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Abstract

We experimentally examine the Becker-Shapley-Shubik two-sided matching model. In the experiment,
the aggregate outcomes of matching and surplus are a�ected by whether equal split is in the core
and whether e�cient matching is assortative; the canonical cooperative theory predicts no e�ect. In
markets with an equal number of participants on both sides, individual payo�s cannot be explained
by existing re�nements of the core, but are consistent with our noncooperative model’s predictions.
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1 Introduction

The transferable-utilities (TU) two-sided matching model, developed by Shapley and Shubik (1972) and
Becker (1973), has been widely used to study marriage and labor markets, both theoretically and empiri-
cally.1 There is increasing interest in testing the model’s predictions on stable/core matching and bargain-
ing outcomes2 in laboratory experiments, which have the advantage of creating a controlled environment
that allows researchers to better understand the scope and limitations of a theory despite the small number
of participants and the low incentives provided (Roth, 2015). This study conducts one of the �rst com-
prehensive experiments on the TU matching model and tests alternative noncooperative and behavioral
theories on experimental �ndings that cannot be rationalized by the canonical cooperative theory.

Our experimental investigation starts with the smallest balanced markets with nontrivial matching
possibilities: markets with three subjects on each side. Then we study imbalanced markets with three
subjects on one side and four on the other. To mimic the TU matching market, we reduce frictions by
allowing subjects to propose to anyone on the opposite side of the market with any division of the surplus,
and no match becomes permanent until the end of the game.3 To ensure the robustness of our main
�ndings, we run two waves of experiments that di�er in game-ending rules and payment rules.

According to the canonical theory, di�erent surplus con�gurations of the market should not a�ect
people’s abilities to achieve e�cient matching or stable bargaining outcomes. However, in practice, sev-
eral factors may have an impact. We �rst investigate how two features a�ect matching and bargaining
outcomes in balanced markets: (i) whether e�cient matching is assortative and (ii) whether an equal split
of each e�ciently matched pair’s surplus is stable/in the core. To do so, we use a two-by-two comparison.
First, we hypothesize that the con�gurations that admit an assortative e�cient matching are more straight-
forward and intuitive, since sorting has frequently been observed in practice. It is therefore important to
investigate whether subjects in a controlled experiment indeed �nd it easier to match when assortative
matching is available. Second, we note that an equal division of every e�ciently matched pair’s surplus is
the pairwise Nash (1950) bargaining outcome, and is also the limit outcome of pairwise Rubinstein (1982)
bargaining when subjects are in�nitely patient, so subjects may �nd it easier and strategically more plau-
sible to achieve and maintain such an outcome if it is also in the core.4

Our experiment �nds that the probability of being matched and the probability of achieving e�cient

1For a comprehensive overview of the TU matching model and its applications, see the following surveys and monographs:
Galichon (2016); Chiappori and Salanié (2016); Chade et al. (2017); and Chiappori (2017). The model has been applied to explain
observed assortative matching in characteristics such as education, height, race, income, and blood type (Becker, 1973; Siow,
2015; Eika et al., 2019; Pollak, 2019; Hou et al., 2022); cross-country di�erences in income and growth (Kremer, 1993); increases
in CEO pay (Gabaix and Landier, 2008); and college and career choices (Chiappori et al., 2009; Zhang, 2020, 2021; Zhang and
Zou, 2023).

2A matching and bargaining outcome is stable (also known as being in the core) if no pair of agents has an incentive to deviate
from their respective partners to form a new pair.

3The features of the experiment described capture, for example, a labor market in which �rms and workers———or a venture capital
market in which entrepreneurs and investors———are negotiating deals simultaneously.

4There may be additional reasons for equal splits, including but not limited to complexity, social preferences, and focal points.
When pairwise equal splits are not in the core, inequality aversion may prohibit people from forming a pair. For example, in
the marriage market, a man and a woman who divide their joint surplus unequally may consider the division unfair and choose
to end the relationship, even if they cannot do better by matching with someone else. This phenomenon can be explained by
inequality aversion, as �rst introduced in the economics literature by Fehr and Schmidt (1999) and Bolton and Ockenfels (2000).
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matching are signi�cantly higher in markets with pairwise equal splits in the core and, to a lesser extent,
in markets with assortative e�cient matching. These di�erences are stronger in wave 1 of the experiment
with time limits than in wave 2 without time limits. In markets with pairwise equal splits in the core,
most subjects propose equal splits and most accepted proposals feature equal splits. In contrast, in other
markets, equal splits are less commonly proposed and less commonly accepted. These results suggest that
having pairwise equal splits in the core and assortative e�cient matching are important determinants of
matching and bargaining outcomes in TU matching markets.

