
· 1
n

· (1 − Hn∗ (ρ∗)
)
. (15)

As a consequence of the auction’s allocative efficiency that the buyer with the highest
value above the reserve type is allocated the good, higher-value buyers exit the mar-
ket faster, resulting in a stationary value distribution that is first-order stochastically
dominated by the newborn value distribution.7

7 To see the result of first-order stochastic dominance, rearrange Eq. 14:

H∗ (v)

F (v)
=
[
1 + s

1 − s
· 1
n

· (1 − Hn∗ (ρ∗)
)]/[

1 + 1v>ρ∗ · s

1 − s
· 1
n

· Hn∗ (v) − Hn∗ (ρ∗)

H∗ (v)

]
.

Since
[
Hn∗ (v) − Hn∗ (ρ∗)

]
/H∗ (v) achieves its maximum 1 − Hn∗ (ρ∗) at v = 1, the RHS is bigger than

1, so H∗(v) > F(v) for any v.

123



1310 H. Zhang

In summary, (A (ρ∗) , σ∗, H∗, μ∗) constitutes an SSSE. Each seller runs a reserve-
price auctionA (ρ∗)with the reserve priceρ∗ determined byEqs. 10 and 15,which also
pin down H∗ (ρ∗). The stationary value distribution H∗ is characterized by Eqs. 10
and 14, given H∗ (ρ∗). Each buyer reports truthfully in each incentive-compatible
direct anonymous mechanism (i.e., bids w∗ (v) in a second-price auction by Proposi-
tion 3), and the equilibrium belief is the same across periods:μ∗ (A (ρ∗) , σ∗, H∗) = 1.

Such an equilibrium exists when losing buyers exit the market sufficiently fast.
When enough higher-value newborns enter the market to ensure the active value dis-
tribution with decreasing inverse hazard rate, a reserve-price auction remains optimal.
Sufficient conditions are as follows.

Assumption 2 The newborn value distribution is weakly convex: F ′′ (v) ≥ 0.

Assumption 3 The survival rate is sufficiently small: s and δ satisfy δs2 −2s+1 ≥ 0.
Equivalently, s ≤ (1 − √

1 − δ
)
/δ for all δ.

These are reasonable assumptions. Although a convex distribution assumption is
more restrictive than that of a monotone hazard rate, it includes some standard dis-
tributions such as uniform and exponential distributions. Although in this paper I do
not have a buyer entry stage, buyers with higher values should be more likely to enter
the market in any model that incorporates an entry. The assumption on the survival
rate and discount factor is not restrictive. First, as long as s ≤ 1/2, the equilibrium
exists regardless of δ. And for a higher discount factor, the range of survival rates that
support a unique equilibrium becomes larger. For example, for δ = 0.95, the condition
is satisfied as long as s ≤ 0.876. Note that these assumptions are by no means nec-
essary conditions for existence or uniqueness, but rather are sufficient conditions. For
example, how values above ρmon are distributed does not affect equilibrium existence
or uniqueness.

Proposition 4 When Assumptions 2 and 3 hold, there exists a unique SSSE.

Consider the convergence to this stationary equilibrium. This equilibrium is reached
from periods of plays in which the reserve prices monotonically decrease over periods.
Starting with the initial period in which all buyers are newborns, sellers run auctions
with a reserve price higher than the equilibrium price, because buyer value distribu-
tion first-order stochastically dominates the stationary distribution and buyers face a
worse subsequent market than buyers in the steady state. However, as time progresses,
lower-value buyers congest the market and expect a more buyer-friendly environment
in future periods, and sellers post lower reserve prices in response. The sequence of
reserve prices monotonically converges to the equilibrium reserve price. The mono-
tonicity of inverse hazard rate of the active buyer value distribution in each period is
guaranteed because the subsequent market improves and the active buyer distribution
decreases as higher-value buyers win more often and exit faster.

Proposition 5 A value v buyer’s equilibrium WTP is

w∗ (v) = v − 1v≥ρ∗ ·
∫ v

ρ∗

s · δ · Hn−1∗ (z)

1 − s · δ + s · δ · Hn−1∗ (z)
dz. (16)
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Hence, by Eq. 5, when the discount factor is interpreted as s · δ, in equilibrium, it
is as if each buyer faces one subsequent market

Λ∗ (x) = 1v>ρ∗ · Hn−1∗ (x)

1 − s · δ + s · δ · Hn−1∗ (x)
∀x > ρ∗. (17)

As I have explained, the equilibrium subsequent market summarizes the buyer-
friendliness of the market. In the next section, I use the change in the equilibrium
subsequentmarket to explore effects of changes in different parameters of themodel—
namely, the survival rate, buyer–seller ratio, and discount factor—on the equilibrium
reserve price, stationary value distribution, buyer payoffs, seller revenue, and sale
efficiency.

5 Comparative statics

In this section, I investigate how the equilibrium is affected by the respective changes
in (i) buyer survival rate, (ii) buyer–seller ratio, (iii) discount factor, and (iv) newborn
value distribution. The three parameters, (i)–(iii), and one distribution, (iv), parsi-
moniously summarize the model, and each represents different characteristics of the
market.

I consider the changes in the sellers’, buyers’, and social planner’s equilibrium
welfare, respectively. It should not be a surprise that sellers and buyers always exhibit
conflicts of interests, but it is not obvious that the social planner’s welfare aligns with
the sellers’. In general, changes that benefit sellers and harm buyers include decreasing
buyer survival rate, increasing competition, and making buyers less patient. However,
from a social planner’s point of view, harming the buyers improves the allocative
efficiency, because the probability of sale increases.

A seller’s expected revenue from his optimally chosen auction A (ρ∗) is

r∗ =
∫ 1

ρ∗

[
w∗ (v) − η (H∗ (v)) · w′∗ (v)

]
dHn∗ (v) , (18)

and a value v buyer’s total discounted expected utility is

u∗ (v) = 1v≥ρ∗ ·
∫ v

ρ∗

s · δ · Hn−1∗ (z)

1 − s · δ + s · δ · Hn−1∗ (z)
dz. (19)

For the comparative statics results, I need to characterize the changes in the reserve
price of the optimal auction, in the stationary buyer value distribution, and in the
buyer’s WTP.

Different types of efficiencies are associated with a sale mechanism. If the good
is transferred from the seller who values the good at zero to any of the buyers, I say
the transaction is sale efficient. If the sale occurs, and it is transferred to the buyer
with the highest value, I say the sale is allocatively efficient. For example, a zero-
reserve second-price auction is both sale efficient and allocatively efficient, because
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the good always ends up in the hands of the buyer with the highest valuation. A positive
reserve-price auction is not always sale efficient but is allocatively efficient, because
the buyers’ competition results in the allocative efficiency. However, a positive posted
price—including the optimal posted price—is neither sale nor allocatively efficient. A
posted price results in more ex post sale inefficient allocation than the optimal auction
because the optimal reserve price is lower than the optimal posted price, and it may
also result in allocative inefficiency because the good does not necessarily end in the
hands of the buyer with the highest value.

The total social welfare is the discounted sum of buyers and sellers across all
periods, but a little more careful consideration reveals that the equilibrium probability
of sale is the key indicator of social efficiency. Since allocatively efficient auctions
(mechanisms that assign the good to the highest valued agent if not withheld by the
seller) are used, and buyers and sellers divide the surplus, the good being transferred
is more preferred than otherwise, because the good being held by sellers is the most
allocatively inefficient allocation. Hence, social efficiency monotonically increases in
sale probability.

The platform designer’s profit is closely tied to sale and allocative efficiency. If his
profit is proportional to the total social surplus he generates, given that a mechanism
is allocatively efficient—as is the case in an auction—higher sale efficiency results in
higher total welfare.8 If instead the designer charges a participation fee for new agents
who arrive in the market, he hopes that more new agents will arrive, which is realized
when the equilibrium probability of sale increases.

Therefore, in order to consider the changes in welfare, I solve for the comparative
statics of these outcome variables: the reserve price, the probability of sale, station-
ary buyer value distribution, buyers’ payoffs, and sellers’ revenue. I summarize these
results in the next three propositions. All of the changes have definite signs and mono-
tonic effects over the range, as long as an additional convexity assumption on the
newborn value distribution is imposed. It further restricts Assumption 2, which guar-
antees equilibrium existence and uniqueness, but not by much: Any distribution with
CDF F (v) = vk for any k ≥ 1, including the uniform distribution, still satisfies the
assumption.

