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Abstract

We theoretically and experimentally investigate psychological motivations behind pay-it-forward
behavior. We construct a psychological game-theoretic model that incorporates altruism, inequity
aversion, and indirect reciprocity following Rabin (1993), Fehr and Schmidt (1999), and Dufwenberg
and Kirchsteiger (2004). We test this model using games in which players choose to give to strangers,
potentially after receiving a gift from an unrelated benefactor. Our experiment reveals that altruism and
indirect reciprocity spur people to pay kind actions forward, informing how kindness begets further
kindness. However, inequity aversion hinders giving even when giving will allow one’s kindness to be
paid forward. Our paper informs how kind behaviors get passed on among parties that never directly
interact, which has implications for the formation of social norms and behavioral conduct within
workplaces, neighborhoods, and communities.
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1 Introduction

Pay-it-forward behavior is at the heart of a variety of social exchanges, ranging from the everyday to the
life-saving. An employee who was mentored by a superior may elect to advise a new coworker in turn.
In fast food drive-throughs, when a customer learns that the previous customer paid for her meal, she is
more likely to pay for the meal of the customer after her in line. One such transaction in a Minnesota
Dairy Queen culminated in a chain of giving that lasted 900 cars long (Ebrahimji, 2020). In organ exchange,
individuals donate their kidneys to strangers if their loved ones receive a kidney from a compatible donor,
creating exchange chains that save hundreds of lives (Roth et al., 2004).

How do we start and maintain chains of giving? Maintaining these chains may be natural and automatic
if receiving a gift makes you more likely to give to an unrelated third party. These chains will readily start
if the knowledge that others may pay your gift forward, expanding your impact, increases the likelihood
that you give. To test these hypotheses, we run a laboratory experiment and guide our observations with
a psychological game-theoretic model. While prior work has established evidence for pay-it-forward
behavior in lab and field settings (Ben-Ner et al., 2004; Bartlett and DeSteno, 2006; Desteno et al., 2010;
Herne et al., 2013; Gray et al., 2014; Tsvetkova and Macy, 2014; van Apeldoorn and Schram, 2016; Mujcic
and Leibbrandt, 2018; Simpson et al., 2018; Melamed et al., 2020), to our knowledge, we are the first to
investigate the psychological motivations that support pay-it-forward behavior. Addressing the psychological
underpinnings of pay-it-forward behavior is important for understanding key levers that promote the
transmission of kindness.

Figure 1 depicts the three three-player games in the experiment. In all three games, players choose
whether to pass a chip worth $1 to the next player. Following the multiplier methods used for investment
and public goods games, a passed chip turns into two chips.1

Figure 1: Games and giving rates in the experiment
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Note: Each player’s index denotes the number of players behind them in the giving chain: P0 is the last potential recipient, P1 is the
last player to decide on giving, and P2, if allowed, is the penultimate player to decide on giving. Material payoffs are (𝜋2, 𝜋1, 𝜋0).
The 𝛾s indicate the giving rates (probabilities of choosing 𝐺) in our experiment. The superscript denotes game type, where 𝑐
stands for control, 𝑒 for exclusive, and 𝑛 for nonexclusive. The subscript 1 denotes P1’s action, and the subscript 2 denotes P2’s
action. The subscript 𝐺 stands for P1’s decision after P2 gave, and 𝐾 for P1’s decision after P2 kept.

1These multiplier methods are commonly used to represent the positive externalities that result when individuals engage in
kind acts. For example, the act of donating a kidney to a stranger demonstrates that paired-kidney exchange can work, promoting
public confidence in the allocation mechanism and motivating greater organ donation rates for future patients. These benefits
accrue to society overall, beyond the private benefit to the organ recipient.
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Figure 1a displays the control game, in which P2 is endowed with 2 chips and cannot give a chip, P1
is endowed with 3 chips, and P0 with no chip. Only P1 makes a giving decision. In the treatment games

depicted in Figures 1b and 1c, P2 is endowed with 3 chips, P1 with 1 chip, and P0 with no chip. P2 and
P1 make giving decisions. P2 can give a chip to P1 so that P1 has 3 chips in total. If P2 gives, all three
games have the interim allocation (𝜋2, 𝜋1, 𝜋0) = (2, 3, 0) before P1 makes a giving decision. If P1 keeps,
the game concludes with payoffs (𝜋2, 𝜋1, 𝜋0) = (2, 3, 0), and if P1 gives, the game concludes with payoffs
(𝜋2, 𝜋1, 𝜋0) = (2, 2, 2). We thus keep payoff distributions the same in the three games, so that differences in
P1’s giving behavior across games cannot arise from absolute or relative allocation concerns.

In the treatment games, P2’s decisions impact P1 directly and P0 indirectly. We vary the extent of P2’s
indirect impact on P0 in the exclusive giving and nonexclusive giving conditions. In the exclusive game
depicted by Figure 1b, P1 cannot give P0 a chip unless P2 gives P1 a chip first. If P2 keeps, the game
concludes with payoffs (𝜋2, 𝜋1, 𝜋0) = (3, 1, 0). However, in the nonexclusive game depicted by Figure 1c, P1
can give P0 a chip regardless of whether P2 gives a chip to P1 first. If P1 chooses to keep after P2 kept, the
game concludes with payoffs (𝜋2, 𝜋1, 𝜋0) = (3, 1, 0). If P1 gives even after P2 kept, the game concludes with
payoffs (𝜋2, 𝜋1, 𝜋0) = (3, 0, 2).

We start by comparing the giving decisions of Last Movers, P1 in all games, to establish evidence of
pay-it-forward behavior: Receiving a gift makes a subject more likely to give to a third party. As shown by
the empirical giving rates 𝛾 in Figure 1, P1 is most likely to give when P2 has given in the nonexclusive
game (̂𝛾𝑛1𝐺 = 54.1%) or in the exclusive game (̂𝛾𝑒1𝐺 = 53.1%); less likely to give when P2 cannot give in the
control game (̂𝛾𝑐1 = 44.7%); and least likely to give when P2 can give but decides to keep in the nonexclusive
game (̂𝛾𝑛1𝐾 = 23.3%). Compared with control, P1 is 8.4–9.4 percentage points (18–21%) more likely to give
in the exclusive and nonexclusive games after receiving a chip from P2 (𝑝 < 0.005). The game structure
holds income effects, distributional preferences, and social image concerns constant across games, enabling
us to rule out these alternative explanations.

We next compare the behavior of Initial Movers (P2 in the treatment games and P1 in the control game).
This allows us to investigate whether Initial Movers are motivated by the possibility that their beneficiary
will pay forward their generosity to magnify their impact. If so, we would expect giving to be greater
among P2 in the treatment game than P1 in the control game. However, we find the opposite pattern. P1’s
giving rate in the control game is 44.7%, which is significantly greater than P2’s giving rates of 40.2% and
39.0% in the exclusive and nonexclusive games, respectively (𝑝 < 0.05). It appears that expectations about
P1 paying forward P2’s generosity play a negligible role in guiding P2’s giving decision.

How can we explain these behaviors? We embed altruism, inequity aversion, and indirect reciprocity
incentives as psychological components in a game-theoretic framework that extends Dufwenberg and
Kirchsteiger (2004), while incorporating elements from Fehr and Schmidt (1999) and Rabin (1993).2 We
turn on or shut off each of the three psychological components, generating predictions on binary giving

2We focus on upstream indirect reciprocity: Receiving past kindness motivates an agent to help a third party (Mujcic and
Leibbrandt, 2018; van Apeldoorn and Schram, 2016). This form of indirect reciprocity is less studied compared to downstream
indirect reciprocity, in which an agent is more likely to receive help after helping another (Bolton et al., 2005; Seinen and Schram,
2006; Zeckhauser et al., 2006; Berger, 2011; Charness et al., 2011; Heller and Mohlin, 2017; Gong and Yang, 2019; Gaudeul et al.,
2021). Downstream indirect reciprocity focuses less on the psychological motivation of the potential helper and more on the
reputation of the potential recipient of help, making it outside the scope of our paper.
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decisions under 23 = 8 utility specifications. Our models include (i) the standard model when all factors
are turned off; (ii) inequity aversion as formalized by Fehr and Schmidt (1999); and (iii) the modification
of Dufwenberg and Kirchsteiger (2004) with indirect reciprocity motives rather than direct reciprocity
motives. We then assess the explanatory power of each model by comparing its predictions with subjects’
behaviors in the experiment. These variations enable us to quantify the empirical importance of altruism,
reciprocity, and inequity aversion in explaining experimental behavior.

We find that the most general model with altruism, reciprocity, and inequity aversion explains the
behavior of 90% of subjects. Altruism and reciprocity are key to explaining why people are more likely
to give after having received a gift: The model excluding altruism can only explain the behavior of 30%
of subjects, while the model excluding reciprocity can only explain the behavior of 70% of subjects. In
contrast, inequity aversion plays a marginal role and only helps explain why P2’s giving does not rise in
situations where P1 could pay her generosity forward. The model that excludes inequity aversion performs
almost as well as the full model, in that it explains the behavior of 88% of subjects.

Overall, altruism and indirect reciprocity have high explanatory power over pay-it-forward behavior,
and can explain why chains of generosity propagate once started. However, our subjects were not motivated
to give more based on the knowledge that their generosity will be paid forward. Our experimental evidence
suggests that chains of generosity are difficult to start.

Our contributions are threefold. First, we introduce a simple, novel experiment that establishes the role
of indirect reciprocity motives in pay-it-forward behavior while controlling for alternative explanations.
Many prior papers fail to determine if reciprocity intentions truly motivate pay-it-forward behavior, since
they cannot rule out the income effect, where the act of receiving a gift itself can make subjects more likely
to give through increasing their wealth (Herne et al., 2013; van Apeldoorn and Schram, 2016; Simpson et al.,
2018; Mujcic and Leibbrandt, 2018; Attanasi et al., 2019). Furthermore, to our knowledge, our paper is the
first to experimentally account for relative wealth differences, which could lead to pay-it-forward behavior
if subjects exhibit inequity aversion. In addition, since subjects participate in our experiment online, without
observation or communication from other subjects, we control for social image considerations, which
Charness and Rabin (2002), Sobel (2005), and Cox et al. (2008) theoretically argue and Malmendier et al.
(2014) experimentally find to be important in reciprocal interactions.

Second, most game-theoretic frameworks focus on direct reciprocity between two individuals who
directly interact (Rabin, 1993; Dufwenberg and Kirchsteiger, 2004; Falk and Fischbacher, 2006; Seinen
and Schram, 2006; Cox et al., 2007; Battigalli and Dufwenberg, 2009; Berger, 2011; Gong and Yang, 2019;
Gaudeul et al., 2021), but cooperative communities frequently involve three or more individuals who
do not necessarily directly interact.3 To our knowledge, our paper is the first to develop a behavioral
game-theoretic framework for the systematic investigation of indirect reciprocity, promoting reciprocal
exchange in environments where not all parties directly interact. We find that altruism and reciprocity
incentives can explain why kindness begets further kindness. By promoting the propagation of generosity,
they help sustain chains of giving once started. Inequity aversion, however, presents a barrier to starting

3Wu (2018) and Jiang and Wu (2019) discuss models involving indirect interactions among more than two players. Reciprocal
behavior has also been investigated in evolutionary biology (Nowak and Sigmund, 1998a,b; Ohtsuki and Iwasa, 2006; Iwagami and
Masuda, 2010) and psychology (Hu et al., 2019; Nava et al., 2019).
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these chains. Our paper has important ramifications for how to foster cultures of cooperation within
workplaces, neighborhoods, and communities.

Third, our theory and experiment complement each other in exploring the roles of type-based, outcome-
based, and intentions-based models of fairness on pay-it-forward behavior. Outcome-based models propose
that fairness depends on players’ relative payoffs, so inequity aversion andminimax preferences should drive
how subjects allocate wealth between themselves and others (Fehr and Schmidt, 1999; Bolton and Ockenfels,
2000). Type-based models posit that giving behavior depends on one’s innate prosocial parameters (Levine,
1998; Cox et al., 2007; Malmendier et al., 2014). Intentions-based models argue that utility also depends
on beliefs about others’ kindness intentions (Rabin, 1993; Dufwenberg and Kirchsteiger, 2004; Battigalli
and Dufwenberg, 2009; Gul and Pesendorfer, 2016). We combine elements from these models to evaluate
the importance of each in rationalizing subjects’ behavior. Specifically, type-based components of our
model allow us to fix subjects’ structural prosocial parameters across various nodes of the game. Eliciting
subjects’ full strategy sets then enables us to perform within-subject comparisons across different nodes of
the game. Moreover, our within-subject design allows us to explicitly quantify the proportion of subjects
whose strategies align with theoretical predictions, following methods in Charness and Rabin (2002).

The rest of the paper is organized as follows. Section 2 introduces the psychological game-theoretic
framework and derives predicted equilibrium giving rates. Section 3 describes the experimental procedure.
Section 4 compares our experimental results with theoretical predictions and evaluates the roles of altruism,
fairness, and reciprocity in rationalizing experimental behavior. Section 5 concludes. The appendix collects
omitted proofs and experimental details.

2 Theory

2.1 Model

We construct a model to better understand subjects’ giving decisions in the games summarized in Figure 1.
All the games we consider are finite-action multistage games with observable actions and without moves
of nature. Play proceeds in stages in which each player, along any path reaching that stage, (i) knows all
preceding choices, (ii) moves exactly once, and (iii) obtains no information about other players’ choices in
that stage. We follow the framework of Dufwenberg and Kirchsteiger (2004) but make three modifications.
First, we incorporate an altruistic payoff component. Second, we incorporate indirect reciprocity rather
than direct reciprocity. Third, we incorporate inequity aversion parameters from Fehr and Schmidt (1999),
and make adjustments to account for expected payoffs.

Let 𝑁 = {1, . . . , 𝑛} denote the set of players. Let ℎ denote a history of preceding choices represented
by a node in the extensive-form representation of games, and let 𝐻 denote the set of histories of a game.
Let 𝑆𝑖 denote player 𝑖’s pure strategy set, and 𝑆 = 𝑆1 × · · · × 𝑆𝐼 the set of pure strategy profiles. The set of
(potentially mixed) behavioral strategies of player 𝑖 ∈ 𝑁 is denoted by Σ𝑖 , where a strategy 𝜎𝑖 ∈ Σ𝑖 of player
𝑖 assigns a probability distribution over the set of possible choices of player 𝑖 for each history ℎ ∈ 𝐻 . Let
Σ =

∏
𝑖∈𝑁 Σ𝑖 denote the collection of behavioral strategy profiles 𝜎 of all players, and Σ−𝑖 =

∏
𝑗∈𝑁 \{𝑖 } Σ 𝑗

the collection of behavioral strategy profiles 𝜎−𝑖 of all players other than 𝑖 . Let Σ′
𝑖 𝑗 be the set of beliefs of
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player 𝑖 about the strategy of player 𝑗 (i.e., 𝑖’s first-order beliefs).4 Let Σ′′
𝑖 𝑗𝑘

be the set of beliefs of player
𝑖 about the belief of player 𝑗 about the strategy of player 𝑘 (i.e., 𝑖’s second-order beliefs). By definition,
Σ′
𝑖 𝑗 = Σ 𝑗 and Σ′′

𝑖 𝑗𝑘
= Σ′

𝑗𝑘
= Σ𝑘 .

With 𝜎𝑖 ∈ Σ𝑖 and ℎ ∈ 𝐻 , let 𝜎𝑖 (ℎ) denote the updated strategy that prescribes the same choices as 𝜎𝑖 ,
except for the choices that define history ℎ. Note that 𝜎𝑖 (ℎ) is uniquely defined for any history ℎ. For any
beliefs 𝜎 ′𝑖 𝑗 ∈ Σ′

𝑖 𝑗 or 𝜎 ′′𝑖 𝑗𝑘 ∈ Σ′′
𝑖 𝑗𝑘

, define updated beliefs 𝜎 ′𝑖 𝑗 (ℎ) and 𝜎 ′′𝑖 𝑗𝑘 (ℎ) analogously.
Player 𝑖’s utility function depends on strategies 𝜎 , first-order beliefs 𝜎 ′, and second-order beliefs 𝜎 ′′,

which we summarize by a vector ®𝜎 ≡ (𝜎, 𝜎 ′, 𝜎 ′′). These strategies and beliefs in turn determine the expected
payoffs of players, which comprise of her own material payoff and three psychological components: (i)
the altruistic payoff, (ii) the reciprocity payoff, and (iii) the equity payoff. The utility function takes the
following form:

𝑢𝑖 ( ®𝜎) = 𝜋𝑖 (𝜎) +𝐴𝑖
∑︁
𝑗≠𝑖

𝜋 𝑗 (𝜎)︸         ︷︷         ︸
altruism

+
∑︁
𝑗≠𝑖

∑︁
𝑘∉{𝑖, 𝑗 }

𝑍𝑖𝜆𝑖𝑘𝑖 ( ®𝜎)𝜅𝑖 𝑗 ( ®𝜎)︸                           ︷︷                           ︸
indirect reciprocity

(1)

−
∑︁
𝑠∈𝑆

𝜎 (𝑠)
[ disadvantageous inequity aversion︷                                       ︸︸                                       ︷
𝛼𝑖

1

𝑛 − 1

∑︁
𝑗≠𝑖

max{𝜋 𝑗 (𝑠) − 𝜋𝑖 (𝑠), 0} +

advantageous inequity aversion︷                                       ︸︸                                       ︷
𝛽𝑖

1

𝑛 − 1

∑︁
𝑗≠𝑖

max{𝜋𝑖 (𝑠) − 𝜋 𝑗 (𝑠), 0}
]

︸                                                                                                         ︷︷                                                                                                         ︸
inequity aversion

,

where 𝜋𝑖 (𝜎) is 𝑖’s material payoff; 𝐴𝑖 ∈ [0, 1] is 𝑖’s altruistic factor that dictates how much utility 𝑖 derives
from the material payoffs of other players regardless of the distribution of relative wealth; and 𝑍𝑖 is 𝑖’s
indirect reciprocity parameter. From Fehr and Schmidt (1999), we incorporate inequity aversion parameters
𝛼 and 𝛽 . Player 𝑖 receives disutility 𝛼𝑖 for each unit of lower payoff than others (“disadvantageous inequity
aversion") and disutility 𝛽𝑖 for each unit of higher payoff than others (“advantageous inequity aversion"),
where 𝛼𝑖 ≥ 𝛽𝑖 and 0 ≤ 𝛽𝑖 ≤ 1.

Both 𝜅𝑖 𝑗 and 𝜆𝑖𝑘𝑖 are defined as in Dufwenberg and Kirchsteiger (2004). However, we substitute the
direct reciprocity component for an indirect reciprocity component in which subjects can only reciprocate
kind acts by helping a third party, rather than their benefactors.5

The function 𝜅𝑖 𝑗 : Σ𝑖 ×
∏

𝑗≠𝑖 Σ
′
𝑖 𝑗 → R is 𝑖’s kindness to 𝑗 from choosing strategy 𝜎𝑖 while other players

4 We allow mixed strategies for a few reasons. First, it is a common consideration in both standard and psychological game
theory (Nash, 1950; Rabin, 1993; Dufwenberg and Kirchsteiger, 2004). Second, our equilibrium concept will involve beliefs, which
are probabilistic in nature unless they represent 100% certainty. Mixed strategies are a natural consequence of uncertain beliefs.
Third, it guarantees equilibrium existence. Our control game will turn out to have pure strategy equilibria only, but our treatment
games will have equilibria involving mixed strategies.

5Our model is able to incorporate the direct reciprocity factors from Dufwenberg and Kirchsteiger (2004) with the addition of
the following term: ∑︁

𝑗≠𝑖

𝑌𝑖𝜆𝑖 𝑗𝑖 ( ®𝜎)𝜅𝑖 𝑗 ( ®𝜎)︸                  ︷︷                  ︸
direct reciprocity

,

where 𝑌𝑖 is 𝑖’s direct reciprocity parameter. However, because direct reciprocity does not play a role in our games, we omit them
from the main utility specification (1).
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choose 𝜎−𝑖 :
𝜅𝑖 𝑗

(
𝜎𝑖 (ℎ), (𝜎 ′𝑖 𝑗 (ℎ)) 𝑗≠𝑖

)
= 𝜋 𝑗

(
𝜎𝑖 (ℎ), (𝜎 ′𝑖 𝑗 (ℎ)) 𝑗≠𝑖

)
− 𝜋𝑄𝑖

𝑗

(
(𝜎 ′𝑖 𝑗 (ℎ)) 𝑗≠𝑖

)
,

where
𝜋
𝑄𝑖
𝑗
((𝜎 ′𝑖 𝑗 ) 𝑗≠𝑖) =

1

2

[
max
𝜎𝑖 ∈Σ𝑖

𝜋 𝑗 (𝜎𝑖 , (𝜎 ′𝑖 𝑗 ) 𝑗≠𝑖) + min
𝜎𝑖 ∈Σ𝑖

𝜋 𝑗 (𝜎𝑖 , (𝜎 ′𝑖 𝑗 ) 𝑗≠𝑖)
]

is player 𝑗 ’s equitable payoff with respect to 𝑖 . It is the average between 𝑗 ’s lowest and highest possible
material payoff based on 𝑖’s strategy. Since kindness is defined relative to 𝑗 ’s equitable payoff, 𝑖’s kindness
is positive (negative) if 𝑖 chooses an action that gives a strictly higher (lower) expected payoff for 𝑗 than 𝑗 ’s
equitable payoff.