In the experiment, subjects tend to reach certain bargaining outcomes in the core, but existing single-
valued and set-valued re�nements of the core do not systematically capture the experimental payo�s.
Motivated to match the experimental payo�s and to understand the general pattern of interaction, we
extend the bilateral bargaining model of Rubinstein (1982) to the matching market. This captures the dy-
namic bargaining process in our experimental design. Our noncooperative bargaining-in-matching model
features a unique equilibrium when the delay frictions are su�ciently small. Whenever the outcome of
pairwise equal splits is in the core, it is also our noncooperative model’s predicted outcome as frictions
vanish, because each pair essentially engages in Rubinstein bargaining with their partner when outside
options do not in�uence their bargaining outcomes in equilibrium.5 When the outcome of pairwise equal
splits is not in the core, outside threats in�uence players’ bargaining power with their partners. Our non-
cooperative model incorporates these outside options. Average experimental payo�s largely coincide with
the payo�s in the unique equilibrium of our noncooperative model as frictions vanish.

Finally, we investigate imbalanced markets. We duplicate the agent with the lowest bargaining power
in each of the four balanced markets, which results in three agents on one side and four agents on the other.6

According to the canonical theory, competition between the two duplicate agents would be expected to
drive down their payo�s, even to zero. However, in the experiment, their payo�s rarely (i.e., in less than
1% of instances) reach zero in the experiment. In fact, in wave 1, their payo�s often do not di�er much
from their payo�s in balanced markets, as if there were no competition. Even when their payo�s are
lower than their payo�s in balanced markets, they are signi�cantly above zero. Our noncooperative model
has a continuum of equilibria that can explain these experimental observations: (i) a class of competitive
equilibria in which competitors get (near) zero payo�s, (ii) a class of noncompetitive equilibria in which
there is essentially no competition between competitors, and (iii) a class of partially competitive equilibria

5This result helps explain without behavioral assumptions the widespread observation of equal splits. Recent papers by Elliott and
Nava (2019) and Talamàs (2020) take a noncooperative approach to model matching markets but consider di�erent bargaining
protocols and agent replenishment in the market. Both papers reach similar conclusions regarding the stability of the pairwise
equal splits outcome when the outcome is in the core. See also Nax and Pradelski (2015), who show that a simple dynamic
learning process can lead to equitable core outcomes.

6A prominent application of imbalanced markets is a marriage market with an imbalanced sex ratio, in which low-income men
tend to compete for wives. For example, Wei and Zhang (2011) �nd that the rising sex ratio in China can explain the increasing
saving rates because Chinese parents with sons raise their savings competitively to increase their sons’ attractiveness in the
marriage market. In addition, biased sex ratio has been empirically documented to drive other competing behaviors such as
dowries (Edlund, 1999; Qian, 2008; Wei and Zhang, 2011; Corno et al., 2020). Furthermore, there are long-term consequences of a
biased sex ratio (Grosjean and Khattar, 2019). Another application is the labor market, in which low-skill workers, who are easy
substitutes for one another, compete to be employed and receive low wages (Katz and Murphy, 1992). The theoretical studies
are of interest by themselves, going back to the situation with one buyer and two sellers (Shapley, 1953; Shapley and Shubik,
1972; Hendon and Tranaes, 1991; Núñez and Rafels, 2005; Leng, 2023).
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in which competitors receive positive payo�s between the payo�s in the previous two classes of equilibria.
The noncompetitive and partially competitive equilibria are sustained by the credible threat that agents
would fully compete if one deviates from the equilibrium. Such an equilibrium is not sustained in balanced
markets, but is sustained in imbalanced markets because the threat to drive a competitor’s payo� to zero
is credible as part of the stable outcome only in imbalanced markets. These �ndings are largely consistent
across the two waves of experiments, with slightly more zero payo�s in wave 2.

In addition, we explore the possibility of fairness concerns in rationalizing the experimental results.
We construct a matching model in which subjects have Fehr and Schmidt (1999) inequality aversion pref-
erences. We de�ne a “fair core” as the prediction of the model and compare it to the experimental �ndings.
Overall, adding fairness concerns may further reinforce the robustness of matching with equal splits in
the core and explain why players’ payo�s in imbalanced markets are away from zero. However, the model
cannot be used as the sole explanation of the experimental behavior, because (i) in balanced markets, the
fair core still has a wide range of predictions and (ii) in imbalanced markets, although the fair core no
longer allows zero payo�s for players on the long side of the market, the prediction is still a singleton,
which di�ers from the observed range of experimental payo�s.

After the literature review, the remainder of the paper is organized as follows. Section 2 presents
de�nitions and testable implications of the canonical TU matching model. Section 3 introduces the ex-
perimental design, procedures, and hypotheses. Section 4 presents experimental results on matching and
bargaining outcomes. Section 5 discusses our noncooperative and inequality aversion models and their �t
with balanced and imbalanced markets in the experiment. Section 6 concludes and discusses additional
experimental results.