Assumption 4 v · f (v) /F (v) is increasing for any v < ρmon.

First, let us consider the change in the buyer survival rate. Variations in the buyer
survival rate may reflect those in the elasticities of demand across different types of
goods: People are more likely to keep searching for a cell phone until they get one,
but they may quit searching for a book if they cannot find it at a satisfactory price. The
survival rate can also represent search friction in the market. A higher survival rate
means that current buyers can easily find a perfect substitute in the existing market.
Lastly, recall that the market size growth rate is inversely related to the survival rate,
so an increase in the survival rate corresponds to a slower market expansion or faster
market contraction.

Suppose that the survival rate increases so that the good becomes more inelas-
tically demanded, the consumer’s search friction decreases, or the consumer base

8 The idea that the platform designer’s maximum profit is proportional to the total welfare appears in Oi
(1971) and Armstrong (1999), for example.
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remains relatively more stable. When sellers survive to the next period with a higher
probability, the equilibrium stationary value distribution will be depressed because
lower-value buyers crowd the market, preventing newcomers from entering. The
equilibrium reserve price sellers choose goes down as a result. The probability of
sale, which is positively related to the equilibrium reserve price, decreases. Buyers’
expected utilities increase, as they can search longer, and the seller’s revenue decreases.

Proposition 6 (Survival rate) When the survival rate s increases, the reserve price
decreases, the probability of sale decreases, the stationary value distribution
shifts down first-order stochastically, buyers’ payoffs increase, and sellers’ revenue
decreases.

The proof relies on Eqs. 10 and 15, which pin down the equilibrium reserve price
and the stationary value distribution at the equilibrium reserve price, respectively.
Algebraic rearrangements of the differentiation by the implicit function theorem with
the continuity of the solution guaranteed specifies the change in the reserve price,
and with Assumption 4, the sign is definite. The ensuing changes follow from the
change in reserve price. The proofs of the following two propositions follow the same
method, with the last one particularly easy, since the discount factor does not affect
the equilibrium conditions.

A decrease in the buyer–seller ratio—in other words, a reduction in the relative
number of buyers to sellers—indicates that the relative demanddecreases or the relative
supply increases. Similar to the increase in survival rate, if the buyer–seller ratio
decreases, buyers are better off and sellers are worse off. What is not obvious is that
although the reserve price decreases, the probability of sale decreases as well: The
demand plummets more than what the supply side can optimally adjust to.

Proposition 7 (Buyer–seller ratio) When the buyer–seller ratio n decreases, the
reserve price decreases, the probability of sale decreases, the stationary value dis-
tribution shifts down first-order stochastically, buyers’ payoffs increase, and sellers’
revenue decreases.

Finally, let us examine the effects of change in the discount factor. If the discount
factor increases, buyers become more patient, or the interval between time periods
decreases and buyers have more subsequent purchasing opportunities in the imminent
future. The stationary value distribution and the reserve price are not affected by the
change in the discount factor: Sellers do not change their optimal mechanism, as the
equilibrium reserve price only depends on the survival rate and the buyer–seller ratio.

Proposition 8 (Discount factor) When the discount factor δ increases, the reserve
price, the probability of sale, and stationary value distribution are not affected, buyers’
payoffs increase, and sellers’ revenue decreases.

Overall, when the survival rate increases and/or the buyer–seller ratio decreases,
buyers’ expected utilities increase since their WTPs are depressed. Sellers’ revenue
decreases, as they face a buyer composition that is first-order stochastically worse (as a
result of the precedent sellers’ responses to amorebuyer-friendlymarket environment).
However, social sale efficiency decreases in response, resulting in a lower probability
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of sale. When buyers become more patient, the market composition does not change,
but sellers’ revenue will be hit hard, as buyers are more willing to wait for future
chances.

Finally, I investigate the effects of a change in newborn buyer value distribution. I
restrict my attention to a class of distributions for tractability. When buyers value the
good more, sellers can increase reserve prices, but the probability of sale increases
nonetheless.

Proposition 9 (Buyer value distribution) Suppose the buyer value distribution is F =
vk for k ≥ 1. As k increases, the reserve price increases, the probability of sale
increases, the stationary value distribution increases, buyers’ utility decreases, and
sellers’ revenue increases.

6 Posted prices and their market effects

Though reserve-price auctions are proven to be revenue maximizing in the model,
posted pricesmay offer the following advantages, not explicitlymodeled above. Posted
prices may be (i) less costly: A fee is associated with setting a reserve price, but there
is no such fee for simply setting a price; (ii) more immediate: Buyers can buy an item
at a fixed price immediately (labeled “Buy It Now” on eBay), but must wait for the
conclusion of an auction to obtain the good; (iii) less ambiguous and uncertain in
transaction price: Buyers know exactly howmuch they need to pay for a posted price;
(iv) simpler: Buyers do not need to think about their exact willingness to pay for a
good, because they only need to think about whether they are willing to pay above
the posted price to obtain the good, and sellers do not need to think about the reserve
price to set or pay attention to the auctioning process; and (v) more preferred: Sellers
and buyers may simply prefer one mechanism over another.

Each of the reasons stated above can be modeled in a more elaborate manner in a
separate paper; Einav et al. (2018) provide a parsimonious model that captures these
differences between prices and auctions. To be agnostic about the exact reasons in
reality, I take a reduced-form approach by simply assuming that there is an additional
cost associated with running an auction. The auction cost can be positive, zero, or
negative, and can vary by seller. I conclude the section by providing a welfare result
about the market with coexisting prices and auctions. Most importantly, posted prices
may result in sale and allocative inefficiencies.

Einav et al. (2018) document that auctions were widely used in the early 2000s
because buyers were excited about auctions, but were used less often when the goods
being sold changed. I offer an alternative explanation: When there are more and better
purchasing opportunities for buyers in subsequent periods, the revenue advantage
from running an auction relative to posting a price decreases. Even without a change
in sellers’ underlying preferences for auctions versus prices, sellers are more likely to
use posted prices in a more buyer-friendly market.

Proposition 10 When the subsequent market becomes more buyer-friendly or buyers
become more patient, the auction premium decreases for any critical type.
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Furthermore, I investigate the welfare effects when sellers have heterogeneous
auction costs and can choose posted prices. Each seller chooses either a price or an
auction, but has a heterogeneous fixed cost associated with running an auction. The
cost c is independently and identically drawn from the cost distribution G on support
[− 1, 1] with positive PDF g. The expected profit is the expected revenue minus the
auction cost. The matching and market processes remain the same as in the previous
setting. The modified definition and characterization of the equilibrium are detailed
in Appendix C.

When sellers have heterogeneous auction costs, as posted prices are introduced,
allocative inefficiency increases but the change in sale efficiency is ambiguous. High-
cost sellers are the ones using posted prices, and they get a strictly lower profit than
those who use auctions. High-value buyers’ expected utilities are also depressed.
If sellers and buyers decide whether to enter the market based on ex ante expected
utilities, the expected prevalence of posted price mechanismsmay deter their entrance,
and possibly causes the market to collapse if there is a sufficiently competitive rival
platform. The usage rate of auctions has rapidly decreased from over 95% at the
beginning of 2003 to less than 25%at the end of 2010 to 21% in 2016 (Einav et al. 2018;
Backus et al. 2020).9 In the same period, the growth of eBay has stalled. The increasing
prevalence of inefficient posted prices offers a possible reason for the relatively slow
growth. Facilitating buyer bids by allowing bidding bots, reducing the fixed costs of
auctions for sellers and buyers, and deterring posted prices may be several options
worth trying.10

7 Conclusion

The paper shows that a reserve-price auction remains a desirable choice for a seller fac-
ing uncertain demand and uncertain future competition. The reserve price, determined
by a generalized marginal revenue curve, not only screens for buyers’ willingnesses
to pay but also indicates market competitiveness. The optimal posted price is shown
to be determined in a similar way as the optimal reserve price.