The function 𝜆𝑖𝑘𝑖 : Σ′
𝑖𝑘
×∏

ℓ≠𝑘 Σ
′′
𝑖𝑘ℓ

→ R is 𝑖’s belief of 𝑘’s kindness to 𝑖 given 𝑖’s belief of 𝑘’s belief of
other players’ strategies:

𝜆𝑖𝑘𝑖 (𝜎 ′𝑖𝑘 (ℎ), (𝜎
′′
𝑖𝑘ℓ

(ℎ))ℓ≠𝑘 ) = 𝜋𝑖
(
𝜎 ′
𝑖𝑘
(ℎ), (𝜎 ′′

𝑖𝑘ℓ
(ℎ))ℓ≠𝑘

)
− 𝜋𝑄𝑘

𝑖

(
(𝜎 ′′
𝑖𝑘ℓ

(ℎ))ℓ≠𝑘
)
.

Next, we define specifications of the utility function in which none, some, or all of the psychological
components—altruism, indirect reciprocity, and inequity aversion—are assumed away. We formulate key
predictions based on the utility specifications and test them against our experimental results in Section 4.

Definition 1. Altruistic, inequity averse, and reciprocal (AIR) utility assumes that 𝐴𝑖 > 0, 𝛼𝑖 > 0,
𝛽𝑖 > 0, and 𝑍𝑖 > 0 for all 𝑖 . Standard/selfish (S) utility ignores psychological components and assumes
that 𝐴𝑖 = 0, 𝛼𝑖 = 0, 𝛽𝑖 = 0, and 𝑍𝑖 = 0 for all 𝑖 . Altruistic (A), Reciprocal (R), AI , Inequity averse (I), AR,
and IR utilities respectively assume the relevant utility components to be nonnegative and other utility
components to be zero.

Note that the reciprocity utility component depends on strategies, beliefs, and other players’ material
payoffs. Therefore, the equilibrium is defined with respect to both strategies and beliefs.

Definition 2. Strategies and beliefs ®𝜎 constitute a dynamic reciprocity equilibrium if and only if (i)
(consistency) players have correct beliefs about other players’ actions, i.e., 𝜎 = 𝜎 ′𝑖 = 𝜎

′′
𝑖 𝑗 for any players 𝑖

and 𝑗 ; and (ii) (utility maximization) for each player 𝑖 , strategy profile 𝜎𝑖 maximizes player 𝑖’s utility at each
information set given first-order and second-order beliefs 𝜎 ′𝑖 and 𝜎 ′′𝑖 𝑗 .

Theorem 1. A dynamic reciprocity equilibrium always exists.6

Proof. See Appendix A.2.

We elicit full strategy sets and beliefs in our experiment (see the experimental procedure in Section 3
regarding the elicitation of strategy sets and Appendix B.3 on the elicitation of beliefs). The model specifies
that the central belief parameters are first-order and second-order beliefs about P1’s likelihood of giving to
P0. We will show that elicited beliefs match empirical giving rates, supporting the consistency condition in
our definition of equilibrium.

6In general, a dynamic reciprocity equilibrium is not necessarily unique. However in our games, except for a measure zero set
of parameters, equilibrium strategies are uniquely determined. For a measure zero set of parameters, a player may be indifferent
between giving and keeping, and hence any probability of giving can constitute an equilibrium, resulting in multiple equilibria.

6



2.2 Giving decisions

There are three players—P2, P1, and P0—in each of our three games. Each player’s index denotes the number
of players behind her in the chain: P0 is the last potential recipient, P1 is the last player to decide on giving,
and P2, if allowed, is the penultimate player to decide on giving. The game trees are depicted in Figure 1.
To simplify the exposition of giving rates, we define the following notation.

Definition 3. For any real number 𝑥 , define J𝑥K to be 1 if 𝑥 is bigger than 1, 𝑥 if 𝑥 is between 0 and 1, and
0 if 𝑥 is smaller than 0. Mathematically, J𝑥K ≡ max{0,min{1, 𝑥}}.

2.2.1 The control game

First, consider the control game (Figure 1a). P2 is endowed with 2 chips, P1 with 3 chips, and P0 with 0
chips. P2 cannot decide on anything in this game, and exists to keep relative payoffs similar to the treatment
games. P1 can either keep all 3 chips so that P0 has 0 chips, or pass 1 chip to P0 so that P0 has 2 chips. P0
cannot decide on anything, and can only receive chips from P1.

Lemma 1. In the control game, P1 gives if and only if 2𝐴1 + 2𝛽1 ≥ 1.

P1 can either keep 1 chip (so that P0 gains no chips) or give 1 chip (so that P0 gains 2 chips). When
P1 gives one chip, the material payoffs change from (𝜋2, 𝜋1, 𝜋0) = (2, 3, 0) to (𝜋2, 𝜋1, 𝜋0) = (2, 2, 2). By
giving, she lowers her material payoff by 1 unit, but increases her altruistic payoff by 2𝐴1 units as P0’s
payoff increases from 0 to 2. Moreover, because inequity aversion gives P1 disutility from having more
chips than other players, she gains 2𝛽1 from giving and equalizing payoffs across all three players. Overall,
the psychological gain of giving by P1 is

2𝐴1 + 2𝛽1. (2)

Figure A1 depicts P1’s equilibrium giving rate as 𝐴1 varies. In equilibrium, there is no mixed strategy
except for when 2𝐴1 + 2𝛽1 = 1, so the equilibrium giving rate can be represented by an indicator function:
𝛾𝑐1 = 12𝐴1+2𝛽1≥1.7 P1 is more inclined to give the higher her altruistic factor 𝐴1 and advantageous inequity
aversion 𝛽1 (that is, the more she dislikes having more than other players). Pure altruism 𝐴1 and/or
advantageous inequity aversion 𝛽1—but not disadvantageous inequity aversion 𝛼1 or reciprocity 𝑍1—helps
rationalize giving by P1 in the control game. Note that reciprocity does not play a role here because only
one player takes an action, and others do not have the opportunity to reciprocate.

2.2.2 Exclusive game

Second, consider a three-player game in which P1 can only give to P0 if P2 gave to P1 first (Figure 1b). P2 is
endowed with 3 chips, P1 with 1 chip, and P0 with 0. P2 can either keep all 3 chips or give 1 chip to P1 so
that P1’s chip count increases from 1 to 3. Only upon receiving additional chips can P1 choose to give. If P1
gives 1 chip, P0 gets 2 chips. If P1 keeps, P2 gets 0.

7When 2𝐴1 + 2𝛽1 = 1, P1 is indifferent between giving and keeping, since the change in material payoffs equals the change
in psychological payoffs. In equilibrium, P1 can choose to give with any probability 𝛾𝑐1 ∈ [0, 1]. Without loss of generality, we
assume that P1 chooses to give.
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Lemma 2. In any equilibrium of the exclusive game, P2 gives if 1 + 𝛼2
1−𝛾𝑒1𝐺

2 ≤ 𝐴2(2 + 𝛾𝑒1𝐺 ) + 𝛽2
3+2𝛾𝑒1𝐺

2 , and

P1 gives with probability 𝛾𝑒1𝐺 = J2𝐴1+2𝛽1−1
𝑍1

+ 2K.

Compared to keeping, giving lowers P2’s material payoff but increases her utility from altruism and
from having an equitable distribution of payoffs among all players in the group. The left-hand side of the
inequality in Lemma 2 represents the two ways P2 loses from giving. Compared to keeping, giving lowers
P2’s material payoff by 1. P2 may also suffer utility loss from disadvantageous inequity, since P1 may keep
after she gives, making her material payoff lower than P1’s. More precisely, if P1 keeps after P2 gave, P2
incurs utility loss from disadvantageous inequity of (3 − 2)𝛼2/2 = 𝛼2/2. Because P1 keeps with probability
1 − 𝛾𝑒1𝐺 after P2 gave, giving would lower P2’s expected utility by (1 − 𝛾𝑒1𝐺 )𝛼2/2.

The right-hand side of the inequality represents the two ways P2 gains from giving. Giving increases
P2’s altruistic payoff by 𝐴2(2 +𝛾𝑒1𝐺 ) in expectation. Giving also rectifies inequity aversion, in that P2 is less
likely to have more than other players. If P2 keeps, she suffers disutility of [(3 − 1) + (3 − 0)]𝛽2/2 = 5𝛽2/2
from advantageous inequity, since she will have higher payoffs compared to P1 and P0. If P2 gives, two
scenarios can happen. If P1 gives, P2 suffers no inequity aversion since all players will have 2 chips. If P1
keeps (which happens with probability 1 − 𝛾𝑒1𝐺 ), then P2 suffers (2 − 0)𝛽2/2 = 𝛽2 from getting more than
P0. Hence, by giving, P2 gains in expectation 5𝛽2/2 − (1 − 𝛾𝑒1𝐺 )𝛽2 = (3/2 + 𝛾𝑒1𝐺 )𝛽2.

In summary, altruism unambiguously motivates P2 to give. However, the effect of inequity aversion is
ambiguous. Advantageous inequity aversion motivates P2 to give, since she loses utility from having more
than the other two players. Disadvantageous inequity aversion motivates P2 to keep, since giving to P1
could lead her to end up with less than P1.

Next, we consider P1’s strategy. Upon receiving 2 chips from P2, P1 faces the following trade-off. If P1
gives, P1 loses one unit of material payoff, but gains in the three psychological components. A 2-chip gain
for P0 gives P1 an altruistic payoff gain of 2𝐴1 and 2𝛽1 from equalizing payoffs. Furthermore, P1 earns
an indirect reciprocity payoff of 𝑍1(2 − 𝛾 ′′1𝐺 ), where 𝛾 ′′1𝐺 is P1’s belief of P2’s belief of P1’s probability of
giving. Altogether, P1’s psychological gain from giving after P2 gave is

2𝐴1 + 2𝛽1 + 𝑍1(2 − 𝛾 ′′1𝐺 ) . (3)

In equilibrium, P1’s second-order belief must equate with her strategy (𝛾 ′′1𝐺 = 𝛾𝑒1𝐺 ). If 2𝐴1 + 2𝛽1 + 𝑍1 ≥ 1,
then 𝛾𝑒1𝐺 = 1; if 2𝐴1 + 2𝛽1 + 2𝑍1 ≤ 1, then 𝛾𝑒1𝐺 = 0. Otherwise, a mixed strategy is needed to equate the
equilibrium strategy of P1 and the belief of P2: P1 gives with a probability strictly between 0 and 1 that
makes her indifferent between giving and keeping. P1’s inclination to give increases with altruism 𝐴1,
advantageous inequity aversion 𝛽1, and indirect reciprocity 𝑍1. Figure A1 depicts how P1’s equilibrium
giving rate varies with altruism 𝐴1. Figure A2 depicts how P2’s equilibrium giving rate varies with 𝐴2.

2.2.3 Nonexclusive game

Finally, consider a three-player game in which P0’s channel of receiving chips is nonexclusive (Figure 1c).
P2 is endowed with 3 chips, P1 with 1, and P0 with 0. P2 can either keep all the chips so that P1’s chip
count remains unchanged, or give away 1 chip so that P1’s chip count increases by 2. Regardless of P2’s
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decision, P1 can keep all the chips or give away 1 chip so that P0’s chip count increases by 2.

Lemma 3. In any equilibrium of the nonexclusive game, P2 gives if and only if 1 + 𝛼2
1−𝛾𝑛1𝐺

2 ≤ 𝐴2(2 +
𝛾𝑛1𝐺 − 𝛾𝑛1𝐾 ) + 𝛽2

3+2𝛾𝑛1𝐺−𝛾𝑛1𝐾
2 , P1 gives with probability 𝛾𝑛1𝐺 = J2𝐴1+2𝛽1−1

𝑍1
+ 2K after P2 gave, and P1 gives with

probability 𝛾𝑛1𝐾 = J4𝐴1−3𝛼1−𝛽1−2
2𝑍1

− 1K after P2 kept.

P2’s gains from giving are similar to those in the exclusive game. The only difference is that after P2
kept, P1 gives 1 chip with probability 𝛾𝑛1𝐾 , and 1 new chip gets created from P1’s gift to P0. P2 then gains
𝐴2 from altruism and 𝛽2/2 since payoffs become more equal after P0 gains 2 chips. Since the psychological
penalty to keeping is less severe for P2 in the nonexclusive game, the net benefit of giving is smaller in the
nonexclusive game than the exclusive game by 𝛾𝑛1𝐾 (𝐴2 + 𝛽2/2).

Finally, we consider P1’s strategy. If P2 chooses to give, then P1 faces the same trade-off as in the
exclusive game. Therefore, the equilibrium giving rate 𝛾𝑛1𝐺 in the nonexclusive game is characterized in the
same way as in the exclusive game. If P2 chooses to keep, reciprocity motives will make P1 more inclined to
keep. If P1 gives instead, her reciprocity motives will generate a utility loss of 𝑍1(2 − 𝛾 ′′1𝐾 ). In addition, by
giving, P1 changes the material payoffs from (𝜋2, 𝜋1, 𝜋0) = (3, 1, 0) to (3, 0, 2), which results in an increase
of 3𝛼1/2 units in disadvantageous inequity aversion and an increase of 𝛽1/2 units in advantageous inequity
aversion. Overall, the psychological gain of giving by P1 after P2 kept is

2𝐴1 − 3𝛼1/2 − 𝛽1/2 − 𝑍1(2 − 𝛾 ′′1𝐺 ) = 2𝐴1 + 2𝛽1 − 3𝛼1/2 − 3𝛽1/2 − 𝑍1(2 − 𝛾 ′′1𝐺 ) . (4)

Note that there is no simultaneous mixing of both giving decisions in equilibrium under any combination
of parameters. This is because the conditions for indifference differ at the two decision nodes. When P1 is
indifferent between giving and keeping at one decision node, she is not indifferent at the other.

Since we are interested in characterizing when a player may give, we summarize in Table 1 the conditions
under which giving is part of the equilibrium strategy (i.e., 𝛾 > 0).

Table 1: Summary of conditions for positive equilibrium giving rate (𝛾 > 0)

Last Movers (P1 in all games)
P1 in the control game 2𝐴1 + 2𝛽1 > 1
P1 in the exclusive game after P2 gave 2𝐴1 + 2𝛽1 + 2𝑍1 > 1
P1 in the nonexclusive game after P2 gave 2𝐴1 + 2𝛽1 + 2𝑍1 > 1
P1 in the nonexclusive game after P2 kept 2𝐴1 + 2𝛽1 + 2𝑍1 − 3𝛼1 − 3𝛽1 − 3𝑍1 > 1

Initial Movers (P1 in the control game and P2 in the treatment games)
P1 in the control game 2𝐴1 + 2𝛽1 > 1

P2 in the exclusive game 2𝐴2 + 2𝛽2 + 𝛾𝑒1𝐺𝐴2 − 𝛼2
1−𝛾𝑒1𝐺

2 − 𝛽2
1−2𝛾𝑒1𝐺

2 > 1

P2 in the nonexclusive game 2𝐴2 + 2𝛽2 + (𝛾𝑛1𝐺 − 𝛾𝑛1𝐾 )𝐴2 − 𝛼2
1−𝛾𝑛

1𝐺

2 − 𝛽2
1−2𝛾𝑛

1𝐺
+𝛾𝑛

1𝐾

2 > 1

Note: The table summarizes the conditions for positive equilibrium rates (𝛾 > 0), which are deduced from the three lemmas
(by setting 𝛾 > 0).
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2.3 Comparisons of giving: theoretical predictions

Our theory and experiment complement each other in generating and testing predictions of giving strategies.
In the experiment, we elicit subjects’ giving decisions at all nodes of all games using the strategy method.
This enables us to compare behavior at different nodes for each subject. Our predictions involve pairwise
comparisons of subjects’ giving decisions. To make these comparisons, we say that one is more inclined to
give in the following sense.

Definition 4. Player 𝑖 is more inclined to take action 𝑠 at node 𝐻 than player 𝑗 to take action 𝑠′ at node
𝐻 ′, 𝜎𝑖 (𝑠 |𝐻 ) ≻ 𝜎 𝑗 (𝑠′ |𝐻 ′), if given (𝐴𝑖 , 𝑍𝑖 , 𝛼𝑖 , 𝛽𝑖) = (𝐴 𝑗 , 𝑍 𝑗 , 𝛼 𝑗 , 𝛽 𝑗 ), in equilibrium, 𝜎𝑖 (𝑠 |𝐻 ) ≥ 𝜎 𝑗 (𝑠′ |𝐻 ′) for all
parameters, and the inequality holds strictly for some parameters. Player 𝑖 is equally inclined to take
action 𝑠 at node 𝐻 as player 𝑗 to take action 𝑠′ at node 𝐻 ′, 𝜎𝑖 (𝑠 |𝐻 ) ∼ 𝜎 𝑗 (𝑠′ |𝐻 ′), if given (𝐴𝑖 , 𝑍𝑖 , 𝛼𝑖 , 𝛽𝑖) =
(𝐴 𝑗 , 𝑍 𝑗 , 𝛼 𝑗 , 𝛽 𝑗 ), in equilibrium, 𝜎𝑖 (𝑠 |𝐻 ) = 𝜎 𝑗 (𝑠′ |𝐻 ′) for all parameters.

Table 2 summarizes pairwise comparisons of giving. These comparisons are formally presented as
propositions in Appendix A under each of the eight utility functions (“models”) listed in Definition 1, which
turn on or off each of the three psychological components we consider. These propositions generate one
prediction for each comparison under each model. In the exposition below, the order of comparisons derives
from the order in which the propositions must be proven (see Appendix A).

First, note that a standard model without the aforementioned psychological components (Model S)
predicts no giving by any player under any circumstance, since giving strictly decreases subjects’ material
payoffs. For all other models, we first consider predictions for Last Movers: P1 in all games. We then
consider predictions for Initial Movers: P2 in the treatment games and P1 in the control game.

2.3.1 Predictions for Last Movers

Rows 1–5 of Table 2 report predicted pairwise comparisons of giving rates of Last Movers (P1 in all games).8

In the most general utility specification with altruism, reciprocity, and inequity aversion (Model AIR),
the giving rates by the Last Mover are ordered 𝛾𝑒1𝐺 ∼ 𝛾𝑛1𝐺 ≻ 𝛾𝑐1 ≻ 𝛾𝑛1𝐾 . P1 is least likely to give in the
nonexclusive game after P2 keeps (Comparisons 1 and 4). P1’s giving rate in the control game is larger than
this baseline, but lower than P1’s giving rate in the treatment games after P2 gives (Comparison 2 and 3).
Within the treatment games, in the case where P2 gives, P1’s giving rate will be similar in the exclusive and
nonexclusive games (Comparison 5).

We start by considering the predictions with alternative utility specifications in which only one
psychological component is considered at a time (Models A, I, and R). Under altruism alone (Model A), P1
has a positive giving probability at all five nodes, since her gift will enable P0 to have $2 rather than $0
in all cases (Comparisons 1-5 under Model A). Under reciprocity motives alone (Model R), P1 is inclined
to give only after receiving a gift from P2. P1’s giving rates will be greater after P2 gave in the treatment

8 The model generates predictions for comparing each of P1’s four giving decisions, except for the comparison between
𝛾𝑒
1𝐺

and 𝛾𝑛
1𝐾

. The comparison of 𝛾𝑒
1𝐺

and 𝛾𝑛
1𝐾

is already captured by two existing comparisons. As we will discuss, we predict
𝛾𝑒
1𝐺

∼ 𝛾𝑛
1𝐺

for all models (Comparison 5). We predict that 𝛾𝑛
1𝐺

∼ 𝛾𝑛
1𝐾

under Models S, A, and R and that 𝛾𝑛
1𝐺

≻ 𝛾𝑛
1𝐾

under all other
models (Comparison 1). It follows that 𝛾𝑒

1𝐺
∼ 𝛾𝑛

1𝐾
if the S, A, or R model is true and 𝛾𝑒

1𝐺
≻ 𝛾𝑛

1𝐾
if any other model is true.
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games than in the control game, even though P1 would have $3 in all cases (Comparisons 2 and 3 under
Model R, 𝛾𝑒1𝐺 > 𝛾𝑐1 and 𝛾

𝑛
1𝐺 > 𝛾𝑐1). Under inequity aversion alone, P1 is equally likely to give at all nodes

where she received $3 (in the treatment games after P2 gave or in the control game), since giving ensures
that all players receive $2 (Comparisons 2, 3, and 5 under Model I).