Although the optimal mechanism remains a reserve-price auction, subsequent out-
side options reduce the desirability of an auction and curtail some of themost important
features of an auction. The advantage of auction comes from the surplus extracted from
the possible high valuations of the buyers, but subsequent purchasing opportunities

9 The share of auctions in active listings declined from 95.98% at the beginning of 2003 to 21.85% at the
beginning of 2011, and the share in revenue declined from 90.16 to 51.58% (Einav et al. 2018). A nontrivial
proportion of sellers—from 1% in 2005 to 12% in 2016—switched to bargaining (i.e., eBay’s “Best Offer”
platform) (Backus et al. 2020).
10 I do not characterize any theoretical convergence to SSSE, but empirically, one episode suggests that
the speed of convergence to SSSE with prices and auctions is rather fast: 3 weeks in Ockenfels and Roth
(2004). A deck of cards with each showing a most wanted terrorist was issued by the US military to its
solders on April 11, 2003, but was sold on eBay and retail immediately (on day 2, April 12, and day 3,
April 13, respectively). The deck, for its novelty, origin, and rarity, sold for nearly $70 in the first week, and
mostly by auction. However, the US Playing Cards Company released identical copies of the cards for $5.95
and received publicity. Prices dropped to competitive prices in 3 weeks, and gradually higher proportion of
decks were sold through posted prices.
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make the current item dispensable, especially for buyers with high values for the item.
A mechanism particularly immune to such turns in market conditions is a posted price
mechanism in which the transaction price is not dependent on buyers with high will-
ingness to pay. However, posted prices are allocatively inefficient and impose market
externalities that affect sale efficiency and active buyer composition, which lowers
profits for future sellers.

I will offer some concluding remarks by focusing on the study’s limitations and
possible avenues for future work. One issue is the seller’s commitment in case he does
not sell, which is embodied by the assumption I maintained throughout the paper:
Sellers live for only one period, and thus choose a static selling mechanism. When
the transaction costs of posting to intermediaries are high or when the items for sale
a have high depreciation rate or face intense competition from substitutable goods,
a seller is better off using one-shot mechanisms. Reputation and rating systems also
punish sellers for repeatedly selling low-quality goods. Furthermore, many goods that
have substitutable competition and upgrades have steep price drops in a short period,
which essentially prevents a seller from choosing a dynamically optimal pricing rule or
repeated auctions. A dynamic model that considers possible resale is also of potential
interest.

Although I suggest several possibilities for the rise in auction cost including
risk aversion, a discount factor, fixed cost, and idiosyncratic taste, the simple,
one-dimensional cost imposed is seemingly ad hoc and does not tackle the more fun-
damental question of why an auction is less desirable for a rational agent who should
supposedly only care about revenue.Work on dynamicmechanism design and revenue
management may provide more micro-founded justifications. Competing sellers may
result in alternativemechanism choice and information revelation incentives (Rezende
2018; Troncoso-Valverde 2018).

An SSSE is proven to exist uniquely in various settings, but I have not considered
the speed of convergence to such stationary equilibrium behavior from an initial value
distribution. If the speed of convergence to the SSSE is low, then it will be important
to investigate the adjustment on the equilibrium path to see, for example, how sellers
switch from auctions to posted prices. Furthermore, I do not investigate whether it is
guaranteed that any change in the market environment results in global convergence
to the new SSSE.

Finally, a line of empirical research warrants investigation, especially in dynamic
markets with prices and auctions. Equilibrium characterizations are already compli-
cated, such that definitive comparative statics results were not obtainable because of
the complexity and nonmonotonicity that resulted from sellers’ possible switch to
alternative mechanisms. Numerical simulations and empirical work can be conducted
to investigate different inefficiencies and externalities; quantify the effects such as
changes in revenues and probabilities of sale; and test the validity of the assumptions
made in this paper. Recent papers make significant progress toward that end (Hen-
dricks and Sorensen 2018; Backus and Lewis 2019; Coey et al. 2019; Backus et al.
2020; Bodoh-Creed et al. 2020).
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A Omitted proofs

Proof of Proposition 1 It follows as a corollary of Proposition 12 in Appendix B when
all the value distributions are identically F . When the WTP function w (·) is not
continuously differentiable, the optimal reserve type ρ∗ satisfies MRA

(
ρ∗+
) ≥ 0 and

MRA
(
ρ∗−
) ≤ 0. The existence and uniqueness of ρ∗ are guaranteed by the mono-

tonicity of the auction marginal revenue curve. ��
Proof of Proposition 2 The optimal reserve type is determined by

wΛ

(
ρ∗

Λ

)
/w′

Λ

(
ρ∗

Λ

) = η
(
F
(
ρ∗

Λ

))
.

The LHS is increasing and the RHS is decreasing. If I show that the LHS is greater
than ρ∗

Λ, then ρ∗
Λ < ρmon. For any v, wΛ (v) /w′

Λ (v) ≥ v if wΛ (v)− v ·w′
Λ (v) ≥ 0,

which is satisfied because

wΛ (v) − vw′
Λ (v) = v − δ ·

∫ v

x
Λ(x) dx − v · (1 − δ · Λ(v))

= v · δ · Λ(v) − δ ·
∫ v

x
Λ(x) dx ≥ 0,

where the inequality follows from Λ(x) ≤ Λ(v) for all x ≤ v. ��
Proof of Proposition 3 A value v buyer’s utility by bidding according to the strictly
increasing bidding function σ (z) is

u (v, σ (z) , σ−i (·) |A (ρ)) = Fn−1 (z) · (v − σ (z)) + l (z) · δ · uΛ (v) ,

where l (z) = 1 − 1v≥ρ · Fn−1 (z) is the expected probability of losing by reporting
z. Rearrange,

u (v, σ (z) , σ−i (·) |A (ρ)) = Fn−1 (z) · (wΛ (v) − σ (z)) + δ · uΛ (v) . (20)

Differentiate Eq. 20 with respect to z. The buyer optimality condition requires that
it is zero at z = v. Coupled with the boundary condition that σ (ρ) = wΛ (ρ), the
equilibrium bidding function is obtained. The candidate bidding function is indeed the
equilibrium, as the utility is maximized at z = v. The equilibrium payoffs are obtained
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by replugging in the equilibrium bidding function, and the revenue is obtained by
integrating the auction MR curve. ��
Proof of Proposition 4 I first show that there exists a unique solution of ρ∗ to Eqs. 10
and 15, and it is the only candidate equilibrium reserve type. It is then shown to
be the unique optimal reserve type that a seller chooses in the equilibrium. Coupled
with the stationary value distributions described by Eqs. 13 and 14, it constitutes an
equilibrium.

First, I show the existence and uniqueness of ρ∗ and H∗ (ρ∗) for Eqs. 10 and 15.
If every seller chooses the same reserve-type ρ auction (not necessarily optimal), the
stationary value distribution resulted from it is characterized by Eq. 14, with ρ instead
of ρ∗. In particular, x ≡ H∗ (ρ) is determined by Eq. 15,

x

/[
1 + s

1 − s
· 1
n

· (1 − xn
)] = F (ρ) .

LHS is monotonically strictly increasing in x , ranging from 0 (when x = 0) to 1 (when
x = 1). Since RHS is a fixed number between 0 and 1 for any ρ, there is a unique
solution x (ρ) = H∗ (ρ) for each ρ, and is strictly increasing in ρ.

In order to show that Eq. 10 has a solution, it is sufficient to show that LHS is
increasing in ρ, and it holds when 1/η (H∗ (ρ)) is increasing,

h∗ (ρ)

1 − H∗ (ρ)
= H∗ (ρ)

1 − H∗ (ρ)
· f (ρ)

F (ρ)

= f (ρ) ·
[

1

1 − H∗ (ρ)
+ s

1 − s
· 1
n

· 1 − H∗n (ρ)

1 − H∗ (ρ)

]
,

where both equalities follow from Eq. 15. Density f is increasing by Assumption 2
and the second term is increasing in ρ because H∗ (ρ) is increasing. Overall, LHS of
Eq. 10 continuously and monotonically increases from −1/ f (0) to 1 as ρ increases
from 0 to 1. Therefore, the solution to the system of equations, ρ∗, is unique.

In fact, it is the only candidate equilibrium. Any ρ can be the symmetric equilibrium
reserve type but the stationary distribution from such choice of ρ is pinned down
by solution H∗ (ρ) = x (ρ). Only the pairs (ρ, x (ρ)) satisfy stationarity condition
and only one pair is candidate equilibrium by the seller’s optimality condition that
determines the reserve price. Finally, it is sufficient to show that under H∗ (ρ∗), ρ∗ is
indeed the unique optimal reserve price.

The reserve type ρ∗ is optimal if MRA∗ (v) is increasing, so it is sufficient to show
that h∗ (v) /[(1 − H∗(v)) · w′∗(v)] is increasing.

d log
[
h∗ (v) /

[
(1 − H∗ (v)) · w′∗ (v)

]]
dv

= h′∗ (v)

h∗ (v)
+ h∗ (v)

1 − H∗ (v)
− w′′∗ (v)

w′∗ (v)
.

By Eq. 3,

(1 − s · l∗ (v)) · h∗ (v) = (1 − s · l∗) · f (v) ,
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which implies

(1 − s · l∗ (v)) · h′∗ (v) − s · l ′∗ (v) · h∗ (v) = (1 − s · l∗) · f ′ (v) .

Therefore,

h′∗ (v)

h∗ (v)
= f ′ (v)

f (v)
+ s · l ′∗ (v)

1 − s · l∗ (v)
.

Differentiate Eq. 22:

w′′∗ (v) = w′∗ (v) · δ · s · l ′∗ (v)

1 − δ · s · l∗ (v)
.

Pulling together, I get

f ′ (v)

f (v)
+ s · l ′∗ (v)

1 − s · l∗ (v)
+ h∗ (v)

1 − H∗ (v)
− δ · s · l ′∗ (v)

1 − δ · s · l∗ (v)

= f ′ (v)

f (v)
+ h∗ (v)

1 − H∗ (v)
+ (1 − δ) · s · l ′∗ (v)

(1 − s · l∗ (v)) · (1 − δ · s · l∗ (v))

= f ′ (v)

f (v)
+ h∗ (v) ·

[
1

1 − H∗ (v)
− (1 − δ) · s

(1 − s · l∗ (v)) · (1 − δ · s · l∗ (v))

· (n − 1) · Hn−2∗ (v)

]
.

Note that 1
1−H∗(v)

≥ ∑n−2
j=0 H

j∗ (v) ≥ (n − 1) Hn−2∗ (v), so the term in the square
brackets is greater than 0 if

(1 − δ) · s
(1 − s · l∗ (v)) (1 − δ · s · l∗ (v))

≤ 1,

where the LHS is upper bounded by (1−δ)·s
(1−s)·(1−δ·s) , which is achieved when l∗ (v) = 1.

The numerator is smaller than the (positive) denominator when Assumption 3 holds.
Coupled with Assumption 2 that guarantees f ′ to be positive, the auction marginal
revenue curve is strictly increasing, so ρ∗ is the only solution to MRA∗ (ρ) = 0, thus
the only equilibrium. ��
Proof of Proposition 5 Because the equilibrium behavior and the value distribution of
active buyers are stationary, the total discounted expected payoff of a value v > ρ∗
buyer is the same as her continuation payoff, which is the same as the equilibrium
expected payoff in A (ρ∗), which by Eq. 8 is,

u∗ (v) = u (v|A (ρ∗)) =
∫ v

ρ∗

[
Hn−1∗ (z) · w′∗ (z)

]
dz + s · δ · u∗ (v) . (21)
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Her WTP is her value net her present value of expected continuation payoff depressed
by her survival rate and discount factor,

w∗ (v) = v − s · δ · u∗ (v) = v − s · δ

1 − s · δ

∫ v

ρ∗

[
Hn−1∗ (z) · w′∗ (z)

]
dz, (22)

where Eq. 22 is derived from Eq. 21. Differentiate both sides of Eq. 22 and rearrange:

w′∗ (v) = 1 − s · δ

1 − s · δ ·
(
1 − Hn−1∗ (v)

) = 1 − s · δ

1 − s · δ · l∗ (v)
.

Hence, a value v buyer’s equilibrium WTP is

w∗ (v) = v − 1v≥ρ∗ ·
∫ v

ρ∗

s · δ · Hn−1∗ (z)

1 − s · δ + s · δ · Hn−1∗ (z)
dz. (23)

��

Proof of Proposition 6 Equilibrium ρ∗ and H∗ (ρ∗) satisfy

H∗ (ρ∗) ≡
[
1 + s

1 − s
· 1
n

· (1 − Hn∗ (ρ∗)
)] · F (ρ∗) (24)

ρ∗ · h∗ (ρ∗) + H∗ (ρ∗) ≡ 1 (25)

Plugging the equality H∗ (ρ∗) /h∗ (ρ∗) = F (ρ∗) / f (ρ∗) into Eq. 25,

H∗ (ρ∗) = F (ρ∗) / [F (ρ∗) + ρ∗ · f (ρ∗)] , (26)

and into Eq. 24,

1

F (ρ∗) + ρ∗ · f (ρ∗)
= 1 + s

1 − s
· 1
n

·
[
1 −

(
F (ρ∗)

F (ρ∗) + ρ∗ · f (ρ∗)

)n]
. (27)

This holds for all s and n at the equilibrium reserve price ρ∗ (s, n). Applying implicit
function theorem to Eq. 26,

dH∗ (ρ∗)
ds

=
(

1

1 + ρ∗· f (ρ∗)
F(ρ∗)

)′
· dρ∗
ds

(28)

has the opposite sign as dρ∗/ds, because the sign of the first term is negative by
Assumption 4. By implicit function theorem again, differentiate Eq. 27 with respect
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to s,

(
1

F (ρ∗) + ρ∗ · f (ρ∗)

)′
· dρ∗
ds

=
(

s

1 − s

)′
· 1
n

· [1 − Hn∗ (ρ∗)
]− s

1 − s
· Hn−1∗ (ρ∗) · dH∗ (ρ∗)

ds
.

Plug Eq. 28 in and rearrange:

[(
1

F (ρ∗) + ρ∗ · f (ρ∗)

)′
+ s

1 − s
· Hn−1∗ (ρ∗) ·

(
1

1 + ρ∗· f (ρ∗)
F(ρ∗)

)′]
· dρ∗
ds

=
(

s

1 − s

)′
· 1
n

· (1 − Hn∗ (ρ∗)
)
.

Since
(

s
1−s

)′
> 0, the sign of dρ∗

ds is the same as

[(
1

F (ρ∗) + ρ∗ · f (ρ∗)

)′]
+
[

s

1 − s
· Hn−1∗ (ρ∗) ·

(
1

1 + ρ∗· f (ρ∗)
F(ρ∗)

)′]
.

The term in the first square brackets is negative because f ′ (v) ≥ 0, and the term in
the second square brackets is negative by Assumption 4. Therefore, dρ∗/ds < 0. The
sign is strict because ρ∗ · f (ρ∗) is strictly increasing.

The change in the probability of sale with respect to survival rate has opposite sign
as that of dH∗ (ρ∗) /ds, which has opposite sign as dρ∗/ds, so it is negative.

By Eq. 14, for all v < ρ∗,

H∗ (v) = F (v) ·
[
1 + s

1 − s
· 1
n

· (1 − Hn∗ (ρ∗)
)]

.

Since the term in the square brackets equals 1/ (F (ρ∗) + ρ∗ · f (ρ∗)), it increases as
s increases:

d [1/ (F (ρ∗) + ρ∗ · f (ρ∗))]
ds

=
(

1

F (ρ∗) + ρ∗ · f (ρ∗)

)′
· dρ∗
ds

> 0,

as both multiplicands are negative. For all v ≥ ρ∗,

H∗ (v)=F (v) ·
[
1+ s

1−s
· 1
n

· (1 − Hn∗ (ρ∗)
)]− s

1−s
· 1
n

· (Hn∗ (v) − Hn∗ (ρ∗)
)
.
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Rearrange:

H∗ (v) + s

1 − s
· 1
n

· Hn∗ (v) = F (v) + F (v) · s

1 − s
· 1
n

· (1 − Hn∗ (ρ∗)
)

+ s

1 − s
· 1
n

· Hn∗ (ρ∗) . (29)

Differentiate with respect to s and let x ≡ H∗ (v), the LHS is

dx

ds
+ s

1 − s
· xn−1 · dx

ds
+
(

s

1 − s

)′
· 1
n

· Hn∗ (v) ,

and the RHS is

F (v) ·
(

s

1 − s

)′
· 1
n

· (1 − Hn∗ (ρ∗)
)

+
(

s

1 − s

)′
· 1
n

· Hn∗ (ρ∗) + (1 − F (v)) · s

1 − s
· Hn−1∗ (ρ∗) · dH∗ (ρ∗)

ds
.