We next consider predictions when one of the three psychological components is omitted (Models AI,
IR, and AR). Without reciprocity, P1 would be equally inclined to give in the control game and after P2 gave
in the treatment games (Comparisons 2, 3, and 5 under Model AI). Without altruism, P1 would never give
after P2 kept in the nonexclusive game (Comparisons 1 and 4 under Model IR). Without inequity aversion
(Model AR), predictions for P1’s behavior are the same as in the general AIR model. Note that this means
inequity aversion does not play a role in explaining Last Movers’ giving behavior.

2.3.2 Predictions for Initial Movers

Rows 6–8 of Table 2 summarize predicted pairwise comparisons of giving rates for Initial Movers (P1 in the
control game and P2 in the treatment games). In Model AIR, P2’s giving rate is higher in the exclusive game
than the nonexclusive game (Comparison 6 under Model AIR), since failure to give precludes all subsequent
giving in the exclusive game. However, it is unclear whether P2 in the treatment games would be more
inclined to give than P1 in the control game (Comparisons 7 and 8 under Model AIR), since altruism pushes
for greater giving and inequity aversion pushes for lower giving in the treatment games.

Models A, I, and R consider the isolated role of each psychological component in predicting Initial
Movers’ strategies. If only altruism motivated our subjects, giving by Initial Movers would be highest in the
exclusive game, since the failure to give would preclude any giving by downstream players (Comparisons
6 and 7 under Model A). If only inequity aversion motivated our subjects, P2 would be equally inclined
to give in the exclusive and nonexclusive games, since she knows that failure to give would leave either
P1 or P0 with nothing (Comparison 6 under Model I). With only reciprocity, P1 would only give after P2
gave and not after P2 kept in the nonexclusive game (Comparison 4 under Model R). This would make the
nonexclusive and exclusive games effectively the same to P2, so P2 would be equally inclined to give in the
two games (Comparison 6 under Model R).

Models AI, IR, and AR each omit one psychological component. Without reciprocity, giving by P2
would be greater in the exclusive game than in the nonexclusive game (Comparison 6 under Model AI). P2
knows that failing to give in the exclusive game precludes P1 from giving to P0, which is undesirable since
she is altruistic toward P0 and averse to inequity. However, in the nonexclusive game, the consequences
of failing to give are less certain, since P1 technically can still give to P0 even if P2 did not give. Without
altruism, in contrast, P2 is equally likely to give in the exclusive and nonexclusive games (Comparison 6
under Model IR). This is because P2 knows that her gift will increase P1’s likelihood of giving via reciprocity
motives. This means in both the treatment games, her gift generates the same likelihood of achieving equal
payoffs of $2 for all players. Finally, without inequity aversion, the Initial Mover would be more inclined to
give in the treatment games than in the control game, since her gift would affect more downstream players
(Comparisons 7 and 8 under Model AR).
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Table 2: Comparisons of giving: theoretical predictions

Last Movers (P1 in all games)

Comparison

Model
S A I R AI IR AR AIR

1: 𝛾𝑛1𝐺 versus 𝛾𝑛1𝐾 𝛾𝑛1𝐺 ∼ 𝛾𝑛1𝐾 ∼ 0 𝛾𝑛1𝐺 ∼ 𝛾𝑛1𝐾 ≻ 0 𝛾𝑛1𝐺 ≻ 𝛾𝑛1𝐾 ∼ 0 𝛾𝑛1𝐺 ∼ 𝛾𝑛1𝐾 ∼ 0 𝛾𝑛1𝐺 ≻ 𝛾𝑛1𝐾 ≻ 0 𝛾𝑛1𝐺 ≻ 𝛾𝑛1𝐾 ∼ 0 𝛾𝑛1𝐺 ≻ 𝛾𝑛1𝐾 ≻ 0 𝛾𝑛1𝐺 ≻ 𝛾𝑛1𝐾 ≻ 0

2: 𝛾𝑒1𝐺 versus 𝛾𝑐1 𝛾𝑒1𝐺 ∼ 𝛾𝑐1 ∼ 0 𝛾𝑒1𝐺 ∼ 𝛾𝑐1 ≻ 0 𝛾𝑒1𝐺 ∼ 𝛾𝑐1 ≻ 0 𝛾𝑒1𝐺 ≻ 𝛾𝑐1 ∼ 0 𝛾𝑒1𝐺 ∼ 𝛾𝑐1 ≻ 0 𝛾𝑒1𝐺 ≻ 𝛾𝑐1 ≻ 0 𝛾𝑒1𝐺 ≻ 𝛾𝑐1 ≻ 0 𝛾𝑒1𝐺 ≻ 𝛾𝑐1 ≻ 0

3: 𝛾𝑛1𝐺 versus 𝛾𝑐1 𝛾𝑛1𝐺 ∼ 𝛾𝑐1 ∼ 0 𝛾𝑛1𝐺 ∼ 𝛾𝑐1 ≻ 0 𝛾𝑛1𝐺 ∼ 𝛾𝑐1 ≻ 0 𝛾𝑛1𝐺 ≻ 𝛾𝑐1 ∼ 0 𝛾𝑛1𝐺 ∼ 𝛾𝑐1 ≻ 0 𝛾𝑛1𝐺 ≻ 𝛾𝑐1 ≻ 0 𝛾𝑛1𝐺 ≻ 𝛾𝑐1 ≻ 0 𝛾𝑛1𝐺 ≻ 𝛾𝑐1 ≻ 0

4: 𝛾𝑛1𝐾 versus 𝛾𝑐1 𝛾𝑐1 ∼ 𝛾𝑛1𝐾 ∼ 0 𝛾𝑐1 ∼ 𝛾𝑛1𝐾 ≻ 0 𝛾𝑐1 ≻ 𝛾𝑛1𝐾 ∼ 0 𝛾𝑐1 ∼ 𝛾𝑛1𝐾 ∼ 0 𝛾𝑐1 ≻ 𝛾𝑛1𝐾 ≻ 0 𝛾𝑐1 ≻ 𝛾𝑛1𝐾 ∼ 0 𝛾𝑐1 ≻ 𝛾𝑛1𝐾 ≻ 0 𝛾𝑐1 ≻ 𝛾𝑛1𝐾 ≻ 0

5: 𝛾𝑛1𝐺 versus 𝛾𝑒1𝐺 𝛾𝑛1𝐺 ∼ 𝛾𝑒1𝐺 ∼ 0 𝛾𝑛1𝐺 ∼ 𝛾𝑒1𝐺 ≻ 0 𝛾𝑛1𝐺 ∼ 𝛾𝑒1𝐺 ≻ 0 𝛾𝑛1𝐺 ∼ 𝛾𝑒1𝐺 ≻ 0 𝛾𝑛1𝐺 ∼ 𝛾𝑒1𝐺 ≻ 0 𝛾𝑛1𝐺 ∼ 𝛾𝑒1𝐺 ≻ 0 𝛾𝑛1𝐺 ∼ 𝛾𝑒1𝐺 ≻ 0 𝛾𝑛1𝐺 ∼ 𝛾𝑒1𝐺 ≻ 0

Initial Movers (P1 in the control game and P2 in the treatment games)

Comparison

Model
S A I R AI IR AR AIR

6: 𝛾𝑒2 versus 𝛾𝑛2 𝛾𝑒2 ∼ 𝛾𝑛2 ∼ 0 𝛾𝑒2 ≻ 𝛾𝑛2 ≻ 0 𝛾𝑒2 ∼ 𝛾𝑛2 ≻ 0 𝛾𝑒2 ∼ 𝛾𝑛2 ∼ 0 𝛾𝑒2 ≻ 𝛾𝑛2 ≻ 0 𝛾𝑒2 ∼ 𝛾𝑛2 ≻ 0 𝛾𝑒2 ≻ 𝛾𝑛2 ≻ 0 𝛾𝑒2 ≻ 𝛾𝑛2 ≻ 0

7: 𝛾𝑒2 versus 𝛾𝑐1 𝛾𝑒2 ∼ 𝛾𝑐1 ∼ 0 𝛾𝑒2 ≻ 𝛾𝑐1 ≻ 0 depends 𝛾𝑒2 ∼ 𝛾𝑐1 ∼0 depends depends 𝛾𝑒2 ≻ 𝛾𝑐1 ≻ 0 depends

8: 𝛾𝑛2 versus 𝛾𝑐1 𝛾𝑛2 ∼ 𝛾𝑐1 ∼ 0 𝛾𝑛2 ∼ 𝛾𝑐1 ≻ 0 depends 𝛾𝑛2 ∼ 𝛾𝑐1 ∼ 0 depends depends 𝛾𝑛2 ≻ 𝛾𝑐1 ≻ 0 depends

Note: ‘depends’ indicates the predicted comparison depends on inequity aversion parameters 𝛼𝑖 and 𝛽𝑖 .
Labels: Giving rate is denoted by 𝛾 . The superscript denotes game type, where 𝑐 stands for control, 𝑒 for exclusive, and 𝑛 for nonexclusive. The subscript 𝐺
stands for P1’s decision after P2 gives, and 𝐾 for P1’s decision after P2 keeps. S - standard model; A - altruism; R - reciprocity; I - inequity aversion.
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3 Experimental procedure

3.1 Implementation

Experimental sessions were implemented on Amazon Mechanical Turk (MTurk), an online platform
commonly used by experimental social scientists to collect information about choices, attitudes, and
opinions. The study was administered between February 23 and March 26 of 2021.9 It has been approved
by the Institutional Review Board at Michigan State University.

Since our study involved three-player games, we held sessions of 9 subjects each for a total of 43
sessions.10 A total of 408 subjects received payment for the study, but only 403 responded to all questions
and were counted in the full sample. All MTurk users were eligible to participate; we chose to not restrict
our sample of participants based on prior performance at MTurk tasks. However, we use quality check
questions to monitor subject attention and comprehension before almost all games (discussed below).

We conducted the experiment using Qualtrics software. Recruitment materials informed subjects that
they would receive $3 for completing the study and up to $5 in bonus payments. Subjects could preview
all experimental materials before choosing to participate. Experimental materials informed subjects that
upon study completion, they would be randomly assigned to a game and a group with other players from
their session. Their bonus earnings were calculated based on their giving decisions, as well as the giving
decisions of their group mates. Subjects received their payments via MTurk within 24 hours of completion.

3.2 Experimental procedure

We used the strategy method to elicit subjects’ actions at all nodes of all games. For example, in the
nonexclusive game we asked subjects whether they would give as P1 in the case that P2 gave and whether
they would give in the case that P2 kept. We leverage this within-subject variation to examine how each
subject’s actions differ across player roles and across games. Importantly, subjects made their giving
decisions after being told how they would be compensated but before they knew which game, group, or
player role they would be compensated for. Subjects could not contact each other or know with whom they
would be playing when they made their decisions.

All subjects proceeded through the experiment as follows. First, they were taken to the consent page,
which described their rights as study participants. Next, they viewed a video that described the study and
all games. Prior to the beginning of each game, subjects viewed the extensive-form diagram of the game
they were about to play, which contained information about endowments and payoffs for each realization
of the game. Throughout the session, they could click on a link that displayed the extensive-form diagram
and video describing the relevant game. To check subject comprehension, we asked questions about the
game rules before the exclusive and nonexclusive games. Subjects were informed they would earn an
additional $0.50 per game if they answered all questions for the game correctly on their first attempt.

All subjects played the control game first. After the control game, the order of the exclusive and

9The experiment was conducted online since it took place during the Covid pandemic, and nonessential in-person studies
were prohibited by Michigan State University.

10The exception was our first session, which was held with 30 subjects.
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Table 3: Summary statistics of study subjects

Study Characteristics

% saw exclusive game first 0.522 (0.0249)
study duration (minutes) 28.73 (0.543)
median study duration (minutes) 26.75
bonus payment 2.553 (0.0692)
median bonus payment 3
wrong answers 2.157 (0.117)
median wrong answers 1

Demographics

% female 0.275 (0.0223)
% college graduate 0.829 (0.0188)
% employed 0.931 (0.0127)
Citizenship/residency/language fluency

% US citizen 0.684 (0.0234)
% native English speaker 0.763 (0.0213)
% US resident 0.727 (0.0222)
Race/ethnicity

% Black 0.129 (0.0167)
% Asian 0.293 (0.0227)
% Hispanic 0.0496 (0.0108)
% White 0.501 (0.0249))
% Other race/ethnicity 0.0273 (0.00813)
Age

% 16-25 years old 0.159 (0.0182)
% 26-35 years old 0.496 (0.0249)
% 36-45 years old 0.223 (0.0208)
% 46-55 years old 0.0670 (0.0125)
% 56-65 years old 0.0422 (0.0100)
% 65 or older 0.0124 (0.00552)
Observations 403

Note: Summary statistics of full sample. Standard errors in parentheses.
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nonexclusive games was randomized. Each game asked subjects whether they would keep or pass their chip
in each player role and each node of the extensive form game. After subjects made their giving decisions
in the treatment games, we asked them about their first- and second-order beliefs regarding whether P1
would give. We discuss the details of these questions further in Section B.3, where we assess whether we
can evaluate our results under dynamic reciprocity equilibrium based on subjects’ reported beliefs. At
the end of the study, subjects completed a demographic questionnaire. Further details of the experiment,
including screenshots, are available in Appendix D.

Table 3 displays summary statistics. The top panel summarizes subject performance. Bonus payments
ranged from $0 to $5, with a median payment of $3 and an average payment of $2.55. In the full sample, the
average number of quality check questions answered incorrectly on the first try out of four was 2.16, with
a median of 1. However, the distribution is positively skewed: Of 403 total subjects, 140 had no incorrect
questions, 87 had one incorrect question, and 97 had two incorrect questions on the first try. The remaining
78 had 3 or more incorrect questions on the first try. It is likely that those who answered more than two
questions incorrectly did not understand the games, so their choices may not reflect their true preferences.
To exclude subjects who demonstrably struggled with the quality check questions, we define a separate
subsample of subjects who answered two or more questions correctly on the first try, called the accurate
responders sample. In robustness checks, we show that our results hold with the accurate responders sample
(𝑁 = 324), as well as with a more limited sample of subjects who answered every question correctly on the
first try (𝑁 = 140).

In the full sample, subjects took 28-29 minutes on average to complete the study. Although the study
was designed to be completed within an hour, two subjects took 69.53 and 124.90 minutes. Twenty-eight
subjects took between 45 and 60 minutes. As our robustness checks will show, excluding these 30 subjects
does not appreciably change results.

Based on the demographic questionnaire, less than a third of subjects (27.5%) are women, 83% have at
least an associate’s degree, and 93% are employed full- or part-time. Around 68% are US citizens, 73% are
US residents, and 76% are native English speakers. In terms of race and ethnicity, about half of subjects are
white, 29% are Asian, 13% are Black, 5% are Hispanic, and the remaining 3% are categorized as other race or
ethnicity. In terms of age, half of the subjects are 26-35 years old, 22% are 36-45 years old, 16% are 16-25
years old, and 11% of subjects are 46-65 years old. Only 1% of subjects are 65 or older.

4 Experimental results

We first assess our experimental results using paired one-tailed t-test and signed-rank test results (Table
4). We then calculate the proportion of subjects whose behaviors align with model predictions (Figure 2).
Although the two methods evaluate subject behavior in different ways, they arrive at the same conclusion.
Table 4 compares aggregate giving rates at different nodes, while Figure 2 focuses on the number of subjects
that choose a given strategy. Both methods demonstrate the roles of altruism, reciprocity, and inequity
aversion in explaining our experimental results.
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4.1 Giving rate comparisons

In Table 4, we first compare giving of Last Movers (P1) across games, which establishes the indirect
reciprocity effect and points to the role of both altruism and reciprocity incentives in explaining pay-it-
forward behavior. We then compare the actions of Initial Movers (P1 in the control game and P2 in the
treatment games), which demonstrates that inequity aversion can explain P2’s relatively low giving rates.
In particular, we find that the knowledge that P1 could magnify P2’s impact by paying P2’s generosity
forward does not increase P2’s giving likelihood. Rather, P2 is reluctant to give, since giving to P1 could
lead P1 to end up with more chips than her.

Rows 1–5 of Table 4 report comparisons of giving rates by Last Movers. We establish the indirect
reciprocity effect by comparing P1’s behavior in the treatment games after P2 gave to P1’s behavior in
the control game (Comparisons 2 and 3). P1’s giving rate is 53.1% in the exclusive game and 54.1% in
the nonexclusive game after P2 gave. Both values are significantly greater than P1’s giving rate of 44.7%
in the control game (𝑝 < 0.01 in both comparisons). The pattern of giving establishes that reciprocity
incentives are necessary in explaining behavior in our games, since it contradicts the predictions of all
models that exclude reciprocity. In all cases, P1 chooses between payoffs of (2, 2, 2) if she were to give and
(𝜋2, 𝜋1, 𝜋0) = (2, 3, 0) if she were to keep. The game design holds constant social concerns, the number of
players behind P1, P1’s own income, and the relative payoffs across all players. The only difference between
the treatment and control conditions is that P1’s endowment is attributable to P2’s kindness, rather than
experimental conditions. Receiving the gift increases P1’s giving likelihood by 19-21%, indicating that
benefiting from another person’s kindness makes subjects more likely to pay it forward. Therefore, only
Models R, AR, IR, and AIR generate predictions that are consistent with subjects’ behavior.

We next note that P1 has a positive probability of giving even when P2 keeps (̂𝛾𝑛1𝐾 = 23.3% > 0, 𝑝 <

0.01). Only altruism can explain this behavior (see Comparison 1 in Table 2), so we further rule out the R
and IR models. Only the AR and AIR models remain as candidate explanations.

We then examine if the remaining predictions can differentiate between the AR and AIR models
(Comparisons 4 and 5). We find that they do not, since they all predict that our findings would be supported
by both the AR and the AIR models. In other words, inequity aversion does not uniquely explain Last
Movers’ behaviors. We therefore turn to Initial Movers’ decisions.

Rows 6–8 of Table 4 reports the giving decisions of Initial Movers, which comprise of P2 in the treatment
games and P1 in the control game. We begin by comparing P1’s giving in the control group with P2’s giving
in the treatment groups (Comparisons 7 and 8). Without inequity aversion, the model would predict that P2
in the treatment games will give more than P1 in the control game. The rationale is that P2’s giving should
increase with the knowledge that her gift would make P1 more likely to give. However, our results show
the opposite pattern. We find significantly greater giving by P1 in the control game than P2 in the treatment
games (44.7% by P1 in the control game versus 40.2% and 39.0% by P2 in the exclusive and nonexclusive
games respectively, 𝑝 < 0.05). The experimental results go against the predictions of all models that do not
incorporate inequity aversion.

Comparing P1 in the control group with P2 in the treatment group thus shows that including inequity
aversion can align theoretical predictions with subject behaviors. Intuitively, P1 in the control game knows
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Table 4: Comparisons of giving: experimental results

Last Movers (P1 in all games)

Comparison Experimental result Consistent with predictions?

giving rates
p-value

from t-test

p-value

from signed rank
S A I R AI IR AR AIR

1: 𝛾𝑛1𝐺 versus 𝛾𝑛1𝐾 𝛾𝑛1𝐺 = 54.1% > 𝛾𝑛1𝐾 = 23.3% 𝑝 < 0.0001 𝑝 < 0.0001

2: 𝛾𝑒1𝐺 versus 𝛾𝑐1 𝛾𝑒1𝐺 = 53.1% > 𝛾𝑐1 = 44.7% 𝑝 = 0.0010 𝑝 = 0.0021

3: 𝛾𝑛1𝐺 versus 𝛾𝑐1 𝛾𝑛1𝐺 = 54.1% > 𝛾𝑐1 = 44.7% 𝑝 = 0.0002 𝑝 = 0.0005

4: 𝛾𝑛1𝐾 versus 𝛾𝑐1 𝛾𝑛1𝐾 = 23.3% < 𝛾𝑐1 = 44.7% 𝑝 < 0.0001 𝑝 < 0.0001

5: 𝛾𝑛1𝐺 versus 𝛾𝑒1𝐺 𝛾𝑛1𝐺 = 54.1% ∼ 𝛾𝑒1𝐺 = 53.1% 𝑝 = 0.3402 𝑝 = 0.6799

Initial Movers (P1 in the control game and P2 in the treatment games)

Comparison Experimental result Consistent with predictions?

giving rates
p-value

from t-test

p-value

from signed rank
S A I R AI IR AR AIR

6: 𝛾𝑛2 versus 𝛾𝑒2 𝛾𝑒2 = 40.2% ∼ 𝛾𝑛2 = 39.0% 𝑝 = 0.2542 𝑝 = 0.5078
√ √ √ √ √

7: 𝛾𝑒2 versus 𝛾𝑐1 𝛾𝑒2 = 40.2% < 𝛾𝑐1 = 44.7% 𝑝 = 0.0156 𝑝 = 0.0314

8: 𝛾𝑛2 versus 𝛾𝑐1 𝛾𝑛2 = 39.0% < 𝛾𝑐1 = 44.7% 𝑝 = 0.0043 𝑝 = 0.0088

Note: indicates that the prediction is consistent with the statistically significant experimental result.
√
indicates that the prediction is directionally

consistent with the experimental result.
Labels: Giving rate is denoted by 𝛾 . The superscript denotes game type, where 𝑐 stands for control, 𝑒 for exclusive, and 𝑛 for nonexclusive. The subscript 𝐺
stands for P1’s decision after P2 gives, and 𝐾 for P1’s decision after P2 keeps. S - standard model; A - altruism; R - reciprocity; I - inequity aversion.
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that by giving, she can equalize everyone’s payoffs. However, P2 in the treatment games cannot equalize
everyone’s payoffs, since she cannot control what P1 will do after she gives. By giving, she risks ending up
with less than P1. Inequity aversion would therefore push subjects to give more as P1 in the control game
than P2 in the treatment games.