Rearrange,
(
1 + s

1−s · xn−1
)

· dx
ds equals

[
F (v) · 1

n
· (1 − Hn∗ (ρ∗)

)− 1

n
· (Hn∗ (v) − Hn∗ (ρ∗)

)] ·
(

s

1 − s

)′

+ (1 − F (v)) · s

1 − s
· Hn−1∗ (ρ∗) · dH∗ (ρ∗)

ds
.

To show that dx/ds ≥ 0, it suffices to show that the terms in the square brackets are
positive, because dH∗(ρ∗)

ds ≥ 0 is already shown. By Eq. 14, the term equals

[H∗ (v) − F (v)] /

(
s

1 − s

)
≥ 0,

where the inequality follows from the fact the newborn value distribution first-order
stochastically dominates the stationary value distribution in equilibrium.

The buyer’s utility then increases as the subsequent market becomes more buyer-
friendly. For Eq. 19, the integrand increases as H∗ (v) increases for all v > ρ∗, s
increases, and ρ∗ decreases. On the other hand, the seller’s revenue decreases because
the willingnesses to pay of the buyers all decrease, and the buyer stationary value
distribution first stochastically increases, resulting in less equilibrium probability of
sale. ��
Proof of Proposition 7 The comparative statics results still follow from the equilibrium
conditions of Eqs. 24 and 25. Differentiate Eq. 27 with respect to n, the LHS is

(
1

F (ρ∗) + ρ∗ · f (ρ∗)

)′
· dρ∗
dn

,
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and the RHS becomes

s

1 − s
·
(

− 1

n2

)
· [1 − Hn∗ (ρ∗)

]

+ s

1 − s
·
[
−n · Hn−1∗ (ρ∗) · dH∗ (ρ∗)

dn
− Hn∗ (ρ∗) · log (H∗ (ρ∗))

]

= − s

1 − s
· n · Hn−1∗ (ρ∗) · dH∗ (ρ∗)

dn

− s

1 − s
· 1

n2
· [1 − Hn∗ (ρ∗) + Hn∗ (ρ∗) · log (Hn∗ (ρ∗)

)]
.

Equate the two sides and rearrange:

−
[(

1

F (ρ∗) + ρ∗ · f (ρ∗)

)′
+ s

1 − s
· n · Hn−1∗ (ρ∗) ·

(
1

1 + ρ∗· f (ρ∗)
F(ρ∗)

)′]
· dρ∗
dn

= s

1 − s
· 1

n2
· [1 − Hn∗ (ρ∗) + Hn∗ (ρ∗) · log (Hn∗ (ρ∗)

)]
.

The two terms in the square brackets in the LHS are both negative as shown in the
previous proof (first by Assumption 2 and second by Assumption 4). Therefore dρ∗

dn
has the same sign as that of RHS. Since Hn∗ (ρ∗) < 1,

Hn∗ (ρ∗) · (1 − log
(
Hn∗ (ρ∗)

))− 1 = (1 + x) / exp (x) − 1 < 0

for x = − log
(
Hn∗ (ρ∗)

)
> 0 as exp (x) > 1+ x by Taylor expansion. Differentiation

of Eq. 24 yields the same result as with s, so it is Eq. 28 with n replacing s, so
dH∗ (ρ∗) /dn < 0. Furthermore,

d
(
1 − Hn∗ (ρ∗)

)
/dn = −Hn∗ (ρ∗) · log (H∗ (ρ∗)) − n · Hn−1∗ (ρ∗) · dH∗ (ρ∗)

dn

= −Hn−1∗ (ρ∗) ·
(
H∗ (ρ∗) · log (H∗ (ρ∗)) + n · dH∗ (ρ∗)

dn

)

> 0. (30)

In summary thus far, dρ∗/dn > 0, dH∗ (ρ∗) /dn < 0, and d
(
1 − Hn∗ (ρ∗)

)
/dn > 0.

Next, I show that dH∗ (v) /dn < 0 for all v. First, 1 + s
1−s · 1

n · (1 − Hn∗ (ρ∗)
)
is

decreasing because its change equals

(
1

F (ρ∗) + ρ∗ · f (ρ∗)

)′
· dρ∗
dn

,

which is negative, as thefirst term is negative and the second term is positive. Therefore,
H∗ (v) decreases for all v < ρ∗ as n increases. Next, differentiate Eq. 29 with respect
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to n, the LHS equals

[
1 + s

1 − s
· Hn−1∗ (v)

]
· dx
dn

− s

1 − s
· 1

n2
· (Hn∗ (v) − Hn∗ (v) · log (Hn∗ (v)

))
,

where x ≡ H∗ (v). The RHS equals the derivative of

s

1 − s
· 1
n

− (1 − F (v)) ·
[
1 − s

1 − s
· 1
n

· (1 − Hn∗ (ρ∗)
)]

,

which is

s

1 − s
·
[
− 1

n2
+ (1 − F (v)) · d

(
1

n
· (1 − Hn∗ (ρ∗)

))
/dn

]

Rearrange the terms:

[
1 + s

1 − s
· Hn−1∗ (v)

]
dx

dn

= − s

1 − s
· 1

n2
· [1 − Hn∗ (v) + Hn∗ (v) · log (Hn∗ (v)

)]

+ s

1 − s
· (1 − F (v)) · d

(
1

n
· (1 − Hn∗ (ρ∗)

))
/dn < 0,

where the first term being negative follows from Eq. 30 and the second term being

negative follows from
[
1 + s

1−s · 1
n · (1 − Hn∗ (ρ∗)

)]
decreasing in n.

Finally, buyers’ utility decreases and sellers’ revenue increases because the WTP
increases for all buyers of different values. ��
Proof of Proposition 8 A change in δ does not affect the equilibrium reserve price, so
the equilibrium probability of sale and stationary value distribution are not affected
either. Buyers’ utility increases because the subsequent market becomes more buyer-
friendly: directly by Eq. 19, increase in δ increases the integral. The seller’s revenue
decreases as each buyer’s WTP decreases and the buyer composition does not change.
The reduction in WTP is by Eq. 16,

w∗ (v) = v − 1v≥ρ∗ ·
∫ v

ρ∗

Hn−1∗ (z)( 1
δ·s − 1

)+ Hn−1∗ (z)
dz.

��
Proof of Proposition 9 There is a closed form expression of ρ∗ when F(v) = vk .
Namely, equilibrium reserve type (and price) is

ρ∗ =
[
(k + 1) ·

(
1 + s

1 − s
· 1
n

· (1 − (k + 1)−n))]−1/k

.
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The expression is increasing in k. The probability of sale, 1−Hn∗ (ρ∗), has the opposite
change as H∗(ρ∗), and

H∗(ρ∗) = F(ρ∗)/[F(ρ∗) + ρ∗ · f (ρ∗)] = 1/(k + 1).

Therefore, as k increases, the probability of sale increases. A value v buyer’s expected
utility is

u∗ (v) = 1v≥ρ∗ ·
∫ v

ρ∗

Hn−1∗ (z)

1 − s · δ ·
(
1 − Hn−1∗ (z)

)dz

= 1v≥ρ∗ ·
∫ v

ρ∗

1

(1 − s · δ) · kn−1 + s · δ
dz.

Since ρ∗ increases in k and the integrand decreases in k, the expected utility decreases
in k for all v. Sellers’ revenue increases and the stationary value distribution increases
first-order stochastically by the fact that the newborn value distribution increases first-
order stochastically. ��
Proof of Proposition 10 The difference between the competitive marginal revenues is

MRA
Λ (v) − MRP

Λ (v) = [
wΛ (v) − η

(
Fn (v)

) · w′
Λ (v)

]
− [wΛ (v) − η

(
Fn (v)

) · w′
Λ (v)

]
= [

η
(
Fn (v)

)− η (F (v))
]
(1 − δ · Λ(v)) .

The term in the square brackets is positive, so when Λ̃ (v) ≥ Λ(v),

MRA
Λ̃

(v) − MRP
Λ̃

(v) ≤ MRA
Λ (v) − MRP

Λ (v) .

Also, when the discount factor becomes larger, the difference becomes strictly smaller
as well as Λ(v) > 0. Take any critical type τ and the difference between the revenues
in the presence of Λ is

r (A (τ )) − r (P (τ )) =
∫ 1

τ

[
MRA

Λ (v) − MRP
Λ (v)

]
dFn (v) .

��

B TheMonopolist’s problemwith asymmetric buyers

I characterize the revenue-maximizing mechanism for n buyers with possibly asym-
metric value distributions. Each buyer i has independent private value drawn
distribution Fi on support

[
vi , vi

]
such that (1 − Fi (v)) / fi (v) is weakly decreasing.

The subsequent market isΛ, which is fixed throughout the section, so I do not include
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subscript. Let v = (v1, . . . , vn) be the vector of values and F (v) = ∏n
i=1 Fi (vi ) be

the value distribution.
A DSM (P (·) ,C (·)) ≡ (Pi (·) ,Ci (·))ni=1 consists of a collection of probability

assignment functions and cost functions. The probability assignment functions take
reports of the buyers to assign each buyer a probability of obtaining the item, with
the properties that 0 ≤ Pi (z1, . . . , zn) ≤ 1 and

∑n
i=1 Pi (z1, . . . , zn) ≤ 1 for each

buyer i . The cost function Ci (z1, . . . , zn) specifies the transfer from buyer i to the
monopolist given all buyers’ reports. Define the expected probability assignment and
expected cost function as

Pi (zi ) ≡
∫
∏

j �=i z j∈
∏

j �=i

[
v j ,v j

] Pi (z1, . . . , zn)
∏
j �=i

dFj
(
z j
)
,

Ci (zi ) ≡
∫
∏

j �=i z j∈
∏

j �=i

[
v j ,v j

] Ci (z1, . . . , zn)
∏
j �=i

dFj
(
z j
)
.

Restrict attention to incentive-compatible (IC) mechanisms. Buyer i’s expected utility
of reporting zi in the mechanism is the expected utility when he gets the object from
the mechanism plus the expected utility if she does not get and waits until the next
period,

u (zi |vi ) = Pi (zi ) · vi − Ci (zi ) + (1 − Pi (zi )
) · u (vi ) .

Proposition 11 (Pi (·) ,Ci (·))ni=1 is incentive-compatible if and only if for every buyer
i ,

1. Pi (vi ) is non-decreasing in vi , and
2. Ci (vi ) = Ci

(
vi
)− Pi

(
vi
) · w (vi )+ Pi (vi ) · w (vi ) − ∫ vi

vi
Pi (x) dw (x) for all

vi ∈ [vi , vi ].

Proof of Proposition 11 First I show that if the mechanism is IC, then both conditions 1
and 2 hold. Define the benefit of lying,

ψi (z|vi ) ≡ ui (zi |vi ) − ui (vi |vi ) .

123



Prices versus auctions in large markets 1327

IC implies that for any vi , there is no benefit of lying, so ψi (zi |vi ) ≤ 0 for all zi , vi ,
so

0 ≥ ψi (zi |vi ) + ψi (vi |zi )
= [

Pi (zi ) · w (vi ) − Ci (zi ) + (vi − w (vi ))

− (Pi (vi ) · w (vi ) − Ci (vi ) + (vi − w (vi ))
)]

− [Pi (vi ) · w (zi ) − Ci (vi ) + (zi − w (zi ))

− (Pi (zi ) · w (zi ) − Ci (zi ) + (zi − w (zi ))
)]

= [
Pi (zi ) · w (vi ) − Ci (zi ) − (Pi (vi ) · w (vi ) − Ci (vi )

)]
− [Pi (vi ) · w (zi ) − Ci (vi ) − (Pi (zi ) · w (zi ) − Ci (zi )

)]
= (

Pi (zi ) − Pi (vi )
) · (w (vi ) − w (zi )) .

Since w (vi ) is non-decreasing in vi , Pi (vi ) is non-decreasing in vi . Furthermore, IC
implies that ui (zi |vi ) is maximized at zi = vi , then by envelope theorem,

∂ui (zi |vi )
∂zi

∣∣∣∣
zi=vi

= P
′
i (vi ) · w (vi ) − C

′
i (vi ) = 0.

By fundamental theorem of calculus,

Ci (vi ) = Ci
(
vi
)+

∫ vi

vi

P
′
i (vi ) · w (vi ) dvi .

Integration by parts yields condition 2 as desired. The converse is shown directly by
the definition of incentive-compatibility:

ψi (zi |vi ) = [Pi (zi ) · w (vi ) − Ci (zi ) + (vi − w (vi ))
]

− [Pi (vi ) · w (vi ) − Ci (vi ) + (vi − w (vi ))
]

= [Pi (zi ) − Pi (vi )
] · w (vi ) + Ci (vi ) − Ci (zi ) .

Plugging in condition 2,

ψi (zi |vi ) = [
Pi (zi ) − Pi (vi )

] · w (vi ) + Pi (vi ) · w (vi )

−
∫ vi

zi
Pi (x) dw (x) − Pi (zi ) · w (zi )

= Pi (zi ) · [w (vi ) − w (zi )] −
∫ vi

zi
Pi (x) dw (x)

=
∫ vi

zi

(
Pi (zi ) − Pi (x)

)
dw (x) .

Then by condition 1, the expression is nonpositive. ��
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Because the expected probability assignment function pins down the expected cost
function, if the expected cost function of the buyer of the lowest value is the same
and the expected probability assignment is the same, then the expected revenue is the
same for the seller, and all buyers are indifferent between the incentive-compatible
mechanisms the seller runs.

Corollary 1 (Buyer indifference and revenue equivalence) If two incentive-compatible
mechanisms have (i) the same expected probability assignment functions, and (ii) the
same expected costs for the buyer of the lowest value, then all the agents are indifferent
between the two mechanisms, as they yield the same expected revenue, and the same
expected payoffs for the buyers of the same value.

Proof of Corollary 1 Let MI =
(
P
I
i (·) ,C

I
i (·)

)n
i=1

and MI I =
(
P
I I
i (·) ,C

I I
i (·)

)n
i=1

denote two mechanisms. In any IC mechanism M = (Pi (·) ,Ci (·)
)n
i=1, the expected

cost function is

Ci (vi ) = Ci
(
vi
)− Pi

(
vi
) · ṽ

(
vi
)+ Pi (vi ) · w (vi ) −

∫ vi

vi

Pi (x) dw (x) .

Because P
I
i (·) = P

I I
i (·) for all i by (i) and C

I
i

(
vi
) = C

I I
i

(
vi
)
by (ii), C

I
i (vi ) =

C
I I
i (vi ) for all vi for all i . Expected utility of vi in mechanism M is

uM
i (vi |vi ) = Pi (vi ) · w (vi ) − Ci (vi ) + vi − w (vi ) .

uMI

i (vi |vi ) = uMI I

i (vi |vi ) for all vi for i . Revenue is determined by

r (M) =
n∑

i=1

∫ v

v

C
M

(vi ) dFi (vi ) .

Then as shown that C
I
i (vi ) = C

I I
i (vi ) ∀vi ∀i , r (MI

) = r
(
MI I

)
. ��

The seller maximizes expected revenue subject to the incentive compatibility and
individual rationality constraints.

Definition 3 A revenue-maximizing IC, IR DSM is a mechanism M = (Pi (·) ,Ci

(·))ni=1 that maximizes r = ∑n
i=1

∫ vi
vi

Ci (vi ) dFi (vi ) subject to ∀i : ũΛ (vi |vi ) ≥
ũΛ (zi |vi ) ∀zi �= vi and ũΛ (vi |vi ) ≥ 0 ∀vi .