Our results are also supported by the comparison of P2’s giving in the exclusive and nonexclusive
games (Comparison 6), which predicts greater giving by P2 in the exclusive game than the nonexclusive
game. This difference is directional in the full sample but significant in various robustness checks (see Table
B1).

Overall, Table 4 reports how aggregate giving rates support the AIR model. Reciprocity motives explain
why P1 is more likely to give to P0 after receiving a gift from P2 (Comparisons 2 and 3). However, knowing
that P1 may pay forward P2’s generosity does not increase P2’s chances of giving. Rather, inequity aversion
explains why P2’s giving rates are lower in the treatment games than P1’s giving in the control game
(Comparisons 7 and 8). Lastly, altruism alone can explain why P1 would give in the nonexclusive game
even after P2 kept (Comparison 1).

These three psychological components account for behavior in different ways. For the manager seeking
to promote helping behavior in the workplace, our results suggest that appealing to reciprocity and altruism
will mainly affect how people pay forward help they have received in the past—how chains of generosity
continue after they are launched. Meanwhile, inequity aversion may impede launching the chain of kindness
in the first place. A supervisor considering whether to mentor one subordinate over others may be concerned
about exhibiting favoritism, and therefore mentor no one. This could then lower the likelihood that her
subordinates “pay forward" mentoring in future years, after they have become supervisors themselves.

4.1.1 Robustness checks

We conduct a number of robustness checks by examining results across different samples. Table B1 reports
the results for accurate responders, who answered at least two questions correctly on the first try (panel
a), subjects who only gave accurate answers (panel b), subjects who had less than 6 incorrect answers
(panel c),11 accurate responders who took less than 45 minutes to complete the experiment (panel d),
accurate responders who saw the nonexclusive game first (panel e), and accurate responders who saw the
exclusive game first (panel f). Across all samples, the general AIR model performed the best in aligning
with theoretical predictions.

4.2 Within-subject comparisons

In this section, we compute the proportion of subjects whose choices are consistent with each model’s
predictions. This alternate way of assessing model performance has two advantages over the paired
hypothesis tests in Table 4. First, it better leverages within-subject variation by counting the number of

11The number of incorrect answers differs from the number of questions answered incorrectly, since a subject can submit
multiple incorrect answers to the same question. For example, someone who submits four incorrect answers to one question
but answers every other question correctly on the first try would count as having one question answered incorrectly and four
incorrect answers.
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subjects that choose a given strategy, rather than computing aggregate giving likelihoods at each node.
Second, it allows us to quantify the importance of each psychological component in explaining empirical
choices. We find that altruism is most important, reciprocity second most important, and inequity aversion
least important in explaining subject behavior.

Recall that Table 2 predicts which strategies are permissible under each model by comparing giving
behavior at the two specified decision nodes. At these two decision nodes, subjects can choose among
four strategies: (give, give), (give, keep), (keep, give), and (keep, keep). When the prediction is ∼ 0, the
model predicts that giving rates at both decision nodes will be statistically indistinguishable from 0, so
subjects should play (keep, keep). When the prediction is ∼, the model predicts equivalent actions at the
two decision nodes: (give, give) or (keep, keep). Third, when the prediction is ≻ 0, the model predicts that
giving at the first node would be strictly greater than giving at the second node, which would be equivalent
to 0. The only action that aligns with such a prediction is (give, keep). Lastly, when the prediction is ≻, the
model predicts greater giving rates at the first node than the second node. This means subjects may give
at both nodes, keep at both nodes, or give at the first node and keep at the second node. The only action
inconsistent with the prediction of ≻ is (keep, give).

The exceptions to this method are Comparisons 5, 7, and 8. Under all models, Comparison 5 predicts
that P1’s giving inclination after P2 gave will not significantly differ between the exclusive and nonexclusive
games. This does not restrict how P1’s mixed strategy gets realized. Subjects who choose to give at one
node and keep at the other node do not definitively violate Comparison 5, since it is possible that they are
indifferent between the two decisions and choose at random.12 Hence, all strategies can occur even when
P1’s giving inclination is the same in the two games. Comparisons 7 and 8 compare P2 in the treatment
games with P1 in the control game. Under any model incorporating inequity aversion, all strategies are
plausible depending on the specific values of the altruism and inequity aversion parameters (𝐴, 𝛼, 𝛽).

Figure 2 plots the proportion of subjects whose strategies align with different model predictions.
Aggregate numbers are summarized in Table B2. Each comparison is listed at the bottom of the graph, and
each model is listed at the top of the graph. The bars represent the proportion of subjects whose behavior
is consistent with a prediction for a comparison under a given model.

Model S, which assumes that subjects only care about material payoffs, predicts that P1 would always
play keep. It can only explain the behavior of the 35-36% of subjects who do so. Similarly, excluding altruism
(Models R, I, and IR) fails to explain the behavior of most subjects. The model with only reciprocity (Model
R) predicts that P1 must give in the treatment games if P2 gave and keep in the control game (Comparisons
2 and 3). In our data, only 19% of subjects exhibit this behavior, since 81% of subjects give in the control
game or keep in the treatment games after P2 gave. Models I and IR predict that P1s must give in the control
game and keep in the nonexclusive game after P2 kept (Comparison 4). They fail to explain the behaviors
of the 61% of P1s who keep in the control game or give in the nonexclusive game after P2 kept. Together,
these results establish the importance of altruism in our “pay it forward” games.

Excluding reciprocity motives would also fail to explain the behavior of the majority of subjects. Since

12This result speaks to the necessity of incorporating mixed strategies to account for indifference. Only considering pure
strategies would lead us to infer that a subject’s chosen behavior reflected their dominant strategy, and that this strategy was
strictly preferred above other alternatives.
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Figure 2: Assessing the predictive power of each model

Note: A bar represents the proportion of subjects whose experimental behavior is consistent with a model’s prediction. We
test each of the eight comparisons on each of the eight models.

we have ruled out Model I, we focus on Models A and AI. Model A, which only allows for altruism, predicts
that P1 will be equally inclined to give independent of whether P2 gave or kept in the nonexclusive game
(Comparison 1). It cannot explain behavior for the 50% of subjects whose decisions as P1 differ based on
whether P2 gave or kept. Model AI predicts that, absent reciprocity motives, P1 should have equal giving
inclinations in the control game and the treatment games after P2 gave (Comparisons 2 and 3). It cannot
explain the behavior of the 30% of subjects who choose different actions at these nodes.

We are then left with the model with altruism and reciprocity (Model AR) and the model with altruism,
reciprocity, and inequity aversion (Model AIR). The two models generate identical predictions for P1’s
behavior (Comparisons 1-5), but the AIR model performs slightly better in explaining 93% of P2’s behavior
(Comparisons 6-8). The AR model explains 88-89% of P2’s behavior. It predicts that in the absence of
inequity aversion, P2’s giving in the treatment games should be greater than P1’s giving in the control
game (Comparisons 7 and 8). These predictions are at odds with the t-test results from Table 4, where
aggregate giving rates are higher for P1 in the control game than P2 in the treatment games. They cannot
explain the 10-12% of subjects that keep as P2 in the treatment games but give as P1 in the control game.
The AIR model better rationalizes the behavior of these subjects, since inequity aversion can explain why
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they give in the control game but not in the treatment games given individual parameters (𝐴, 𝛼, 𝛽).
Finally, we evaluate the relative importance of altruism, reciprocity, and inequity aversion in explaining

the experimental data. Taking into account all propositions, models without altruism can only explain
19-35% of subjects’ behavior. Models without reciprocity can explain 31-70% of subjects’ behavior, and
models without inequity aversion can explain 19-88% of subjects’ behavior. By comparison, the AIR model
can explain behavior for 90% of subjects. This means that adding altruism to the IR model increases
the proportion of subjects whose behavior can be explained by 89.1-30.8=58.3%, or 235 subjects. Adding
reciprocity to the AI model increases explanatory power from 69.7% to 89.1% of subjects, a gain of 19.4% or
78 subjects. Adding inequity aversion to the AR model increases explanatory power from 87.6% to 89.1%, a
gain of 1.5% or 6 subjects. Altruism and reciprocity substantially increase model performance, while there
is only a marginal improvement from incorporating inequity aversion.

As with the t-test results in Table 4, we note that different psychological components explain behavior
for different players. Altruism and reciprocity are key for describing P1’s behavior, and therefore explain
why receiving help might lead one to help an unrelated third party. Inequity aversion plays no role, as the
AIR model performs no better than the AR model in explaining P1’s behavior. Rather, inequity aversion
helps explain P2’s behavior. P2 is less likely to give in the treatment games than P1 in the control game,
since in the latter case P1 can equalize payoffs across all players. In contrast, by giving to P1, P2 risks the
possibility that P1 will keep and end up with greater final payoffs than P2.

4.3 Additional considerations

Our definition of dynamic reciprocity equilibrium requires that subject have accurate beliefs regarding
other players’ strategies. We elicit first- and second-order beliefs of other players’ behaviors throughout
our experiment. Across subjects, beliefs are consistent with true behaviors, which is a necessary condition
for experimentally testing our model predictions within our concept of dynamic reciprocity equilibrium.
Appendix B.3 discusses our belief elicitation and results in greater detail.

Second, we note that inequity aversion plays a marginal role in explaining subject behaviors. We
develop and test an alternative explanation behind our findings: that giving decisions are motivated by
how much credit one can receive for improving others’ payoffs. Our alternate model formulates explicit
predictions on the relationship between giving, credit, and beliefs. For each game, we ask subjects about
the credit each player should receive for the payoff of the other two players. Finally, we test our model
predictions against our experimental results. Overall, we do not find sufficient evidence that credit for
others’ payoffs motivates giving. Appendix C discusses relevant theoretical and experimental results.

5 Conclusion

We evaluate the importance of indirect reciprocity, altruism, and inequity aversion in motivating pay-it-
forward behavior. We establish a psychological game-theoretic framework that formulates predictions
for giving behavior under different models of prosocial behavior. We then test these predictions using a
novel experiment that demonstrates the existence of indirect reciprocal exchange while controlling for
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alternative explanations such as income effects, relative payoffs, and social image considerations. The
combination of experimental design and theoretical framework enables us to exploit within-subject variation
when comparing across various game nodes. That is, by assuming that subjects have constant prosocial
preferences across games, we isolate distinct patterns in giving behavior in different games and player
roles. We find that indirect reciprocity incentives are critical to explain the pay-it-forward behavior, where
receiving a gift makes P1 more likely to give. However, knowledge that P1 may pay forward P2’s generosity
does not appear to encourage giving by P2, even though P2’s generosity would have been magnified by
P1’s pay-it-forward behavior. Rather, inequity aversion provides one explanation as to why P2 is less likely
to give, which makes the transmission of generosity unlikely to start in the first place.

Our findings address the question of how generosity spreads within communities. This phenomenon
has been documented by prior work, but we know little about the conditions that start and maintain this
spread. We provide experimental evidence that people pay forward kind acts to unrelated others; namely,
that kindness engenders further kindness. However, the knowledge that others may pay forward your
kindness does not make you more likely to help. Chains of generosity easily continue once started, but
are relatively difficult to start. These results speak to the stability of culture across different contexts. In a
workplace where a new employee is mentored and helped, she is likely to help other newcomers in the
future. In contrast, if a new employee was left to fend for herself, she may not think to help newcomers in
the future even when she could. The tendency of subjects to reciprocate help with help (and its absence
with no help) can contribute to the formation of social norms and behavioral conduct within organizations,
neighborhoods, and other social settings.
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A Omitted proofs

A.1 Remark on efficient strategies

For technical reasons, when we define kindness we ignore Pareto-inefficient strategies and focus on Pareto-
efficient ones. In our experiments, players do not have inefficient strategies. For the sake of completeness
and consistency with Dufwenberg and Kirchsteiger (2004), we keep this assumption. Intuitively, a strategy
is inefficient if another strategy provides (i) no lower material payoff for any player for any history of play
and the subsequent choices of others and (ii) a strictly higher payoff for some player for some history of
play and subsequent choices by the others. Formally, player 𝑖’s set of efficient strategies is

Σ𝑒𝑖 :=

{
𝜎𝑖 ∈ Σ𝑖

�����𝜎𝑖 ∈ Σ𝑖 such that ∀ℎ ∈ 𝐻, 𝜎−𝑖 ∈ Σ−𝑖 , 𝑘 ∈ 𝑁,

𝜋𝑘 (𝜎𝑖 (ℎ), 𝜎−𝑖 (ℎ)) ≥ 𝜋𝑘 (𝜎𝑖 (ℎ), 𝜎−𝑖 (ℎ)) with strict inequality for some (ℎ, 𝜎−𝑖 , 𝑘)
}
.
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A.2 Proof of the theorem on equilibrium existence

Proof of Theorem 1. Let Σ𝑖 (ℎ) denote 𝑖’s set of (potentially random) choices at history ℎ ∈ 𝐻 . For any
𝑠 ∈ Σ𝑖 (ℎ), let 𝜎𝑖 (ℎ, 𝑠) denote player 𝑖’s strategy that specifies the choice 𝑠 at ℎ, but is the same as 𝜎𝑖 (ℎ)
otherwise—i.e., at every history in 𝐻\{ℎ}. Define correspondence 𝐵𝑖,ℎ : Σ → Σ𝑖 (ℎ) by

𝐵𝑖,ℎ (𝜎) = argmax
𝑠∈Σ𝑖 (ℎ)

𝑢𝑖 (𝜎𝑖 (ℎ, 𝑠), (𝜎 𝑗 (ℎ), (𝜎𝑘 (ℎ))𝑘≠𝑗 ) 𝑗≠𝑖),

and define correspondence 𝐵 : Σ → Π (𝑖,ℎ) ∈𝑁×𝐻Σ𝑖 (ℎ) by

𝐵(𝜎) =
∏

(𝑖,ℎ) ∈𝑁×𝐻
𝐵𝑖,ℎ (𝜎) .

The set
∏

(𝑖,ℎ) ∈𝑁×𝐻 Σ𝑖 (ℎ) is topologically equivalent to the set Σ, so 𝐵 : Σ → Π (𝑖,ℎ) ∈𝑁×𝐻Σ𝑖 (ℎ) is equivalent
to a correspondence 𝛾 : Σ → Σ (which is a direct redefinition of 𝐵). Every fixed point of 𝛾 is an equilibrium.
To see this, note that a fixed point 𝐵𝑖,ℎ satisfies utility maximization under consistent beliefs. Here, because
𝐵𝑖,ℎ specifies the optimal choices at each ℎ ∈ 𝐻 , altogether, 𝐵𝑖,ℎ specifies the optimal strategies in Σ𝑖 (ℎ, 𝑠).
Hence, 𝐵 and 𝛾 are combined best-response correspondences. Since 𝛾 is a correspondence from Σ to Σ, it is
amenable to fixed-point analysis.

It remains to show that 𝛾 possesses a fixed point. Berge’s maximum principle guarantees that 𝐵𝑖,ℎ
is nonempty, closed-valued, and upper hemicontinuous, since Σ𝑖 (ℎ) is nonempty and compact and 𝑢𝑖 is
continuous (since 𝜋𝑖 , 𝜅𝑖 𝑗 , and 𝜆𝑖 𝑗𝑘 are all continuous). In addition, 𝐵𝑖,ℎ is convex-valued, since Σ𝑖 (ℎ) is
convex and 𝑢𝑖 is linear—and hence quasiconcave—in 𝑖’s own choice (because 𝑢𝑖 is linear in 𝜋𝑖 , which is
linear in 𝜎𝑖 ). Hence, 𝐵𝑖,ℎ is nonempty, closed-valued, upper hemicontinuous, and convex-valued. These
properties extend to 𝐵 and 𝛾 . It follows by Kakutani’s fixed-point theorem that 𝛾 admits a fixed point.

A.3 Proof of lemmas on equilibrium giving strategy

Proof of Lemma 1. P1’s choice is between giving, which yields material payoffs (𝜋2, 𝜋1, 𝜋0) = (2, 2, 2),
and keeping, which yields material payoffs (𝜋2, 𝜋1, 𝜋0) = (2, 3, 0). P1’s utility from giving is𝑢1(𝑔1) = 2+4𝐴1.
P1’s utility from keeping is 𝑢1(𝑘1) = 3+ 2𝐴1 − 𝛽1(3− 2)/2− 𝛽1(3− 0)/2 = 3+ 2𝐴1 − 2𝛽1. P1 prefers giving
if and only if 𝑢1(𝑔1) = 2 + 4𝐴1 ≥ 𝑢1(𝑘1) = 3 + 2𝐴1 − 2𝛽1, that is, 2𝐴1 + 2𝛽1 ≥ 1.

Proof of Lemma 2. Suppose P1 believes that P2 believes that P1 gives with probability 𝛾 ′′1𝐺 . The equitable
payoff of P1 is (1 + 3 − 𝛾 ′′1𝐺 )/2 = 2 − 𝛾 ′′1𝐺/2, so giving by P2 to P1 shows a kindness of 3 − 𝛾 ′′1𝐺 − (2 −
𝛾 ′′1𝐺/2) = 1 − 𝛾 ′′1𝐺/2. P1’s utility from giving, which results in material payoffs (𝜋2, 𝜋1, 𝜋0) = (2, 2, 2), is
𝑢1(𝑔1𝐺 , 𝛾 ′′1𝐺 ) = 2 + 4𝐴1 + 𝑍1(+1) (1 − 𝛾 ′′1𝐺/2), and P1’s utility from keeping, which yields material payoffs
(𝜋2, 𝜋1, 𝜋0) = (2, 3, 0), is𝑢1(𝑘1𝐺 , 𝛾 ′′1𝐺 ) = 3+2𝐴1−2𝛽1+𝑍1(−1) (1−𝛾 ′′1𝐺/2). Therefore, P1’s utility from giving
with probability 𝛾1𝐺 is 𝑢1(𝛾1𝐺 , 𝛾 ′′1𝐺 ) = 𝛾1𝐺 [−1+ 2𝐴1 + 2𝛽1 +𝑍1(2−𝛾 ′′1𝐺 )] + 3+ 2𝐴1 − 2𝛽1 −𝑍1(1−𝛾 ′′1𝐺/2) . If
2𝐴1+2𝛽1+𝑍1 ≥ 1, then𝛾1𝐺 = 1. If 2𝐴1+2𝛽1+2𝑍1 ≤ 1, then𝛾1𝐺 = 0. If 2𝐴1+2𝛽1+𝑍1 < 1 < 2𝐴1+2𝛽1+2𝑍1,
then −1 + 2𝐴1 + 2𝛽1 +𝑍1(2−𝛾1𝐺 ) = 0, which rearranges to 𝛾1𝐺 = 2− 1−2𝐴1−2𝛽1

𝑍1
. Therefore, in equilibrium,

𝛾𝑒1𝐺 = J2 + 2𝐴1+2𝛽1−1
𝑍1

K.
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Suppose P2 believes that P1 gives with probability 𝛾 ′1𝐺 . P2’s expected utility from giving, which yields
material payoffs (𝜋2, 𝜋1, 𝜋0) = (2, 2, 2) with probability 𝛾 ′1𝐺 and (𝜋2, 𝜋1, 𝜋0) = (2, 3, 0) with probability
1−𝛾 ′1𝐺 , is 𝛾 ′1𝐺 (2 + 4𝐴2) + (1−𝛾 ′1𝐺 ) (2 + 3𝐴2 −𝛼2/2− 𝛽2) = 2 + 4𝐴2 − (1−𝛾 ′1𝐺 ) (𝐴2 +𝛼2/2 + 𝛽2). P2’s utility
from keeping, which yields material payoffs (𝜋2, 𝜋1, 𝜋0) = (3, 1, 0), is 3+ 1𝐴2 − 𝛽2(3− 1)/2− 𝛽2(3− 0)/2 =

3+𝐴2−5𝛽2/2. P2 prefers giving if 2+4𝐴2− (1−𝛾 ′1𝐺 ) (𝐴2 +𝛼2/2+ 𝛽2) ≥ 3+𝐴2−5𝛽2/2, which is simplified
to 3𝐴2 + 5𝛽2/2 − (1 − 𝛾 ′1𝐺 ) (𝐴2 + 𝛼2/2 + 𝛽2) ≥ 1. In equilibrium, 𝛾 ′1𝐺 = 𝛾1𝐺 , so the inequality is rearranged
to (2 + 𝛾1𝐺 )𝐴2 − (1 − 𝛾1𝐺 )𝛼2/2 + (3/2 + 𝛾1𝐺 )𝛽2 ≥ 1.