Proposition 12 The revenue-maximizing IC, IR DSM (P∗
i (·),C∗

i (·))ni=1 is that

P∗
i (v) = 1 if ṽ (vi ) − 1−Fi (vi )

fi (vi )
· w′ (vi ) > max

{
ṽ (v) − 1−Fj(v j)

Fj(v j)
· w′ (vi ) , 0

}
and

P∗
i (v) = 0 otherwise, and

C
∗
i (vi ) = C

∗
i

(
vi
)− P

∗
i

(
vi
) · ṽ

(
vi
)+ P

∗
i (vi ) · ṽ (vi ) −

∫ vi

vi

P
∗
i (z) d ṽ (z) .
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The three key steps in the proof are (i) characterizing the individual rationality con-
straint, (ii) exchanging integrals, and (iii) expanding expected probability assignment
functions to obtain a weighted average of probability assignment functions.

Proof of Proposition 12 The constraints are

1. IC1: Pi (vi ) ≥ Pi (zi ) ∀vi ≥ zi ,
2. IC2: Ci (vi ) = Ci

(
vi
)+ ∫ vi

vi
P

′
i (vi ) · w (vi ) dvi ∀vi , and

3. IR: ui (vi |vi ) ≥ ui (vi ).

In particular, The IR implies that Ci
(
vi
)− Pi

(
vi
)
w
(
vi
) ≤ 0.

r =
n∑

i=1

∫ vi

vi

[
Pi (vi ) · w (vi ) −

∫ vi

vi

Pi (z) dw (z)

]
dFi (vi )

+
n∑

i=1

[
Ci
(
vi
)− Pi

(
vi
) · w

(
vi
)]

,

where

∫ vi

vi

[
Pi (vi ) · w (vi ) −

∫ vi

vi

Pi (x) dw (x)

]
dFi (vi )

=
∫ vi

vi

[
Pi (vi ) · w (vi ) · fi (vi )

]
dvi

−
∫ vi

vi

[∫ vi

x

[
Pi (x) · w′ (x) · fi (vi )

]
dvi

]
dx

=
∫ vi

vi

[
Pi (vi ) · w (vi ) · fi (vi )

]
dvi −

∫ vi

vi

[
Pi (x) cdotw′ (x) · (1 − Fi (x))

]
dx

=
∫ vi

vi

[
Pi (vi ) ·

[
w (vi ) − 1 − Fi (vi )

fi (vi )
· w′ (vi )

]
· fi (vi )

]
dvi

=
∫ v1

v1

· · ·
∫ vn

vn

[
Pi (v) ·

[
w (vi ) − 1 − Fi (vi )

fi (vi )
· w′ (vi )

]]
dF (v) .

Therefore,

r ≤
∫ v1

v1

· · ·
∫ vn

vn

[
n∑

i=1

Pi (v)
[
w (vi ) − 1 − Fi (vi )

fi (vi )
w′ (vi )

]]
dF (v) ,

and any mechanism that implements the specified probability assignment function
will achieve the upper bound. ��
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C Omitted details in Sect. 6

C.1 Optimal posted price

In this section, I first studydetermination of the optimal posted price, and thendrawpar-
allels with determination of the optimal reserve price to compare the revenues between
an auction and a posted price in the presence of subsequent purchasing opportunities
for buyers.

Let’s consider the posted price mechanism and its relation to the reserve-price
auction. A posted price P (φ) is the mechanism whereby a seller posts price wΛ (φ)

and buyers who are willing to buy at the price enter the lottery to be picked as a winner
with equal chances. The posted price mechanism is an incentive-compatible direct-
revelation mechanism: Only buyers with willingness to pay wΛ (φ)—or equivalently,
values above φ—enter the lottery.11

All buyers with value v above the posted type φ have the same probability of
winning and the same expected payment, so their expected utility is

uΛ (v|P (φ)) = 1

n
· 1 − Fn (φ)

1 − F (φ)
· [v − wΛ (φ)] ,

and the seller’s expected revenue is

r (P (φ)) = (1 − Fn (φ)
) · wΛ (φ) .

Define the posted price marginal revenue in the presence of subsequent market Λ to
be

MRP
Λ (v) = wΛ (v) − η

(
Fn (v)

) · w′
Λ (v) . (31)

Then the revenue-maximizing posted price mechanism in the presence of subsequent
market Λ is P∗ = P (φ∗), where φ∗ is the unique solution to MRP

Λ (φ∗) = 0.
The posted price and the reserve-price auction have many similarities. Both the

reserve type and posted type are determined by equating the marginal revenue to zero,
and the types calculated specify the set of willing participants. Together, I call the
reserve-price auction and the posted price critical type mechanisms.

Definition 4 A critical type mechanism (CTM) M (τ ) is either a reserve-price auction
A (ρ) or a posted price P (φ). Its revenue is

r (M (τ )) =
∫ 1

τ

MRM
Λ (v) dFn (v) ,

11 The lottery seems unrealistic, but it is equivalent to the following natural selling process in which buyers
arrive stochastically. The seller posts price wΛ (φ) and n buyers uniformly randomly arrive within a time
interval. The first buyer with a willingness to pay greater than wΛ (φ) takes the item and pays the posted
price.
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Fig. 1 Comparison of optimal auction and optimal price

and the optimal CTM is M (τ ∗), where MRM
Λ (τ ∗) = 0. The probability of sale is

1 − Fn (τ ).

MRA (v) ≥ MRP (v) for all v, because η (Fn (v)) > η (F (v)).12 Therefore, the
auctionMR curve always dominates the posted priceMR curve and the optimal posted
type φ∗

Λ is always greater than the optimal reserve type ρ∗
Λ. The difference in revenues

between the auction and the posted price of the same critical type is positive, and I
call it the auction premium, Δ(τ) ≡ r (A (τ )) − r (P (τ )). Figure 1 illustrates the
similarities between the two mechanisms in optimal price determination and revenue
determination. Whenever the subsequent market becomes more buyer-friendly, the
revenue difference between the optimal auction and the posted price decreases.13

It is also worth mentioning that the change in the revenue difference between
the optimal auction and the optimal price with respect to the number of buyers is
nonmonotonic. When there is only one buyer, the seller essentially faces a bargaining
problem: A buyer either accepts or rejects the price the seller proposes, so the optimal
auction and the optimal posted price yield the same revenue. When there are several
buyers, the auction offers the extra benefit of buyer competition that drives up the
transaction price. However, when the number of buyers approaches infinity, the two
revenues are again equal. There is a high probability that a buyer has an arbitrarily high
value, so a high revenue is guaranteed by posting a high price. What the subsequent
market limits is themaximumrevenue anymechanismobtains,which is thewillingness
to pay of the highest value buyer, wΛ (1).

Figure 2 shows the ratio of the two revenues with respect to different numbers of
buyers, when the buyers’ values are drawn from uniform distribution (r

(
P∗

Λ

)
/r
(
A∗

Λ

)
,

12 The expression η
(
Fn (v)

) = η (F (v))
(
1 + F (v) + · · · + Fn−1 (v)

)
/
(
n · Fn−1 (v)

)
is greater than

η (F (v)) and is decreasing when F has decreasing inverse hazard rate.
13 Relatedly, Kultti (1999), realizing the disadvantages of an auction facing subsequent competition, shows
that in the limit when the market is infinitely competitive, an auction and a posted price are equivalent,
generating the same revenue.
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Fig. 2 Ratio of optimal auction revenue to optimal price revenue

F (v) = v). “O” shows the ratio in a pure monopoly setting, and “X” shows the ratio
when the subsequent market is Λ(x) = x—i.e., each buyer expects to receive a
price offer randomly drawn from the uniform distribution. As the plot illustrates, the
percentage of expected revenue the optimal posted price attains with respect to the
optimal auction increases when there is a subsequent market. For example, when there
are five buyers, the seller can get 86% of the optimal revenue from a posted price as
a monopoly, but almost 90% of the optimal revenue when a subsequent market is
present. The absolute revenue difference exhibits a similar pattern: As the market gets
more buyer-friendly, the optimal auction premium is likely to decrease.

C.2 Definition and characterization of equilibrium

A SSSE (M∗ (·) , σ∗ (·, ·) , H∗ (·) , μ∗ (·)) in this setting only differs from Definition 1
by that each cost c seller chooses a possibly different mechanism M∗ (c). In equilib-
rium, there is a cutoff cost c∗ such that any seller with cost c > c∗ uses posts price
mechanism P (φ∗) and any other with cost c < c∗ runs a reserve-price auction A (ρ∗).
Cost c∗ seller is indifferent between the two mechanisms because he yields the same
profit,

∫ 1

ρ∗
MRA∗ (v) dHn∗ (v) − c∗ =

∫ 1

φ∗
MRP∗ (v) dHn∗ (v) .

The buyers with the highest values above exit slower than in the previous setting
because all the participating buyers have the same probability of winning in a posted
price. Furthermore, a posted price makes the sale probability smaller, resulting in
more lower value buyers crowding the market, bringing down the stationary value
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distribution. In particular, such an equilibrium exists and is unique under the same
assumptions as in the previous section. The derivations and characterizations of the
SSSE are as below.

In the equilibrium, for a cost c seller facing n symmetric buyers whose WTP is
determined by w∗ (·), the profit-maximizing auction is A (ρ∗) where ρ∗ is determined
by

ρ∗ − 1 − H∗ (ρ∗)
h∗ (ρ∗)

= 0

and the expected profit from it is π (A (ρ∗)) = r (A (ρ∗)) − c, where

r (A (ρ∗)) =
∫ 1

ρ∗

[
w∗ (v) − 1 − H∗ (v)

h∗ (v)
· w′∗ (v)

]
dHn∗ (v) .

The profit-maximizing posted price is P (φ∗) where φ∗ is determined by

w∗ (φ∗) − 1 − Hn∗ (φ∗)(
Hn∗ (φ∗)

)′ · w′∗ (φ∗) = 0

and the expected profit and revenue from it is

π (P (φ∗)) = r (P (φ∗)) = (1 − Hn∗ (φ∗)
)
w∗ (φ∗) .

Since a seller can only run an auction or post a price, he essentially makes a choice
between A (ρ∗) and P (φ∗), and he will choose the auction if and only if the auction
generates higher expected profit, or equivalent, the equilibrium auction premium is
greater than the cost,

π (A (ρ∗)) ≥ π (P (φ∗)) ⇔ Δ∗ = r (A (ρ∗)) − r (P (φ∗)) ≥ c,

and posts the optimal price otherwise. The cost c∗ ≡ Δ∗ seller is indifferent between
the two mechanisms, and I call c∗ the equilibrium cutoff cost such that measure
p∗ = G (c∗) sellers with cost lower than c∗ runs A (ρ∗) and measure 1 − p∗ of the
sellers with cost higher than c∗ chooses P (φ∗).

The total discounted payoff is the expected utilities from participation in auctions
and posted prices,

u∗ (v) = 1v≥ρ∗ · G (c∗) · u (v|A (ρ∗)) + 1v≥φ∗ · (1 − G (c∗)) · u (v|P (φ∗)) ,

where the payoffs in the auction and the posted price are respectively,

u∗ (v|A (ρ∗)) = 1v≥ρ∗ ·
[∫ v

ρ∗
Hn−1∗ (z) dw (z) + δ · s · u (v)

]
,
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and

u∗ (v|P (φ∗))

= 1v≥φ∗ ·
[
1

n
· 1 − Hn∗ (φ∗)

1 − H∗ (φ∗)
· (v − w (φ∗)) +

(
1 − 1

n
· 1 − Hn∗ (φ∗)

1 − H∗ (φ∗)

)
· δ · s · u (v)

]

= 1v≥φ∗

[
1

n
· 1 − Hn∗ (φ∗)

1 − H∗ (φ∗)
· (w (v) − w (ρ)) + δ · s · u (v)

]
,

respectively. For value v ∈ (ρ∗, φ∗), the derivation is similar to the previous section
and only differs by the extra G (c∗) term.

u∗ (v|A (ρ∗)) = 1

1 − G (c∗) · δ · s
∫ v

ρ∗
Hn−1∗ (z) dw (z)

and

w′∗ (v) = 1 − s · δ · G (c∗)
1 − s · δ · G (c∗) + s · δ · G (c∗) · Hn−1∗ (v)

.

For v ≥ φ∗, the calculation is more convoluted,

(1 − δ · s) · u (v) =
∫ v

ρ∗
Hn−1∗ (z) dw∗ (z) + 1

n
· 1 − Hn∗ (φ∗)
1 − H∗ (φ∗)

· (w∗ (v) − w∗ (φ∗)) .

In summary, an equilibrium (M∗ (·) , σ∗ (·, ·) , H∗ (·) , μ∗ (·)) is characterized by
c∗, the cutoff cost, φ∗, the optimal posted type, ρ∗, the optimal reserve type, and the
stationary value distribution H∗, where

1. Mass p∗ of sellers with cost c ≤ c∗ run the same optimal reserve-price auction
A (ρ∗) and the other mass 1− p∗ of sellers with cost c > c∗ uses the same optimal
posted price mechanism P (φ∗), where ρ∗ and φ∗ are determined by MRA∗ (ρ∗) =
MRP∗ (φ∗) = 0.

2. Value v buyer’s equilibrium WTP is

w∗ (v)

= v − δ · s · [1v≥ρ∗ · p∗ · u (v|A (ρ∗)) + 1v≥φ∗ · (1 − p∗) · u (v|P (φ∗))
]

1 − δ · s ·
[
1 − 1v≥ρ∗ · p∗ · Hn−1∗ (v) − 1v≥φ∗ · (1 − p∗) · 1

n · 1−Hn∗ (φ∗)
1−H∗(φ∗)

] .

3. Stationary value distributions h∗ and H∗ are characterized by Eqs. 3 and 4 with
the expected losing probability function

l∗ (v) =

⎧⎪⎪⎨
⎪⎪⎩

1 v ≤ ρ∗
p∗ · (1 − Hn−1∗ (v)

)
v ∈ (ρ∗, φ∗]

p∗ · (1 − Hn−1∗ (v)
)+ (1 − p∗) ·

(
1 − 1

n · 1−Hn∗ (φ∗)
1−H∗(φ∗)

)
v ∈ (φ∗, 1] .
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4. The equilibrium belief μ∗ is

μ∗ (H∗ (·) , (p∗ ◦ A (ρ∗) , (1 − p∗) ◦ P (φ∗)) , σ∗ (·, ·)) = 1.

Proposition 13 Suppose Assumption 4 holds. When sellers have heterogeneous auc-
tion costs, as posted prices are introduced, allocative inefficiency increases but the
change in sale efficiency is ambiguous.

Proof of Proposition 13 Similar to the previous model, the equilibrium is

H∗ (ρ∗) =
[
1 + s

1 − s
· 1
n

· [(1 − Hn∗ (ρ∗)
) · G (c∗)

+ (1 − Hn∗ (φ∗)
) · (1 − G (c∗))

] ] · F (ρ∗)

=
[
1 + s

1 − s
· 1
n

· (1 − Hn∗ (ρ∗)
)+ s

1 − s
· 1
n

· (Hn∗ (ρ∗) − Hn∗ (φ∗)
)

· (1 − G (c∗))
]

· F (ρ∗)

≡
[
1 + s

1 − s
· 1
n

· (1 − Hn∗ (ρ∗)
)− ε (ρ∗)

]
· F (ρ∗) ,

where ε (ρ∗) is strictly positive. As before, substitute in the equilibrium condition

H∗ (ρ∗) = F (ρ∗) / (F (ρ∗) + ρ∗ · f (ρ∗)) ,

1

F (ρ∗) + ρ∗ · f (ρ∗)
= 1 + s

1 − s
· 1
n

·
(
1 −

(
F (ρ∗)

F (ρ∗) + ρ∗ · f (ρ∗)

)n)

−ε (ρ∗) . (32)

Comparedwith Eq. 27, the first two terms of RHS are increasing, but with the last term,
the curve shifts downand intersects theLHSat a biggerρ∗ thanbefore.However, bigger
ρ∗ means smaller H∗ (ρ∗) and bigger 1 − Hn∗ (ρ∗). Therefore, sale probability and
efficiency increases for the auctions, but it increases when there are sellers switching to
posted prices which have sale efficiency 1− Hn∗ (φ∗), so the total effect is ambiguous.
However, more posted price mechanisms bring more allocative inefficiency. ��
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