Proof of Lemma 3. Suppose P1 believes that P2 believes that P1 gives with probability 𝛾 ′′1𝐺 when P2 gives,
and gives with probability 𝛾 ′′1𝐾 when P2 keeps. First, suppose P2 keeps. P0’s equitable payoff is 1, and P1’s
equitable payoff is [(1 − 𝛾 ′′1𝐾 ) + (3 − 𝛾 ′′1𝐺 )]/2 = 2 − 𝛾 ′′1𝐾/2 − 𝛾 ′′1𝐺/2.

First, consider when P2 keeps. P1’s utility from giving, which yields material payoffs (𝜋2, 𝜋1, 𝜋0) =
(3, 0, 2), is𝑢1(𝑘2, 𝑔1𝐾 , · · · ) = 0+5𝐴1−𝛼1(3−0)/2−𝛼1(2−0)/2+𝑍1(+1) (𝛾 ′′1𝐺/2−1−𝛾 ′′1𝐾/2) = 5𝐴1−5𝛼1/2+
𝑍1(𝛾 ′′1𝐺/2 − 1 − 𝛾 ′′1𝐾/2), and P1’s utility from keeping, which yields material payoffs (𝜋2, 𝜋1, 𝜋0) = (3, 1, 0),
is 𝑢1(𝑘2, 𝑘1𝐾 , · · · ) = 1 + 3𝐴1 − 𝛼1(3 − 1)/2 − 𝛽1(1 − 0)/2 − 𝑍1(𝛾 ′′1𝐺/2 − 1 − 𝛾 ′′1𝐾/2) = 1 + 3𝐴1 − 3𝛼1/2 −
𝛽1/2−𝑍1(𝛾 ′′1𝐺/2− 1−𝛾 ′′1𝐾/2). Fixing 𝛾 ′′1𝐺 and 𝛾 ′′1𝐾 , we have 𝑢1(𝑘2, 𝑔1𝐾 , · · · ) −𝑢1(𝑘2, 𝑘1𝐾 , · · · ) = −1 + 2𝐴1 −
3𝛼1/2 − 𝛽1/2 + 2𝑍1(𝛾 ′′1𝐺/2 − 1 − 𝛾 ′′1𝐾/2) = −1 + 2𝐴1 − 3𝛼1/2 − 𝛽1/2 − 𝑍1(2 − 𝛾 ′′1𝐺 + 𝛾 ′′1𝐾 ).

Second, consider when P2 gives. Regarding the reciprocity payoff, the only change is in the flip of the
sign of 𝜆121. P1’s utility of giving, which yields material payoffs (𝜋2, 𝜋1, 𝜋0) = (2, 2, 2), is 𝑢1(𝑔2, 𝑔1𝐺 , · · · ) =
2+4𝐴1 +𝑍1(1−𝛾 ′′1𝐺/2+𝛾 ′′1𝐾/2). P1’s utility of keeping, which yields material payoffs (𝜋2, 𝜋1, 𝜋0) = (2, 3, 0),
is 𝑢1(𝑔2, 𝑘1𝐺 , · · · ) = 3 + 2𝐴1 − 𝛽1(3− 2)/2− 𝛽1(3− 0)/2−𝑍1(1−𝛾 ′′1𝐺/2 +𝛾 ′′1𝐾/2) = 3 + 2𝐴1 − 2𝛽1 −𝑍1(1−
𝛾 ′′1𝐺/2 + 𝛾 ′′1𝐾/2). Hence, 𝑢1(𝑔2, 𝑔1𝐺 , · · · ) − 𝑢1(𝑔2, 𝑘1𝐺 , · · · ) = −1 + 2𝐴1 + 2𝛽1 + 𝑍1(2 − 𝛾 ′′1𝐺 + 𝛾 ′′1𝐾 ).

Comparing the net benefit of giving after P2 gave and that after P2 kept, we have

𝑢1(𝑔2, 𝑔1𝐺 , · · · ) − 𝑢1(𝑔2, 𝑘1𝐺 , · · · ) ≥ 𝑢1(𝑘2, 𝑔1𝐺 , · · · ) − 𝑢1(𝑘2, 𝑘1𝐺 , · · · ).

Hence, whenever P1 decides to give after P2 kept, she will also choose to give after P2 gave. In other words,
P1 is more inclined to give after P2 gave than after P2 kept: 𝛾1𝐺 ≥ 𝛾1𝐾 . Given this inequality, there are five
possible cases regarding 𝛾1𝐺 and 𝛾1𝐾 .

1. Strategies 𝛾1𝐺 = 1 and 𝛾1𝐾 = 1 are supported in equilibrium when and only when 2𝐴1 − 3𝛼1/2 −
𝛽1/2 − 2𝑍1 ≥ 1.

2. Strategies 𝛾1𝐺 = 1 and 0 < 𝛾1𝐾 < 1 are supported in equilibrium when and only when 2𝐴1 − 3𝛼1/2−
𝛽1/2 − 2𝑍1 ≤ 1 ≤ 2𝐴1 − 3𝛼1/2 − 𝛽1/2 − 𝑍1. In this case, 2𝐴1 − 3𝛼1/2 − 𝛽1/2 − 𝑍1(1 + 𝛾1𝐾 ) = 1,
which is rearranged to 𝛾1𝐾 =

(2𝐴1−3𝛼1/2−𝛽1/2−1−𝑍1 )
𝑍1

.

3. Strategies 𝛾1𝐺 = 1 and 𝛾1𝐾 = 0 are supported in equilibrium when and only when 2𝐴1 − 3𝛼1/2 −
𝛽1/2 − 𝑍1 ≤ 1 ≤ 2𝐴1 + 2𝛽1 + 𝑍1.

4. Strategies 0 < 𝛾1𝐺 < 1 and 𝛾1𝐾 = 0 are supported in equilibrium when and only when 2𝐴1 + 2𝛽1 +
𝑍1 ≤ 1 ≤ 2𝐴1 + 2𝛽1 + 2𝑍1. In this case, 2𝐴1 + 2𝛽1 + 𝑍1(2 − 𝛾1𝐺 ) = 1, which is rearranged to
𝛾1𝐺 = 2 + (2𝐴1+2𝛽1−1)

𝑍1
.
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5. Strategies 𝛾1𝐺 = 0 and 𝛾1𝐾 = 0 are supported in equilibrium when and only when 2𝐴1+2𝛽1+2𝑍1 ≤ 1.

In summary, in the nonexclusive game, P1 gives with probability 𝛾𝑛1𝐺 = J (2𝐴1+2𝛽1−1)
𝑍1

+ 2K after P2 gave, and
gives with probability 𝛾𝑛1𝐾 = J (2𝐴1−𝛼1−𝛽1/2−1)

𝑍1
− 1K after P2 kept.

Consider P2’s action next. Suppose P2 believes that P1 gives with probability 𝛾 ′1𝐺 and 𝛾 ′1𝐾 when P2
gives and keeps, respectively. P2’s expected utility from giving, which yields material payoffs (𝜋2, 𝜋1, 𝜋0) =
(2, 2, 2) with probability 𝛾 ′1𝐺 and (𝜋2, 𝜋1, 𝜋0) = (2, 3, 0) with probability 1−𝛾 ′1𝐺 , is (2+4𝐴2)𝛾 ′1𝐺 + (2+3𝐴2−
𝛼2/2−𝛽2) (1−𝛾 ′1𝐺 ) = 2+ (3+𝛾 ′1𝐺 )𝐴2− (1−𝛾 ′1𝐺 ) (𝛼2/2+𝛽2). P2’s expected utility from keeping, which yields
material payoffs (𝜋2, 𝜋1, 𝜋0) = (3, 0, 2) with probability 𝛾 ′1𝐾 and (𝜋2, 𝜋1, 𝜋0) = (3, 1, 0) with probability
1 − 𝛾 ′1𝐾 , is 𝛾 ′1𝐾 [3 + 2𝐴2 − 𝛽2(3 − 0)/2 − 𝛽2(3 − 2)/2] + (1 − 𝛾 ′1𝐾 ) [3 + 𝐴2 − 𝛽2(3 − 0)/2 − 𝛽2(3 − 1)/2] =
3 + (1 + 𝛾 ′1𝐾 )𝐴2 − (5 − 𝛾 ′1𝐾 )𝛽2/2. P2 prefers giving if and only if 2 + (3 + 𝛾 ′1𝐺 )𝐴2 − (1 − 𝛾 ′1𝐺 ) (𝛼2/2 + 𝛽2) ≥
3 + (1 + 𝛾 ′1𝐾 )𝐴2 − (5 − 𝛾 ′1𝐾 )𝛽2/2, which, as 𝛾1𝐺 = 𝛾 ′1𝐺 and 𝛾1𝐾 = 𝛾 ′1𝐾 in equilibrium, is rearranged to
(2 + 𝛾1𝐺 − 𝛾1𝐾 )𝐴2 − (1/2 − 𝛾1𝐺/2)𝛼2 + (3/2 + 𝛾1𝐺 − 𝛾1𝐾/2)𝛽2 ≥ 1.

A.4 Comparisons of giving: theoretical predictions

In this section, we formulate propositions for the full model that incorporates altruism, inequity aversion,
and reciprocity (Model AIR). The predictions for all other models can be derived from setting appropriate
factors to zero.

A.4.1 Predictions for Last Movers

P1 is the Last Mover in all three games. Figure A1 shows P1’s equilibrium giving rates for different
altruistic factors. The comparisons are unambiguous if giving is motivated by altruism and reciprocity:
𝛾𝑒1𝐺 ∼ 𝛾𝑛1𝐺 ≻ 𝛾𝑐1 ≻ 𝛾𝑛1𝐾 . There are 4 × 3/2 = 6 different pairwise comparisons for the four decisions. We do
not directly compare 𝛾𝑒1𝐺 versus 𝛾𝑛1𝐾 , since the results follow transitively from comparing 𝛾𝑒1𝐺 versus 𝛾𝑛1𝐺
and 𝛾𝑛1𝐺 versus 𝛾𝑛1𝐾 . We discuss the remaining five pairwise comparisons in the following five propositions.

Figure A1: Last Movers’ equilibrium giving rates comparisons

𝛾𝑛1𝐾𝛾𝑐1𝛾𝑒1𝐺 = 𝛾𝑛1𝐺

1

0
2𝐴 − 1−2𝛽 (3𝛼 + 𝛽)/2 + 𝑍 (3𝛼 + 𝛽)/2 + 2𝑍−2𝛽 − 2𝑍 −2𝛽 − 𝑍

Note: The figure depicts the equilibrium probabilities of giving by Last Movers as 2𝐴 − 1 increases.

First, compare P1’s two giving decisions in the nonexclusive game, after P2 gave versus after P2 kept.
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Regardless of P2’s choice, P1 incurs the same material loss (1 unit) and altruistic gain (2𝐴1 units) from giving.
However, if P1 chooses to give after P2 kept, she incurs a larger inequity aversion loss and reciprocity loss
than if she chooses to give after P2 gave.

Proposition 1. In the nonexclusive game, P1 is more inclined to give after P2 gave than after P2 kept. That is,

𝛾𝑛1𝐺 ≻ 𝛾𝑛1𝐾 .

Since there is no simultaneous mixed strategy in equilibrium (as argued in Section 2.2), Proposition 1
implies that when P1 chooses to give after P2 kept, P1 must also give after P2 gave. When P1 chooses to
keep after P2 gave, P1 must also keep after P2 kept. It is possible that P1 gives after P2 gave and keeps after
P2 kept, but never possible for P1 to keep after P2 gave and give after P2 kept.

Now compare the psychological gain of giving in the control game to that in the exclusive game. The
choice for P1 is the same in terms of material payoffs: either (2, 2, 2) by giving or (2, 3, 0) by keeping. If
subjects have reciprocity motives, a gift from P2 increases P1’s giving rate in the exclusive game.

Proposition 2. P1 is more inclined to give in the exclusive game after P2 gave than in the control game. That

is, 𝛾𝑒1𝐺 ≻ 𝛾𝑐1.

Similarly, a gift from P2 increases P1’s giving rate in the nonexclusive game relative to the control game.

Proposition 3. P1 is more inclined to give in the nonexclusive game after P2 gave than in the control game.

That is, 𝛾𝑛1𝐺 ≻ 𝛾𝑐1.

However, both reciprocity motives and inequity aversion would decrease P1’s giving inclination after
P2 kept in the nonexclusive game.

Proposition 4. P1 is less inclined to give in the nonexclusive game after P2 kept than in the control game.

That is, 𝛾𝑛1𝐾 ≺ 𝛾𝑐1.

Finally, P1’s inclination to give is the same in the exclusive and nonexclusive games after P2 gave, and
this result holds for all utility preferences we consider.

Proposition 5. P1 is equally inclined to give after P2 gave in the nonexclusive game and the exclusive game.

That is, 𝛾𝑛1𝐺 ∼ 𝛾𝑒1𝐺 .

Note that it is possible that a player is indifferent between giving and keeping in equilibrium in the
exclusive and nonexclusive games, because she mixes between giving and keeping in equilibrium. Hence,
when subjects are observed to give in one game and keep in another, the difference in observed behavior
neither validates nor invalidates the prediction that they are equally likely to give. We discuss this prediction
further in Section 4.2.

A.4.2 Predictions for Initial Movers

We next compare the Initial Movers in these games: P1 in the control game and P2 in the treatment games.
To summarize, we predict that the Initial Mover’s giving rate is higher in the exclusive game than in the
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Figure A2: Initial Movers’ equilibrium giving rates

𝛾𝑛2𝛾𝑒2

1

0
2𝐴 − 1

−(𝛾𝑛1𝐺 − 𝛾𝑛1𝐾 )𝐴2 + (1/2 − 𝛾𝑛1𝐺/2)𝛼2 − (3/2 + 𝛾𝑛1𝐺 − 𝛾𝑛1𝐾/2)𝛽2

−(𝛾𝑒1𝐺 )𝐴2 + (1 − 𝛾𝑒1𝐺 )𝛼2/2 − (3/2 + 𝛾𝑒1𝐺 )𝛽2

Note: The figure depicts the equilibrium probabilities of giving by Initial Movers as 2𝐴 − 1 increases.

nonexclusive game (Figure A2), but it is unclear whether the Initial Mover is more inclined to give in the
control game than in the treatment games, since altruism pushes for greater giving while inequity aversion
pushes for lower giving in the treatment games.

First, P2’s incentives to give are greater in the exclusive than the nonexclusive game. In the exclusive
game, P2 knows that keeping will prevent P1 from giving, while in the nonexclusive game P2 knows that P1
can still give even if she kept. In particular, knowing that P1 can give even after P2 kept in the nonexclusive
game will increase P2’s expected utility from keeping by 𝛾𝑛1𝐾𝐴2 from altruism and 𝛾𝑛1𝐾𝛽2/2 from having
more equal payoffs. Figure A2 depicts the comparison of giving rates for initial movers.

Proposition 6. P2 in the exclusive game is more inclined to give than P2 in the nonexclusive game.

Next, compare the giving rates of P1 in the control game and P2 in the exclusive game. Since we
compare the giving decisions for the same subject, we can assume that all psychological parameters are
the same for the subject across games and player roles: 𝐴1 = 𝐴2 ≡ 𝐴, 𝛼1 = 𝛼2 ≡ 𝛼 , 𝛽1 = 𝛽2 ≡ 𝛽 , and
𝑍1 = 𝑍2 ≡ 𝑍 . Here, altruism and inequity aversion might work in opposite directions. By giving, P1 in
the control game gets an altruistic payoff of 2𝐴, and P2 in the exclusive game gets an altruistic payoff of
(2 + 𝛾𝑒1𝐺 )𝐴, because P1 in the exclusive game generates additional 𝛾𝑒1𝐺𝐴 units of altruistic payoff for P2 by
passing to P0. Therefore, altruism increases P2’s inclination to give in the exclusive game.

However, inequity aversion would create the opposite effect. If P2 gives, P1 might keep and end up with
higher final payoffs than her. She would then suffer disutility (3 − 2)𝛼/2 = 𝛼/2 from having a lower payoff
than P1. Since this occurs with probability 1 − 𝛾𝑒1𝐺 and results in material payoffs (𝜋2, 𝜋1, 𝜋0) = (2, 3, 0),
the expected loss is (1 − 𝛾𝑒1𝐺 )𝛼/2. Furthermore, P2 does not have a sure chance of equalizing payoffs in
the exclusive game since P1 may choose to keep after P2 gave, while in the control game P1 will certainly
equalize payoffs by giving.

Proposition 7. P1 in the control game is more inclined to give than P2 in the exclusive game, that is, 𝛾𝑐1 ≻ 𝛾𝑒2
if and only if (1 − 𝛾𝑒1𝐺 )𝛼/2 ≥ 𝛾𝑒1𝐺𝐴 + (𝛾𝑒1𝐺 − 1/2)𝛽 .
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Proposition 8. P1 in the control game is more inclined to give than P2 in the nonexclusive game, that is,

𝛾𝑐1 ≻ 𝛾𝑛2 if and only if (1/2 − 𝛾𝑛1𝐺/2)𝛼 ≥ (𝛾𝑛1𝐺 − 𝛾𝑛1𝐾 )𝐴 + (𝛾𝑛1𝐺 − 𝛾𝑛1𝐾 − 1/2)𝛽 .

A.4.3 Proofs of propositions on equilibrium giving comparisons

Proof of Proposition 1. In the nonexclusive game, P1 gives with probability 𝛾𝑛1𝐺 = J (2𝐴1+2𝛽1−1)
𝑍1

+ 2K
after P2 gave, and P1 gives with probability 𝛾𝑛1𝐾 = J (2𝐴1−3𝛼1/2−𝛽1/2−1)

𝑍1
− 1K after P2 kept. Since

(2𝐴1 + 2𝛽1 − 1)𝑍1 + 2 >
(2𝐴1−3𝛼1/2−𝛽1/2−1)

𝑍1
− 1 for any combination of nonnegative parameters 𝐴1, 𝛼1, 𝛽1,

and 𝑍1, 𝛾𝑛1𝐺 ≥ 𝛾𝑛1𝐾 , and the inequality is strict as long as 𝑍1 ≠ 0.

Proof of Proposition 2. P1’s equilibrium probability of giving in the control game is

𝛾𝑐1 =


1 if 2𝐴1 + 2𝛽1 > 1,

0 if 2𝐴1 + 2𝛽1 < 1,

and P1’s equilibrium probability of giving in the exclusive game is

𝛾𝑒1𝐺 =


1 if 2𝐴1 + 2𝛽1 + 𝑍1 > 1,

(2𝐴1+2𝛽1−1)
𝑍1

+ 2 if 2𝐴1 + 2𝛽1 + 2𝑍1 ≥ 1 ≥ 2𝐴1 + 2𝛽1 + 𝑍1,

0 if 2𝐴1 + 2𝛽1 + 2𝑍1 < 1.

When 𝑍1 = 0, the condition for 𝛾𝑒1𝐺 = 1 and the condition for 𝛾𝑐1 = 1 coincide, and the condition for 𝛾𝑒1𝐺 = 0

and the condition for 𝛾𝑐1 = 0 also coincide. When 𝑍1 > 0, the set of parameters for 𝛾𝑒1𝐺 = 1 is a strict
superset of that for 𝛾𝑐1 = 1, and the set of parameters for 𝛾𝑒1𝐺 = 0 is a strict subset of that for 𝛾𝑐1 = 0. For
the set range of parameters for 0 < 𝛾𝑒1𝐺 < 1, 𝛾𝑐1 = 0. Hence, 𝛾𝑒1𝐺 ≥ 𝛾𝑐1 for any combination of parameters.
Hence, 𝛾𝑒1𝐺 ≻ 𝛾𝑐1

Proof of Proposition 3. The proof mimics that of Proposition 2, with superscripts 𝑒 replaced by
superscripts 𝑛. Alternatively, by Proposition 5, 𝛾𝑒1𝐺 ∼ 𝛾𝑛1𝐺 , so by transitivity of the inclination, 𝛾

𝑛
1𝐺 ≻ 𝛾𝑐1.

Proof of Proposition 4. P1’s equilibrium probability of giving in the control game is

𝛾𝑐1 =


1 if 2𝐴1 + 2𝛽1 > 1,

0 if 2𝐴1 + 2𝛽1 < 1,

and P1’s equilibrium probability of giving after P2 kept in the nonexclusive game is

𝛾𝑛1𝐾 =



1 if 2𝐴1 − 3𝛼1/2 − 𝛽1/2 − 2𝑍1 > 1,

(2𝐴1−3𝛼1/2−𝛽1/2−1)
𝑍1

− 1 if 2𝐴1 − 3𝛼1/2 − 𝛽1/2 − 2𝑍1 ≤ 1

≤ 2𝐴1 − 3𝛼1/2 − 𝛽1/2 − 𝑍1

0 if 2𝐴1 − 3𝛼1/2 − 𝛽1/2 − 𝑍1 < 1.
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When 𝛼1 = 𝛽1 = 𝑍1 = 0, the two decisions coincide. When 𝛼1 > 0, 𝛽1 > 0, and/or 𝑍1 > 0, the set of
parameters for 𝛾𝑐1 = 1 is a strict superset of that for 𝛾1𝐾1 = 1, and the set of parameters for 𝛾𝑐1 = 0 is a strict
subset of that for 𝛾1𝐾1 = 0. Hence, 𝛾𝑐1 ≻ 𝛾𝑛1𝐾 .

Proof of Proposition 5. P1 gives with probability 𝛾𝑒1𝐺 = J (2𝐴1+2𝛽1−1)
𝑍1

+ 2K after P2 gave in the exclusive
game. Equally, P1 gives with probability 𝛾𝑒1𝐺 = J (2𝐴1+2𝛽1−1)

𝑍1
+ 2K after P2 gave in the nonexclusive game.

Hence, P1 is equally inclined to give in the two treatment games after P2 gave.

Proof of Proposition 6. As shown by the inequality condition in Lemma 2 that characterizes P2’s
preference for giving, P2’s net benefit of giving over keeping in the exclusive game is 𝐵𝑒 ≡ (2 +
𝛾𝑒1𝐺 )𝐴2 − (1/2 − 𝛾𝑒1𝐺/2)𝛼2 + (3/2 + 𝛾𝑒1𝐺 )𝛽2 − 1. Similarly, by the inequality condition in Lemma 3 that
characterizes P2’s preference for giving, P2’s net benefit of giving over keeping in the nonexclusive game is
𝐵𝑛 ≡ (2 + 𝛾𝑛1𝐺 − 𝛾𝑛1𝐾 )𝐴2 − (1/2 − 𝛾𝑛1𝐺/2)𝛼2 + (3/2 + 𝛾𝑛1𝐺 − 𝛾𝑛1𝐾 )𝛽2 − 1. By Proposition 5, 𝛾𝑛1𝐾 = 𝛾𝑛1𝐺 . Then,
𝐵𝑒 − 𝐵𝑛 = 𝛾𝑛1𝐾𝐴2 + 𝛾𝑛1𝐾𝛽2. Since 𝐴1 ≥ 0 and 𝛽1 ≥ 0 in the general AIR utility function, and 𝛾𝑛1𝐾 > 0 in
equilibrium, 𝐵𝑒 − 𝐵𝑛 ≥ 0. The higher net benefit of giving over keeping in the exclusive game implies a
higher inclination of giving in the exclusive game than the nonexclusive game.

Proof of Proposition 7. By the inequality condition in Lemma 1 that characterizes P1’s preference for
giving, P1’s net benefit of giving over keeping in the control game is 𝐵𝑐 ≡ 2𝐴1 + 2𝛽1 − 1. As shown by the
inequality condition in Lemma 2 that characterizes P2’s preference for giving, P2’s net benefit of giving
over keeping in the exclusive game is 𝐵𝑒 ≡ (2 + 𝛾𝑒1𝐺 )𝐴2 − (1/2 − 𝛾𝑒1𝐺/2)𝛼2 + (3/2 + 𝛾𝑒1𝐺 )𝛽2 − 1. For the
same subject, i.e., 𝐴1 = 𝐴2 ≡ 𝐴, 𝛼1 = 𝛼2 ≡ 𝛼 , 𝛽1 = 𝛽2 ≡ 𝛽 , 𝑍1 = 𝑍2 ≡ 𝑍 , the difference in the net benefits is
𝐵𝑒 − 𝐵𝑐 = 𝛾𝑒1𝐺𝐴 − (1 − 𝛾𝑒1𝐺 )𝛼/2 + (𝛾𝑒1𝐺 − 1/2)𝛽 . Therefore, P1 in the control game is more inclined to give
than P2 in the exclusive game, if and only if 𝐵𝑒 − 𝐵𝑐 ≤ 0, that is, 𝛾𝑒1𝐺𝐴 + (𝛾𝑒1𝐺 − 1/2)𝛽 ≤ (1 − 𝛾𝑒1𝐺 )𝛼/2.

Proof of Proposition 8. By the inequality condition in Lemma 1 that characterizes P1’s preference for
giving, P1’s net benefit of giving over keeping in the control game is 𝐵𝑐 ≡ 2𝐴1 + 2𝛽1 − 1. By the inequality
condition in Lemma 3 that characterizes P2’s preference for giving, P2’s net benefit of giving over keeping
in the nonexclusive game is 𝐵𝑛 ≡ (2 + 𝛾𝑛1𝐺 − 𝛾𝑛1𝐾 )𝐴2 − (1/2 − 𝛾𝑛1𝐺/2)𝛼2 + (3/2 + 𝛾𝑛1𝐺 − 𝛾𝑛1𝐾 )𝛽2 − 1. For
the same subject, i.e., 𝐴1 = 𝐴2 ≡ 𝐴, 𝛼1 = 𝛼2 ≡ 𝛼 , 𝛽1 = 𝛽2 ≡ 𝛽 , 𝑍1 = 𝑍2 ≡ 𝑍 , the difference in the net
benefits is 𝐵𝑛 − 𝐵𝑐 = (𝛾𝑛1𝐺 − 𝛾𝑛1𝐾 )𝐴 − (1/2 − 𝛾𝑛1𝐺/2)𝛼 + (𝛾𝑛1𝐺 − 𝛾𝑛1𝐾 − 1/2)𝛽 . Therefore, P1 in the control
game is more inclined to give than P2 in the nonexclusive game, if and only if 𝐵𝑛 − 𝐵𝑐 ≤ 0, that is,
(𝛾𝑛1𝐺 − 𝛾𝑛1𝐾 )𝐴 + (𝛾𝑛1𝐺 − 𝛾𝑛1𝐾 − 1/2)𝛽 ≤ (1/2 − 𝛾𝑛1𝐺/2)𝛼 .
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Online appendix

B Additional experimental results

B.1 Comparing giving rates across game nodes: robustness checks

Table B1: Experimental results of giving rates comparisons, robustness checks

(a) Accurate responders, 𝑁 = 324

Comparison Experimental result Consistent with predictions?
giving rates p-value S A I R AI IR AR AIR

1: 𝛾𝑛
1𝐺

versus 𝛾𝑛
1𝐾 𝛾𝑛

1𝐺
= 56.2% > 𝛾𝑛

1𝐾
= 19.8% 𝑝 < 0.0001

2: 𝛾𝑒
1𝐺

versus 𝛾𝑐1 𝛾𝑒
1𝐺

= 52.2% > 𝛾𝑐1 = 45.4% 𝑝 = 0.0057

3: 𝛾𝑛
1𝐺

versus 𝛾𝑐1 𝛾𝑛
1𝐺

= 56.2% > 𝛾𝑐1 = 45.4% 𝑝 = 0.0001

4: 𝛾𝑛
1𝐾

versus 𝛾𝑐1 𝛾𝑛
1𝐾

= 19.8% < 𝛾𝑐1 = 45.4% 𝑝 < 0.0001

5: 𝛾𝑛
1𝐺

versus 𝛾𝑒
1𝐺 𝛾𝑛

1𝐺
= 56.2% > 𝛾𝑒

1𝐺
= 52.2% 𝑝 = 0.0562

6: 𝛾𝑛2 versus 𝛾𝑒2 𝛾𝑒2 = 44.1% > 𝛾𝑛2 = 40.7% 𝑝 = 0.0429

7: 𝛾𝑒2 versus 𝛾𝑐1 𝛾𝑒2 = 44.1% ∼ 𝛾𝑐1 = 45.4% 𝑝 = 0.2781

8: 𝛾𝑛2 versus 𝛾𝑐1 𝛾𝑛2 = 40.7% < 𝛾𝑐1 = 45.4% 𝑝 = 0.0160

(b) All accurate answers, 𝑁 = 104

Comparison Experimental result Consistent with predictions?
proportion p-value S A I R AI IR AR AIR

1: 𝛾𝑛
1𝐺

versus 𝛾𝑛
1𝐾

𝛾𝑛
1𝐺

= 69.3% > 𝛾𝑛
1𝐾

= 14.3% 𝑝 < 0.0001

2: 𝛾𝑒
1𝐺

versus 𝛾𝑐1 𝛾𝑒
1𝐺

= 65% > 𝛾𝑐1 = 61.4% 𝑝 = 0.0989

3: 𝛾𝑛
1𝐺

versus 𝛾𝑐1 𝛾𝑛
1𝐺

= 69.3% > 𝛾𝑐1 = 61.4% 𝑝 = 0.0079

4: 𝛾𝑛
1𝐾

versus 𝛾𝑐1 𝛾𝑛
1𝐾

= 14.3% < 𝛾𝑐1 = 61.4% 𝑝 < 0.0001

5: 𝛾𝑛
1𝐺

versus 𝛾𝑒
1𝐺

𝛾𝑛
1𝐺

= 69.3% > 𝛾𝑒
1𝐺

= 65.0% 𝑝 = 0.0790

6: 𝛾𝑛2 versus 𝛾𝑒2 𝛾𝑒2 = 59.3% > 𝛾𝑛2 = 57.1% 𝑝 = 0.1292
√ √ √ √

7: 𝛾𝑒2 versus 𝛾𝑐1 𝛾𝑒2 = 59.3% ∼ 𝛾𝑐1 = 61.4% 𝑝 = 0.1292

8: 𝛾𝑛2 versus 𝛾𝑐1 𝛾𝑛2 = 57.1% < 𝛾𝑐1 = 61.4% 𝑝 = 0.0287

(c) ≤ 6 incorrect answers (𝑁 = 378)

Comparison Experimental result Consistent with predictions?
proportion p-value S A I R AI IR AR AIR

1: 𝛾𝑛
1𝐺

versus 𝛾𝑛
1𝐾

𝛾𝑛
1𝐺

= 54.5% > 𝛾𝑛
1𝐾

= 22.2% 𝑝 < 0.0001

2: 𝛾𝑒
1𝐺

versus 𝛾𝑐1 𝛾𝑒
1𝐺

= 51.3% > 𝛾𝑐1 = 45.0% 𝑝 = 0.0092

3: 𝛾𝑛
1𝐺

versus 𝛾𝑐1 𝛾𝑛
1𝐺

= 54.5% > 𝛾𝑐1 = 45.0% 𝑝 = 0.0002

4: 𝛾𝑛
1𝐾

versus 𝛾𝑐1 𝛾𝑛
1𝐾

= 22.2% < 𝛾𝑐1 = 45.0% 𝑝 < 0.0001

5: 𝛾𝑛
1𝐺

versus 𝛾𝑒
1𝐺

𝛾𝑛
1𝐺

= 54.5% > 𝛾𝑒
1𝐺

= 51.3% 𝑝 = 0.0954

6: 𝛾𝑛2 versus 𝛾𝑒2 𝛾𝑒2 = 42.3% > 𝛾𝑛2 = 39.7% 𝑝 = 0.0829

7: 𝛾𝑒2 versus 𝛾𝑐1 𝛾𝑒2 = 42.3% ∼ 𝛾𝑐1 = 45.0% 𝑝 = 0.1022

8: 𝛾𝑛2 versus 𝛾𝑐1 𝛾𝑛2 = 39.7% < 𝛾𝑐1 = 45.0% 𝑝 = 0.0068
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(d) Accurate responders, < 45min (𝑁 = 298)

Comparison Experimental result Consistent with predictions?
proportion p-value S A I R AI IR AR AIR

1: 𝛾𝑛
1𝐺

versus 𝛾𝑛
1𝐾

𝛾𝑛
1𝐺

= 57.7% > 𝛾𝑛
1𝐾

= 19.5% 𝑝 < 0.0001

2: 𝛾𝑒
1𝐺

versus 𝛾𝑐1 𝛾𝑒
1𝐺

= 54.0% > 𝛾𝑐1 = 46.0% 𝑝 = 0.0020

3: 𝛾𝑛
1𝐺

versus 𝛾𝑐1 𝛾𝑛
1𝐺

= 57.7% > 𝛾𝑐1 = 46.0% 𝑝 < 0.0001

4: 𝛾𝑛
1𝐾

versus 𝛾𝑐1 𝛾𝑛
1𝐾

= 19.5% < 𝛾𝑐1 = 46.0% 𝑝 < 0.0001

5: 𝛾𝑛
1𝐺

versus 𝛾𝑒
1𝐺

𝛾𝑛
1𝐺

= 57.7% > 𝛾𝑒
1𝐺

= 54.0% 𝑝 = 0.0797

6: 𝛾𝑛2 versus 𝛾𝑒2 𝛾𝑒2 = 45.6% > 𝛾𝑛2 = 42.3% 𝑝 = 0.0524

7: 𝛾𝑒2 versus 𝛾𝑐1 𝛾𝑒2 = 45.6% ∼ 𝛾𝑐1 = 46.0% 𝑝 = 0.4395

8: 𝛾𝑛2 versus 𝛾𝑐1 𝛾𝑛2 = 42.3% < 𝛾𝑐1 = 46.0% 𝑝 = 0.0506

(e) Accurate responders, saw nonexclusive game first (𝑁 = 156)

Comparison Experimental result Consistent with predictions?
proportion p-value S A I R AI IR AR AIR

1: 𝛾𝑛
1𝐺

versus 𝛾𝑛
1𝐾

𝛾𝑛
1𝐺

= 55.1% > 𝛾𝑛
1𝐾

= 16.7% 𝑝 < 0.0001

2: 𝛾𝑒
1𝐺

versus 𝛾𝑐1 𝛾𝑒
1𝐺

= 48.7% > 𝛾𝑐1 = 41.7% 𝑝 = 0.0506

3: 𝛾𝑛
1𝐺

versus 𝛾𝑐1 𝛾𝑛
1𝐺

= 55.1% > 𝛾𝑐1 = 41.7% 𝑝 = 0.0015

4: 𝛾𝑛
1𝐾

versus 𝛾𝑐1 𝛾𝑛
1𝐾

= 16.7% < 𝛾𝑐1 = 41.7% 𝑝 < 0.0001

5: 𝛾𝑛
1𝐺

versus 𝛾𝑒
1𝐺

𝛾𝑛
1𝐺

= 55.1% > 𝛾𝑒
1𝐺

= 48.7% 𝑝 = 0.0339

6: 𝛾𝑛2 versus 𝛾𝑒2 𝛾𝑒2 = 41.7% > 𝛾𝑛2 = 35.8% 𝑝 = 0.0302

7: 𝛾𝑒2 versus 𝛾𝑐1 𝛾𝑒2 = 41.7% ∼ 𝛾𝑐1 = 41.7% 𝑝 = 0.5000

8: 𝛾𝑛2 versus 𝛾𝑐1 𝛾𝑛2 = 35.9% < 𝛾𝑐1 = 41.7% 𝑝 = 0.0359

(f) Accurate responders, saw exclusive game first (𝑁 = 168)

Comparison Experimental result Consistent with predictions?
proportion p-value S A I R AI IR AR AIR

1: 𝛾𝑛
1𝐺

versus 𝛾𝑛
1𝐾

𝛾𝑛
1𝐺

= 57.1% > 𝛾𝑛
1𝐾

= 22.6% 𝑝 < 0.0001

2: 𝛾𝑒
1𝐺

versus 𝛾𝑐1 𝛾𝑒
1𝐺

= 55.4% > 𝛾𝑐1 = 48.8% 𝑝 = 0.0239

3: 𝛾𝑛
1𝐺

versus 𝛾𝑐1 𝛾𝑛
1𝐺

= 57.1% > 𝛾𝑐1 = 48.8% 𝑝 = 0.0064

4: 𝛾𝑛
1𝐾

versus 𝛾𝑐1 𝛾𝑛
1𝐾

= 22.6% < 𝛾𝑐1 = 48.8% 𝑝 < 0.0001

5: 𝛾𝑛
1𝐺

versus 𝛾𝑒
1𝐺

𝛾𝑛
1𝐺

= 57.1% ∼ 𝛾𝑒
1𝐺

= 55.4% 𝑝 = 0.3117

6: 𝛾𝑛2 versus 𝛾𝑒2 𝛾𝑒2 = 46.4% ∼ 𝛾𝑛2 = 45.2% 𝑝 = 0.3194
√ √ √ √

7: 𝛾𝑒2 versus 𝛾𝑐1 𝛾𝑒2 = 46.4% ∼ 𝛾𝑐1 = 48.8% 𝑝 = 0.1863

8: 𝛾𝑛2 versus 𝛾𝑐1 𝛾𝑛2 = 45.2% ∼ 𝛾𝑐1 = 48.8% 𝑝 = 0.1129

Note: indicates that the prediction is consistent with the statistically significant experimental result.
√
indicates that the

prediction is directionally consistent with the experimental result.
Labels: Giving rate is denoted by 𝛾 . The superscript denotes game type, where 𝑐 stands for control, 𝑒 for exclusive, and 𝑛 for
nonexclusive. The subscript 𝐺 stands for P1’s decision after P2 gives, and 𝐾 for P1’s decision after P2 keeps. S - standard
model; A - altruism; R - reciprocity; I - inequity aversion.
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B.2 Within-subject comparisons

Table B2: Within-subject comparisons of giving (𝑁 = 403)
Last Movers (P1 in all games)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Comparison GG,GK,KG,KK S A I R AI IR AR AIR

strategies subjects with consistent behavior
1: 𝛾𝑛

1𝐺
versus 𝛾𝑛

1𝐾
55 163 39 146 146 201 163 163 364 63 364 364

(36.23%) (49.88%) (40.45% ) (40.45% ) (90.32%) (40.45%) (90.32% ) (90.32%)

2: 𝛾𝑒
1𝐺

versus 𝛾𝑐1 136 78 44 145 145 281 281 78 281 359 359 359
(35.98%) (69.73%) (69.73%) (19.35%) (69.73%) (89.08%) (89.08%) (89.08%)

3: 𝛾𝑛
1𝐺

versus 𝛾𝑐1 140 78 40 145 145 285 285 78 285 363 363 363
(35.98%) (70.72%) (70.72% ) (19.35%) (70.72%) (90.07%) (90.07%) (90.07%)

4: 𝛾𝑐1 versus 𝛾𝑛
1𝐾

56 124 38 185 185 241 124 % 185 365 124 365 365
(45.91%) (59.80% ) (30.77 %) (45.91%) (90.57% ) (30.77% ) (90.57%) (90.57%)

5: 𝛾𝑛
1𝐺

versus 𝛾𝑒
1𝐺

169 49 45 140 140 309 403 403𝑎 309 403𝑎 403𝑎 403𝑎

(34.73%) (76.67% ) (76.67%) (100% ) (76.67%) (100%) (100%) (100%)

Initial Movers (P1 in the control game and P2 in the treatment games)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Comparison GG,GK,KG,KK S A I R AI IR AR AIR

strategies subjects with consistent behavior
6: 𝛾𝑒2 versus 𝛾𝑛2 131 31 26 215 215 377 346 215 377 346 377 377

(53.35% ) (93.55%) (85.86%) (53.35%) (93.55%) (85.86%) (93.55%) (93.55%)

7: 𝛾𝑒2 versus 𝛾𝑐1 136 26 44 197 197 359 377𝑏 197 377𝑏 377𝑏 359𝑏 377𝑏

(48.88% ) (89.08%) (93.55% ) (48.88%) (93.55%) (93.55%) (89.08%) (93.55%)

8: 𝛾𝑛2 versus 𝛾𝑐1 130 27 50 196 196 353 376𝑏 196 376𝑏 376𝑏 353 376𝑏

(48.64%) (87.59% ) (93.30%) (48.64% ) (93.30%) (93.30%) (87.59%) (93.30%)

Note: Columns (1)-(4) report the number of subjects that choose give or keep at the two nodes being compared. Columns
(5)-(12) tabulate the number of subjects whose strategies are consistent with predictions under each model we consider.
𝑎Players can play mixed strategies, so all strategy combinations can comply with the predictions.
𝑏Violators play either GK or KG, depending on the parameters of the model. We report the lower percentage of violators in
the table.
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B.3 Beliefs

Beliefs about P1’s giving are key to informing players’ strategies in our dynamic reciprocity equilibrium
(see Section 2 and Appendix A). We therefore elicit both first- and second-order beliefs regarding P1’s
likelihood of giving to P0. After subjects made their giving decisions for each treatment game, we asked
them to enter the likelihood that P1 would give to P0. To elicit first-order beliefs, we asked subjects to
assume the role of P2. From the role of P2, they would then enter an integer between 0 to 100 to represent
the likelihood that they believed P1 would give to P0. To elicit second-order beliefs, we asked subjects to
assume the role of P1. From the role of P1, they would enter an integer between 0 to 100 to represent their
belief of P2’s belief that they would give to P0.13 This enables us to verify whether indirect reciprocity
motives truly drive P1’s pay-it-forward behavior. In the case where P2 gave, indirect reciprocity would
only motivate P1 to give if P1 believed that P2 believed that P1 was likely to give to P0.

Beliefs are summarized in Table B3. In the exclusive game among the full sample, first- and second-order
beliefs regarding P1’s likelihood of giving are 54.2% and 57.2%, respectively. This is fairly close to the true
giving rate of 53.1%. In the nonexclusive game, first- and second-order beliefs regarding P1’s likelihood of
giving after P2 gave are 53.4% and 54.2% respectively, which are close to the empirical giving rate of 54.1%.
If P2 kept, first- and second-order beliefs that P1 will give are 31.8% and 31.3%, which are a little higher than
the empirical giving rate of 23.3%. The fact that subjects state beliefs which match empirical giving rates
allows us to evaluate subjects’ full strategy sets within our concept of dynamic reciprocity equilibrium.14

We further explore how beliefs align with giving strategies. If subjects are motivated by reciprocity, they
should give more as P1 in the treatment games after P2 gave than in the control game (Comparisons 2 and 3).
However, this should only occur if they believed that P2 believed that P1 would give to P0. Table B3 shows
that such second-order beliefs are significantly higher among P1s who gave more in the treatment games
after P2 gave than in the control game. Table B4 then reports that subjects who exhibited this behavior
had significantly greater second-order beliefs, controlling for subject-level demographics. Together, the
evidence supports the idea that indirect reciprocity motives drive this pay-it-forward behavior, since the
P1s who exhibit this behavior have stronger beliefs that P2 expected them to give to P0 after P2 gave.

13Screenshots of these questions are available in Appendix D.
14To be clear, our belief data do not rule out the possibility that subjects may be playing out of equilibrium. This would only

impact our assessments regarding the role of indirect reciprocity, which is the only psychological component that depends on
beliefs about other players’ behavior. Even in this case, P1’s empirical behaviors would only be explained by the full AIR model,
coupled with the belief that P2 is altruistic over P0’s payoff when giving to P1.

To see why, suppose first that P1 had no indirect reciprocity motives. Then P1 should be equally inclined to give in the treatment
games after P2 gave and in the control game. Since this violates our experimental results, we conclude that P1 must have reciprocity
motives.

Second, suppose that P1 possessed indirect reciprocity motives but did not believe that P2 was altruistic over P0’s payoff. Then
she should be equally or less inclined to give after P2 gave in the treatment games than in the control game. This is because if P1
believed P2 did not care about P0’s payoff, P1 would not be reciprocating P2’s kindness by giving to P0. In fact, if P1 believed that
P2 only cared about P1’s payoff, the best way to reciprocate P2’s gift would be for P1 to keep, rather than to give to P0. This also
violates our experimental results. The only way to explain P1’s behavior is that subjects are motivated to reciprocate, and that P1s
believe P2 cared about P0’s payoffs.
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Table B3: Beliefs regarding P1’s likelihood of giving

Exclusive Nonexclusive
First-Order Beliefs
P2’s belief that P1 will give 54.19 (1.22) 53.38 (1.20)
if P2 gave

P2’s belief that P1 will give 31.85 (1.27)
if P2 kept

Second-Order Beliefs
P1’s belief of P2’s belief 57.14 (1.27) 54.22 (1.40)
that P1 will give if P2 gave

Strategy is consistent with Proposition 2 58.11 (1.36)
Strategy is inconsistent with Proposition 2 49.39 (3.30)
Difference 8.73 (4.06)∗∗

Strategy is consistent with Proposition 3 55.54 (1.48)
Strategy is inconsistent with Proposition 3 42.33 (3.94)
Difference 13.22 (4.65)∗∗∗

P1’s belief of P2’s belief 31.38 (1.351)
that P1 will give if P2 kept

Strategy is consistent with Proposition 3 30.97 (1.43)
Strategy is inconsistent with Proposition 3 34.65 (4.12)
Difference -3.68 (4.53)

Note: Full sample of 403 subjects. Standard errors in parentheses. First-order beliefs are P2’s belief that P1 will give. Second-
order beliefs are P1’s belief of P2’s belief that P1 will give. See Online Appendix D for the specific question text about how
beliefs are elicited.
The AIR model predicts that P1’s giving will be greater in the exclusive game than the control game (Comparison 2). 359
subjects specify a strategy profile that is consistent with this prediction and 44 subjects specify a strategy profile that is
inconsistent with this prediction.
Under the AIR model, P1’s giving will be greater in the nonexclusive game after P2 gives than the control game (Comparison
3). 363 subjects specify a strategy profile that is consistent with this prediction and 40 subjects specify a strategy profile that is
inconsistent with this prediction.
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Table B4: Second-order beliefs and consistency with generalized reciprocity motives

Consistent with Comparison 2 Comparison 3
(1) (2) (3) (4)

P1’s belief of P2’s belief 0.130∗∗ 0.109∗ 0.158∗∗∗ 0.146∗∗∗

that P1 will give if P2 gave (0.0607) (0.0646) (0.0530) (0.0563)

P1’s belief of P2’s belief -0.0673 -0.0846
that P1 will give if P2 kept (0.0550) (0.0581)

Constant 0.816∗∗∗ 0.957∗∗∗ 0.836∗∗∗ 0.860∗∗∗

(0.0380) (0.176) (0.0347) (0.167)
Observations 403 403 403 403
𝑅2 0.011 0.071 0.023 0.082
Subject-Level Controls

Note: Regression of consistent behaviors on second-order beliefs. Standard errors in parentheses. Subject-level controls:
gender, college graduate, full-time employment, U.S. citizen, native English-speaker, Race Dummies (Black, Asian, Hispanic,
White), 10-year Age Dummies, order of treatment games. ∗ 𝑝 < 0.10, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01

C Credit attribution

Since inequity aversion only marginally improves the proportion of subjects whose behavior can be
rationalized, we explore another explanation behind Initial Movers’ behavior. It is possible that subjects are
motivated by how others perceive their actions. In the treatment games, P2 directly impacts P1’s payoff and
indirectly impacts P0’s payoff, since P1’s likelihood of giving to P0 is influenced by P2. P2 may therefore
receive credit for impacting both P1 and P0’s payoffs. However, the degree of credit attributed to each
player should differ between the exclusive and nonexclusive games, since P2 uniquely enables P1 to give in
the exclusive game.

We develop a model which defines credit as each player’s second-order beliefs regarding the kindness
attributed to her actions by others. We experimentally elicit credit. After subjects make their giving decisions
in each game, we ask: “What percentage of Player X’s payoff is due to Player Y?" where 𝑋,𝑌 ∈ {𝑃0, 𝑃1, 𝑃2}.
Subjects then entered an integer between 0 and 100, with the stipulation that the total amount of credit
allocated across all Player Y sum up to 100 (see Appendix D for screenshots of this question).

The utility function takes the form

𝑢𝑖 ( ®𝜎) = 𝜋𝑖 (𝜎) +𝐴𝑖
∑︁
𝑗≠𝑖

𝛿𝑖 𝑗𝜋 𝑗 (𝜎)︸            ︷︷            ︸
altruism

+
∑︁
𝑗≠𝑖

∑︁
𝑘∉{𝑖, 𝑗 }

𝑍𝑖𝛿𝑖 𝑗𝜆𝑖𝑘𝑖 ( ®𝜎)𝜅𝑖 𝑗 ( ®𝜎)︸                               ︷︷                               ︸
indirect reciprocity

, (5)
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where 𝛿𝑖 𝑗 ∈ [0, 1] is 𝑖’s belief of the kindness attributed to her decision regarding giving to 𝑗 . All other
objects are defined as in utility specification (1). Appendix C.1 develops the predictions of this model. For
brevity, we report here the simple predictions.

• For P1 in all games, the likelihood of giving will be positively correlated with P1’s belief of the credit
she will receive for giving to P0.

• For P2 in the exclusive game, the likelihood of giving is positively correlated with P2’s belief of her
credit for P1’s payoff, her credit for P0’s payoffs, and her beliefs about P1’s likelihood of giving.

• For P2 in the nonexclusive game, the likelihood of giving is positively correlated with P2’s belief
of her credit for P1’s payoff, her credit for P0’s payoffs, and the difference in her belief about P1’s
likelihood of giving if P2 gave versus if P2 kept.

Table C1: Credit Elicitations

T-tests
(1) (2) (3) (4) (5) (6) (7)

Control Exclusive Non-Exclusive Exc vs. Nonexc Control vs. Exc Control vs. Nonexc Obs.
P2’s credit over
P2’s payoff 59.34 59.19 0.16 403

(1.46) (1.48) (2.07)
P2’s credit over
P1’s payoff 21.99 44.41 43.31 1.10 -22.42∗∗∗ -21.33∗∗∗ 403

(0.89) (0.95) (0.87) (1.29) (1.31) (1.25)
P2’s credit over
P0’s payoff 22.31 40.78 34.90 5.87∗∗∗ -18.47∗∗∗ -12.59∗∗∗ 403

(0.96) (0.94) (0.94) (1.32) (1.33) (1.34)
P1’s credit over
P2’s payoff 21.98 22.28 -0.30 403

(0.85) (0.90) (1.23)
P1’s credit over
P1’s payoff 56.81 36.85 36.58 0.27 19.96∗∗∗ 20.23∗∗∗ 403

(1.45) (0.78) (0.80) (1.12) (1.65) (1.66)
P1’s credit over
P0’s payoff 54.45 37.61 42.51 -4.90∗∗∗ 16.84∗∗∗ 11.94∗∗∗ 403

(1.50) (0.95) (1.21) (1.53) (1.78) (1.93)
P0’s credit over
P2’s payoff 18.67 18.53 0.14 403

(0.87) (0.87) (1.23)
P0’s credit over
P1’s payoff 21.20 18.74 20.10 -1.37 2.47∗∗ 1.10 403

(0.92) (0.88) (0.93) (1.28) (1.27) (1.31)
P0’s credit over
P0’s payoff 23.24 21.61 22.58 -0.97 1.63 0.66 403

(1.05) (1.07) (1.08) (1.52) (1.50) (1.50)

Note: Standard errors in parentheses. Stars denote significant differences across games. ∗ 𝑝 < 0.10, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01

To obtain empirical predictions we incorporate subjects’ reported beliefs about credit, reported in Table
C1. There are three main predictions. First, based on summary statistics of P1’s credit in the control game
compared to P2’s credit in the treatment games, the model predicts greater giving by P1 in the control
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game than P2 in the treatment games. This is consistent with our experimental results, where P1 in the
control group is 4.5 percentage points more likely to give than P2 in the exclusive game (𝑝 < 0.05, Table 4
Comparison 7) and 5.7 percentage points more likely to give than P2 in the nonexclusive game (𝑝 < 0.01,
Table 4 Comparison 8).

Second, Table C1 reports 5.87% greater credit for P2 over P0’s payoffs in the exclusive game compared
to the nonexclusive game (𝑝 < 0.01). Combining this with data on P2’s beliefs of P1’s likelihood of giving,
the model predicts greater giving by P2 in the exclusive compared to the nonexclusive games. Third, Table
C1 reports 4.90% greater credit for P1 over P0’s payoff in the nonexclusive compared to the exclusive game
(𝑝 < 0.01). Our model predicts that this would lead to greater giving rates for P1 in the nonexclusive
compared to the exclusive games. We fail to find systematic support for either prediction in the full sample,
as shown by Table 4 (Comparisons 6 and 5). Based on the weak evidence regarding P2’s and P1’s giving, we
conclude that there is insufficient support for the credit-based model.

C.1 Giving decisions

This section elaborates on the predictions of the credit attribution model. In the claims and proofs below,
we assume that 𝛿𝑖 𝑗 could differ for all combinations of 𝑖 and 𝑗 . They incorporate the case when 𝛿𝑖 𝑗 = 1 for
all 𝑖 and 𝑗 as a special case. The claims regarding unweighted kindness in the main text are based on the
assumption that 𝛿𝑖 𝑗 = 1 for all 𝑖 and 𝑗 , so their proofs follow the general proofs presented below.

Lemma C.1. In the control game, P1 prefers giving if and only if 𝐴1 ≥ 𝐴𝑏1 ≡ 1/(2𝛿𝑏10).

Proof of Lemma C.1. P1’s utility function is 𝑢1(𝛾1) = 𝜋1(𝛾1) +𝐴1𝛿
𝑏
10𝜅10(𝛾1), where 𝐴1 is P1’s altruistic

factor, 𝛿𝑏10 can be interpreted as P1’s credit assigned by P0 perceived by P1, and𝛾1 is P1’s probability of giving.
P0’s equitable payoff from P1 is 𝜋𝑒0 (𝛾1) =

1
2 [max𝛾1∈[0,1] 𝜋0(𝛾1) +min𝛾1∈[0,1] 𝜋0(𝛾1)] = 1

2 (2 + 0) = 1. P1’s
kindness to P0 from giving is 𝜅10(𝑔1) = 2−1 = 1, and P1’s kindness to P0 from keeping is 𝜅10(𝑘1) = 0−1 =

−1. P1’s utility from giving is 𝑢1(𝑔) = 2 +𝐴1𝛿
𝑏
101, and P1’s utility from keeping is 𝑢1(𝑘) = 3 +𝐴1𝛿

𝑏
10(−1).

Therefore, P1 gives if 𝑢1(𝑔1) ≥ 𝑢1(𝑘1), so 2𝐴1𝛿
𝑏
10 ≥ 1.

Lemma C.2. In the exclusive game, P2 prefers giving if 𝐴2 ≥ 𝐴𝑒2 ≡ 1/
[
2𝛿𝑒21 + (2𝛿𝑒20 − 𝛿𝑒21)𝛾𝑒1𝐺

]
, and P1 gives

with probability 𝛾𝑒1𝐺 = J (2𝐴1−1/𝛿𝑒10 )
𝑍1

+ 2K.

Proof of Lemma C.2. P2’s utility function is 𝑢2(𝛾2, 𝛾 ′1𝐺 ) = 𝜋2(𝛾) +𝐴2𝛿
𝑒
21𝜅21(𝛾2, 𝛾 ′1𝐺 ) +𝐴2𝛿

𝑒
20𝜅20(𝛾2, 𝛾 ′1𝐺 ),

where 𝛾 ′1𝐺 is P2’s belief of P1’s probability of giving. P1’s utility function is 𝑢1(𝛾1𝐺 , 𝛾 ′′1𝐺 ) = 𝜋1(𝛾1𝐺 ) +
𝐴1𝛿

𝑒
10𝜅10(𝛾1𝐺 ) + 𝑍1𝛿

𝑒
10𝜆121(𝛾1𝐺 , 𝛾 ′′1𝐺 )𝜅10(𝛾1𝐺 ), where 𝛾1𝐺 is P1’s probability of giving conditional on P2

giving and 𝛾 ′′1𝐺 is P1’s belief of P2’s belief of P1’s probability of giving.
Suppose P1 believes that P2 believes that P1 gives with probability 𝛾 ′′1𝐺 . The equitable payoff of P1 is

(1 + 3 − 𝛾 ′′1𝐺 )/2 = 2 − 𝛾 ′′1𝐺/2, so giving by P2 to P1 shows a kindness of 3 − 𝛾 ′′1𝐺 − (2 − 𝛾 ′′1𝐺/2) = 1 − 𝛾 ′′1𝐺/2.
P1’s utility from giving is 𝑢1(𝑔1𝐺 , 𝛾 ′′1𝐺 ) = 2 + 𝐴1𝛿

𝑒
10(+1) + 𝑍1𝛿

𝑒
10(+1) (1 − 𝛾 ′′1𝐺/2), and P1’s utility from

keeping is 𝑢1(𝑘1𝐺 , 𝛾 ′′1𝐺 ) = 3 +𝐴1𝛿
𝑒
10(−1) + 𝑍1𝛿

𝑒
10(−1) (1 − 𝛾 ′′1𝐺/2). Therefore, P1’s utility from giving with

probability𝛾1𝐺 is𝑢𝐺 (𝛾1𝐺 , 𝛾 ′′1𝐺 ) = 3−𝛾1𝐺 + (2𝛾1𝐺 −1)𝛿𝑒10 [𝐴1+𝑍1(1−𝛾 ′′1𝐺/2)] = 3−𝛿𝑒10 [𝐴1+𝑍1(1−𝛾 ′′1𝐺/2)] +
𝛾1𝐺 [2𝛿𝑒10 [𝐴1 + 𝑍1(1 − 𝛾 ′′1𝐺/2)] − 1]. Hence, if 𝛿𝑒10 [2𝐴1 + 𝑍1(2 − 𝛾 ′′1𝐺 )] − 1 ≥ 0, P1 gives. That is, P1 gives
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with probability 1 if 𝛿𝑒10(2𝐴1 + 𝑍1) ≥ 1, which rearranges to 2𝐴1 ≥ 1/𝛿𝑒10 − 𝑍1. P1 gives with probability
0 if 𝛿𝑒10(2𝐴1 + 2𝑍1) − 1 ≤ 0, that is, 2𝐴1 ≤ 1/𝛿𝑒10 − 2𝑍1. Finally, if 1/𝛿𝑒10 − 𝑍1 < 2𝐴1 < 1/𝛿𝑒10 − 𝑍1, then
𝛿𝑒10 [2𝐴1 + 𝑍1(2 − 𝛾 ′′1𝐺 )] = 1, which arranges to 𝛾 ′′1𝐺 = 2 − (1/𝛿𝑒10−2𝐴1 )

𝑍1
.

Suppose P2 believes that P1 gives with probability 𝛾 ′1𝐺 . The equitable payoff of P1 is (1 + 3 − 𝛾 ′1𝐺 )/2 =

2 − 𝛾 ′1𝐺/2, and the equitable payoff of C is (0 + 2𝛾 ′1𝐺 ) = 𝛾 ′1𝐺 . If P2 keeps, P2 gets 𝜋2(𝛾2, 𝛾 ′1𝐺 ) = 3 +
𝐴2𝛿

𝑒
21 [1 − (2 − 𝛾 ′1𝐺/2)] +𝐴2𝛿

𝑒
20(0 − 𝛾 ′1𝐺 ) = 3 +𝐴2𝛿

𝑒
21(−1 + 𝛾 ′1𝐺/2) +𝐴2𝛿

𝑒
20(−𝛾 ′1𝐺 ). P2’s utility of giving is

2+𝐴2𝛿
𝑒
21 [3−𝛾 ′1𝐺 −(2−𝛾 ′1𝐺/2)] +𝐴2𝛿

𝑒
20(2𝛾 ′1𝐺 −𝛾 ′1𝐺 ) = 2+𝐴2𝛿

𝑒
21(1−𝛾 ′1𝐺/2)+𝐴2𝛿

𝑒
20𝛾

′
1𝐺 . Therefore, P2 prefers

giving to keeping if𝐴2 [𝛿𝑒21(2−𝛾 ′1𝐺 )+2𝛿𝑒20𝛾 ′1𝐺 ] ≥ 1, which simplifies to𝐴2 ≥ 1/[2𝛿𝑒21+(2𝛿𝑒20−𝛿𝑒21)𝛾 ′1𝐺 ].

Lemma C.3. In the nonexclusive game, P2 prefers giving if

𝐴2 ≥ 𝐴𝑛2 ≡ 1/[2𝛿𝑛21 + (2𝛿𝑛20 − 𝛿𝑛21) (𝛾𝑛1𝐺 − 𝛾𝑛1𝐾 )],

P1 gives with probability 𝛾𝑛1𝐺 = J (2𝐴1−1/𝛿𝑛10 )
𝑍1

+ 2K when P2 gives, and P1 gives with probability 𝛾𝑛1𝐾 =

J (2𝐴1−1/𝛿𝑛10 )
𝑍1

− 1K when P2 keeps.

Proof of Lemma C.3. P2’s utility function is 𝑢2(𝛾2, 𝛾 ′1𝐺 , 𝛾 ′1𝐾 ) = 𝜋2(𝛾) + 𝐴2𝛿
𝑛
21𝜅21(𝛾2, 𝛾 ′1𝐺 , 𝛾 ′1𝐾 ) +

𝐴2𝛿
𝑛
20𝜅20(𝛾2, 𝛾 ′1𝐺 , 𝛾 ′1𝐾 ), where 𝛾 ′1𝐺 and 𝛾 ′1𝐾 are P2’s beliefs of P1’s probability of giving conditional P2

giving and keeping, respectively. P1’s utility function is 𝑢1(𝛾2, 𝛾1𝐺 , 𝛾1𝐾 , 𝛾 ′′1𝐺 , 𝛾 ′′1𝐾 ) = 𝜋𝐵 (𝛾2, 𝛾1𝐺 , 𝛾1𝐾 ) +
𝐴1𝛿

𝑛
10𝜅10(𝛾2, 𝛾1𝐾 , 𝛾1𝐺 ) + 𝑍1𝜆121(𝛾2, 𝛾1𝐺 , 𝛾1𝐾 , 𝛾 ′′1𝐺 , 𝛾 ′′1𝐾 )𝛿𝑛10𝜅10(𝛾2, 𝛾1𝐾 , 𝛾1𝐺 ), where 𝛾2 is P2’s probability of

giving, 𝛾1𝐺 and 𝛾1𝐾 are P1’s probabilities of giving when P2 gives and keeps, respectively, and 𝛾 ′′1𝐺 and 𝛾 ′′1𝐾
are P1’s belief of P2’s belief of P1’s probability of giving when P2 gives and keeps, respectively.

Suppose P1 believes that P2 believes that P1 gives with probability 𝛾 ′′1𝐺 when P2 gives, and gives with
probability 𝛾 ′′1𝐾 when P2 keeps. First, suppose P2 keeps. C’s equitable payoff is 1, and P1’s equitable
payoff is [(1 − 𝛾 ′′1𝐾 ) + (3 − 𝛾 ′′1𝐺 )]/2 = 2 − 𝛾 ′′1𝐾/2 − 𝛾 ′′1𝐺/2. Hence, P1’s utility of giving when P2 keeps is
𝑢1(𝑘2, 𝛾1𝐺 , 𝑔1𝐾 , 𝛾 ′′1𝐺 , 𝛾 ′′1𝐾 ) = 0+𝐴1𝛿

𝑛
10(+1) +𝑍1(+1)𝛿𝑛10(𝛾 ′′1𝐺/2− 1−𝛾 ′′1𝐾/2), and P1’s utility of keeping when

P2 keeps is 𝑢1(𝑘2, 𝛾1𝐺 , 𝑘1𝐾 , 𝛾 ′′1𝐺 , 𝛾 ′′1𝐾 ) = 1 +𝐴1𝛿
𝑛
10(−1) + 𝑍1(−1)𝛿𝑛10(𝛾 ′′1𝐺/2 − 1 − 𝛾 ′′1𝐾/2). Fixing 𝛾 ′′1𝐺 and 𝛾 ′′1𝐾 ,

we have𝑢1(𝑔2, ·, 𝑔1𝐾 , · · · )−𝑢1(𝑘2, ·, 𝑘1𝐾 , · · · ) = 2𝐴1𝛿
𝑛
10+2𝑍1𝛿

𝑛
10(𝛾 ′′1𝐺/2−1−𝛾 ′′1𝐾/2)−1 ≥ 0, which simplifies

to 2𝐴1+𝑍1(𝛾 ′′1𝐺 −𝛾 ′′1𝐾 −2) ≥ 1/𝛿𝑛10. Second, when P2 gives, the only change in the expression is that the sign
of 𝜆121 flips, so the inequality 𝑢1(𝑔2, 𝑔1𝐺 , · · · ) ≥ 𝑢1(𝑔2, 𝑘1𝐺 , · · · ) becomes 2𝐴1 −𝑍1(𝛾 ′′1𝐺 −𝛾 ′′1𝐾 − 2) ≥ 1/𝛿𝑛10.
Because 𝛾 ′′1𝐺 − 𝛾 ′′1𝐾 − 2 < 0, 𝑢1(𝑔, ·, 𝑔1𝐾 , · · · ) − 𝑢1(𝑘, ·, 𝑘1𝐾 , · · · ) ≤ 𝑢1(𝑔,𝑔1𝐾 , · · · ) − 𝑢1(𝑔, 𝑘1𝐾 , · · · ), so P1 is
more inclined to give when P2 gives than when P2 keeps: 𝛾1𝐾 ≤ 𝛾1𝐺 . There are five possible cases of 𝛾1𝐺
and 𝛾1𝐾 .

1. Strategies 𝛾1𝐺 = 1 and 𝛾1𝐾 = 1 are supported in equilibrium only when 2𝐴1 + 2𝑍1 ≥ 1/𝛿𝑛10 and
2𝐴1 − 2𝑍1 ≥ 1/𝛿𝑛10; because 𝑍1 ≥ 0, the two inequalities are simplified to 2𝐴1 + 2𝑍1 ≥ 1/𝛿𝑛10.

2. Strategies𝛾1𝐺 = 1 and 0 < 𝛾1𝐾 < 1 are supported in equilibrium only when 2𝐴1+ (1+𝛾1𝐾 )𝑍1 ≥ 1/𝛿𝑛10
and 2𝐴1 − (1 + 𝛾1𝐾 )𝑍1 = 1/𝛿𝑛10, which hold only when 1/𝛿𝑛10 + 𝑍1 < 2𝐴1 < 1/𝛿𝑛10 + 2𝑍1 and
𝛾1𝐾 =

(2𝐴1−1/𝛿𝑛10 )
𝑍1

− 1.

3. Strategies 𝛾1𝐺 = 1 and 𝛾1𝐾 = 0 are supported in equilibrium only when 2𝐴1 + 𝑍1 ≥ 1/𝛿𝑛10 and
2𝐴1 − 𝑍1 ≤ 1/𝛿𝑛10, which simplify to 1/𝛿𝑛10 − 𝑍1 ≤ 2𝐴1 ≤ 1/𝛿𝑛10 + 𝑍1.
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4. Strategies 0 < 𝛾1𝐺 < 1 and𝛾1𝐾 = 0 are supported in equilibrium only when 2𝐴1−𝑍1(𝛾1𝐺 −2) = 1/𝛿𝑛10
and 2𝐴1 + 𝑍1(𝛾1𝐺 − 2) < 1/𝛿𝑛10, which hold only when 1/𝛿𝑛10 − 2𝑍1 ≤ 2𝐴1 ≤ 1/𝛿𝑛10 − 𝑍1 and
𝛾1𝐺 = 2 + (2𝐴1−1/𝛿𝑛10 )

𝑍1
.

5. Strategies 𝛾1𝐺 = 0 and 𝛾1𝐾 = 0 are supported in equilibrium only when 2𝐴1 + 2𝑍1 ≤ 1/𝛿𝑛10 and
2𝐴1 − 2𝑍1 ≤ 1/𝛿𝑛10; because 𝑍1 ≥ 0, the two inequalities are simplified to 2𝐴1 ≤ 1/𝛿𝑛10 − 2𝑍1.

For P2, suppose P2 believes that P1 gives with probability 𝛾 ′1𝐺 and 𝛾 ′1𝐾 when P2 gives and keeps, respectively.
When P2 keeps and gives, the payoff for P1 is 1 − 𝛾 ′1𝐾 and 3 − 𝛾 ′1𝐺 , respectively, and the payoff for
P0 is 2𝛾 ′1𝐾 and 2𝛾 ′1𝐺 , respectively. Therefore, 𝛿

𝑛
21𝜅21 + 𝛿𝑛20𝜅20 equals (1 − 𝛾 ′1𝐾 )𝛿𝑛21 + 2𝛾 ′1𝐾𝛿

𝑛
20 − 𝑋 when

P2 gives, and equals (3 − 𝛾 ′1𝐺 )𝛿𝑛21 + 2𝛾 ′1𝐺𝛿
𝑛
20 − 𝑋 , where 𝑋 = 𝛿𝑛21(2 − 𝛾 ′1𝐾 − 𝛾 ′1𝐺 ) + 𝛿𝑛20(𝛾 ′1𝐾 + 𝛾 ′1𝐺 ) is a

constant that depends on the equitable payoff. Therefore, the utility difference between giving and keeping
is 𝑢2(𝑔2, · · · ) − 𝑢2(𝑘2, · · · ) = 𝐴2 [2𝛿𝑛21 + (2𝛿𝑛20 − 𝛿𝑛21) (𝛾 ′1𝐺 − 𝛾 ′1𝐾 )] − 1. P2 prefers giving if and only if
𝐴2 ≥ 1/[2𝛿𝑛21 + (2𝛿𝑛20 − 𝛿𝑛21) (𝛾 ′1𝐺 − 𝛾 ′1𝐾 )].

C.2 Giving comparisons

Proposition C.1. In the nonexclusive game, P1 after P2 gave is more inclined to give than P1 after P2 kept.

That is, 𝛾𝑛1𝐺 ≥ 𝛾𝑛1𝐾 .

Proof of Proposition C.1. P1 gives with probability 𝛾𝑛1𝐺 = J (2𝐴1−1/𝛿𝑛10 )
𝑍1

+ 2K after P2 gave in the
nonexclusive game, and P1 gives with probability 𝛾𝑛1𝐾 = J (2𝐴1−1/𝛿𝑛10 )

𝑍1
− 1K after P2 kept in the nonexclusive.

Because (2𝐴1−1/𝛿𝑛10 )
𝑍1

+ 2 >
(2𝐴1−1/𝛿𝑛10 )

𝑍1
− 1, we have 𝛾𝑛1𝐺 ≥ 𝛾𝑛1𝐾 regardless of 𝛿s.

Proposition C.2. P1 is more/equally/less inclined to give in the nonexclusive game than in the exclusive game

after P2 gave, if 𝛿𝑛10 > /= /< 𝛿𝑒10.

Proof of Proposition C.2. P1 gives with probability 𝛾𝑒1𝐺 = J (2𝐴1−1/𝛿𝑒10 )
𝑍1

+ 2K after P2 gave in the exclusive
game, and P1 gives with probability 𝛾𝑛1𝐺 = J (2𝐴1−1/𝛿𝑛10 )

𝑍1
+ 2K after P2 gave in the nonexclusive game.

Therefore, if 𝛿𝑒10 = 𝛿
𝑛
10, then 𝛾

𝑒
1𝐺 = 𝛾𝑛1𝐺 .

In general, 𝛾𝑒1𝐺 ≥ 𝛾𝑛1𝐺 if and only if 𝛿𝑒10 ≥ 𝛿𝑛10, and 𝛾𝑛1𝐺 ≥ 𝛾𝑒1𝐺 if and only if 𝛿𝑛10 ≥ 𝛿𝑒10.

Proposition C.3. P1 after P2 gave in the exclusive game is more (less) inclined to give than P1 in the control

game if 1/𝛿𝑏10 ≥ 1/𝛿𝑒10 − 𝑍1 (if 1/𝛿𝑏10 ≤ 1/𝛿𝑒10 − 2𝑍1).

Proof of Proposition C.3. P1 gives with probability 𝛾𝑏1 = lim𝜖→0+J(2𝐴1 − 1/𝛿𝑏10)/𝜖K in the control game.
P1 gives with probability 𝛾𝑒1𝐺 = J (2𝐴1−1/𝛿𝑒10 )

𝑍1
+ 2K after P2 gave in the exclusive game. Explicitly,

𝛾𝑏1 =


1 if 2𝐴1 > 1

𝛿𝑏10

0 if 2𝐴1 < 1
𝛿𝑏10
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and

𝛾𝑒1𝐺 =


1 if 2𝐴1 ≥ 1

𝛿𝑒10
− 𝑍1

2 + (2𝐴1−1/𝛿𝑒10 )
𝑍1

if 1
𝛿𝑒10

− 2𝑍1 < 2𝐴1 < 1
𝛿𝑒10

− 𝑍1

0 if 2𝐴1 ≤ 1
𝛿𝑒10

− 2𝑍1

.

Hence, when 𝛿𝑒10 = 𝛿𝑏10, the range of 𝐴1 for 𝛾𝑒1𝐺 = 1 coincides with the range of 𝐴1 for 𝛾𝑏1 = 1 when
𝑍1 = 0, and is strictly greater than the range of 𝐴1 for 𝛾𝑏1 = 1 when 𝑍1 > 0. In addition, 𝛾𝑏1 = 0 elsewhere,
whereas 𝛾𝑒1𝐺 ≥ 0 elsewhere. Therefore, we can say that 𝛾𝑒1𝐺 ≥ 𝛾𝑏1 whenever 𝛿𝑒10 = 𝛿𝑏10 and 𝑍1 ≥ 0. In
general, 𝛾𝑒1𝐺 ≥ 𝛾𝑏1 whenever 1

𝛿𝑏10
≥ 1

𝛿𝑒10
− 𝑍1. Similarly, 𝛾𝑒1𝐺 ≤ 𝛾𝑏1 whenever 1

𝛿𝑏10
≤ 1

𝛿𝑒10
− 2𝑍1. When

1
𝛿𝑒10

− 2𝑍1 < 1
𝛿𝑏10

< 1
𝛿𝑒10

−𝑍1, the comparison between 𝛾𝑒1𝐺 and 𝛾𝑏1 is ambiguous and depends on the range of
parameters.

Proposition C.4. P1 after P2 gave in the nonexclusive game is more (less) inclined to give than P1 in the

control game if 1/𝛿𝑏10 ≥ 1/𝛿𝑛10 − 𝑍1 (if 1/𝛿𝑏10 ≤ 1/𝛿𝑛10 − 2𝑍1).

Proof of Proposition C.4. The proof mimics the Proof of Proposition C.3, with superscripts 𝑒 replaced
by superscripts 𝑛. In general, 𝛾𝑛1𝐺 ≥ 𝛾𝑏1 whenever 1

𝛿𝑏10
≥ 1

𝛿𝑛10
− 𝑍1, and 𝛾𝑛1𝐺 ≤ 𝛾𝑏1 whenever 1

𝛿𝑏10
≤ 1

𝛿𝑛10
− 2𝑍1.

When 1
𝛿𝑛10

− 2𝑍1 < 1
𝛿𝑏10

< 1
𝛿𝑛10

− 𝑍1, the comparison between 𝛾𝑒1𝐺 and 𝛾𝑏1 is ambiguous and depends on the
range of parameters.

Proposition C.5. P1 after P2 kept in the nonexclusive game is less inclined to give than P1 in the control game

if 1/𝛿𝑏10 ≤ 1/𝛿𝑛10 + 𝑍1 (if 1/𝛿𝑏10 ≥ 1/𝛿𝑛10 + 2𝑍1).

Proof of Proposition C.5. P1 gives with probability 𝛾𝑏1 = lim𝜖→0+J(2𝐴1 − 1/𝛿𝑏10)/𝜖K in the control game.
P1 gives with probability 𝛾𝑛1𝐾 = J (2𝐴1−1/𝛿𝑛10 )

𝑍1
− 1K after P2 gave in the exclusive game. Explicitly,

𝛾𝑏1 =


1 if 2𝐴1 > 1

𝛿𝑏10

0 if 2𝐴1 < 1
𝛿𝑏10

and

𝛾𝑛1𝐾 =


1 if 2𝐴1 ≥ 1

𝛿𝑛10
+ 2𝑍1

(2𝐴1−1/𝛿𝑛10 )
𝑍1

− 1 if 1
𝛿𝑛10

+ 𝑍1 < 2𝐴1 < 1
𝛿𝑛10

+ 2𝑍1

0 if 2𝐴1 ≤ 1
𝛿𝑛10

+ 𝑍1

.

When 𝛿𝑛10 = 𝛿
𝑏
10, the range of 𝐴1 for 𝛾𝑏1 = 0 is a subset of the range of 𝐴1 for 𝛾𝑛1𝐾 = 0, and is a strict subset

whenever 𝑍1 > 0. In addition, 𝛾𝑏1 = 1 elsewhere, but 𝛾𝑛1𝐾 ≤ 1 elsewhere. Therefore, 𝛾𝑒1𝐾 ≤ 𝛾𝑏1 whenever
𝛿𝑛10 = 𝛿

𝑏
10 and 𝑍1 ≥ 0. In general, 𝛾𝑒1𝐾 ≤ 𝛾𝑏1 holds whenever 1

𝛿𝑏10
≤ 1

𝛿𝑛10
+ 𝑍1.

Proposition C.6. P2 in the exclusive game is more/equally/less inclined to give than P2 in the nonexclusive

game if 2𝛿𝑒21 + (2𝛿𝑒20 − 𝛿𝑒21)𝛾𝑒1𝐺 ≥ 2𝛿𝑛21 + (2𝛿𝑛20 − 𝛿𝑛21) (𝛾𝑛1𝐺 − 𝛾𝑛1𝐾 ).
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Proof of Proposition C.6. P2 in the exclusive game prefers giving if𝐴2 ≥ 𝐴𝑒2 = 1/[2𝛿𝑒21+(2𝛿𝑒20−𝛿𝑒21)𝛾𝑒1𝐺 ].
P2 in the nonexclusive game prefers giving if 𝐴2 ≥ 𝐴𝑛2 = 1/[2𝛿𝑛21 + (2𝛿𝑛20 − 𝛿𝑛21) (𝛾𝑛1𝐺 − 𝛾𝑛1𝐾 )]. Hence, P2 in
the exclusive game is more/equally/less inclined to give than P2 in the nonexclusive game if𝐴𝑒2 < /= /> 𝐴𝑛2 ,
or equivalently, 2𝛿𝑒21 + (2𝛿𝑒20 − 𝛿𝑒21)𝛾𝑒1𝐺 > /= /< 2𝛿𝑛21 + (2𝛿𝑛20 − 𝛿𝑛21) (𝛾𝑛1𝐺 − 𝛾𝑛1𝐾 ).

Proposition C.7. P2 in the exclusive game is more/equally/less likely to give than P1 in the control game if

2𝛿𝑒21 + (2𝛿𝑒20 − 𝛿𝑒21)𝛾𝑒1𝐺 > /= /< 2𝛿𝑏10.

Proof of Proposition C.7. P2 in the exclusive game prefers giving if𝐴2 ≥ 𝐴𝑒2 = 1/[2𝛿𝑒21+(2𝛿𝑒20−𝛿𝑒21)𝛾𝑒1𝐺 ].
P1 in the control game prefers giving if 𝐴1 ≥ 𝐴𝑏1 = 1/(2𝛿𝑏10). Therefore, P2 in the exclusive game is
more/less/equally inclined to give than P1 in the control game if 𝐴𝑒2 < /= /> 𝐴𝑏1, which is equivalent to
2𝛿𝑒21 + (2𝛿𝑒20 − 𝛿𝑒21)𝛾𝑒1𝐺 > /= /< 2𝛿𝑏10.

Proposition C.8. P2 in the nonexclusive game is more/equally/less likely to give than P1 in the control game

if 2𝛿𝑛21 + (2𝛿𝑛20 − 𝛿𝑛21) (𝛾𝑛1𝐺 − 𝛾𝑛1𝐾 ) > /= /< 2𝛿𝑏10.

Proof of Proposition C.8. P2 in the nonexclusive game prefers giving if 𝐴2 ≥ 𝐴𝑛2 = 1/[2𝛿𝑛21 + (2𝛿𝑛20 −
𝛿𝑛21) (𝛾𝑛1𝐺 − 𝛾𝑛1𝐾 )]. P1 in the control game prefers giving if 𝐴1 ≥ 𝐴𝑏1 = 1/(2𝛿𝑏10). Therefore, P2 in the
nonexclusive game is more/less/equally inclined to give than P1 in the control game if 𝐴𝑛2 < /= /> 𝐴𝑏1, or
equivalently, 2𝛿𝑛21 + (2𝛿𝑛20 − 𝛿𝑛21) (𝛾𝑛1𝐺 − 𝛾𝑛1𝐾 ) > /= /< 2𝛿𝑏10.

D Experimental materials

Below we show screenshots of the experiment, implemented online in Qualtrics. To make the experiments
easier for subjects to understand, P2 was Player A, P1 was Player B, and P0 was Player C in the treatment
games. In the control game, P1 was Player A, P0 was Player B, and P2 was Player C. This does not change
the fundamental components of the games which allow us to compare between the control and treatment
games. The entire Qualtrics study can be found at the following link:

https://msu.co1.qualtrics.com/jfe/form/SV_0HZMAjUMD5cPx5A.
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Note: 4-player games are omitted for brevity. To see the 4 player games, please see Qualtrics link. 
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