Most matching experiments focus on nontransferable-utilities (NTU) matching models, following Gale
and Shapley (1962), and take a market-design perspective to understand the stability, e�ciency, and strat-
egyproofness of di�erent algorithms implemented by a central clearinghouse. Roth (2015) and Hakimov
and Kübler (2019) provide recent surveys on this topic. A few studies consider decentralized NTU markets
in which both sides can make o�ers, such as Echenique and Yariv (2013); Chen et al. (2015); and Pais et al.
(2020). Experimental studies of trading markets (Hat�eld et al., 2012, 2016; Plott et al., 2019) have also
found that in the absence of a competitive equilibrium, markets tend to conform to the stable outcomes
predicted by theory (Kelso and Crawford, 1982; Hat�eld et al., 2013).

Several experiments test the TU matching model. Nalbantian and Schotter (1995) set up an experiment
that mimics the baseball free agency market with three “managers” and three “players” negotiating salaries
via phone, which e�ectively creates a decentralized TU matching market with incomplete information. In
their experiment, subjects do not have complete information on the matching surpluses, and they negotiate
through phone calls to reach permanent agreements. In contrast, our subjects have complete information
on the matching surpluses and make o�ers that are �rst temporarily accepted, which reduces matching
frictions. In addition, the negotiation process in our experiment is more structured than theirs, which
allows us to obtain rich information on the details of subjects’ proposals and their decisions to accept or
reject. Otto and Bolle (2011) study the �nal outcome of six di�erent 2-by-2 matching markets with price ne-
gotiation and verbal communication. In contrast, we focus on decentralized two-sided matching markets
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that do not feature verbal negotiation, but allow negotiation through the strategic acceptance/rejection
of competing o�ers from potential matches. This enables us to document subjects’ behavior during the
negotiation process. Furthermore, our focus on more than two agents on both sides allows us to have
nonassortative e�cient matching patterns that cannot be captured by 2-by-2 markets. Dolgopolov et al.
(2020) study a 3-by-3 assignment matching market and investigate the market outcomes under three insti-
tutions (double auctions, posted prices, and decentralized communication), which di�er from ours. They
�nd that Nash outcomes are commonly observed under double-auction rules, though e�cient outcomes
are not always achieved; however, markets with communication achieve higher e�ciencies on average.
Agranov and Elliott (2021) consider three 2-by-2 markets, but in their decentralized bargaining process,
following Elliott and Nava (2019), if a pair is matched, both players leave the market. Hence, the incentives
in their setting di�er from ours. Agranov et al. (2022) compare matching under complete and incomplete
information and �nd that incomplete information and submodularity jointly hinder the e�ciency and sta-
bility of matching. However, their comparison is focused on two assortative markets with and without
pairwise equal splits in the core. We instead consider eight di�erent markets with complete information,
which allows us to examine the role of assortativity, equal splits, and imbalance.

The experimental literature on imbalanced markets is scarce. Yan et al. (2016) reveal that agents on the
short side do not capture the entire surplus, but the paper focus is on the comparison between di�erent
centralized trading mechanisms. Leng (2023) conducts experiments on 2-by-1 markets using the bargaining
protocol of Perry and Reny (1994) that supposedly achieves the core outcome and �nds that, contrary to
the theoretical prediction but similar to the experimental results of our 3-by-4 markets, the core outcome
is not achieved. This means that agents on the short side of the market do not capture the entire surplus.

In summary, our paper is distinct from other papers in several respects and provides a comprehensive
study of balanced and imbalanced matching markets. Overall, our paper contributes to the literature in
three ways. First, we manipulate market con�gurations to investigate the impact of two features———having
pairwise equal splits in the core and assortativity———on matching and bargaining outcomes. Second, our
�ndings show that agents tend to achieve certain bargaining outcomes in the core in balanced matching
markets, and our noncooperative model features a unique equilibrium that aligns with these outcomes.
Third, we �nd that agents can achieve a range of bargaining outcomes both inside and outside the core in
imbalanced matching markets, and our noncooperative model helps rationalize such multiplicities.

2 Canonical cooperative theory

We brie�y review the canonical cooperative TU matching model based on Shapley and Shubik (1972) and
Becker (1973) to introduce notation, terms, and main testable implications. There are two sides that consist
of =" men," = {<1, · · · ,<=" }, and =, women,, = {F1, · · · ,F=, }. The entire set of players is denoted
by � = " ∪, . We say that a market is balanced if =" = =, and imbalanced otherwise. For any
man < ∈ " and woman F ∈ , , they produce a total surplus of B<F . The surpluses of all pairs can be
summarized by a surplus matrix B = {B<F}<∈",F∈, . Each agent gets zero when unmatched and gets a
payo� that depends on the division of the surplus when matched. Note that the surplus matrix B describes
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the entire market, so we can refer to a matching market simply by B .

De�nition 1 (Stable outcome). A stable outcome of market B is described by a stablematching ` : � →
� ∪ {∅} and vectors of stable/core payo�s D : " → R and E :, → R such that (i) (individual rationality)

each person gets at least as much as staying single: D< > 0 for all< ∈ " and EF > 0 for all F ∈ , ; (ii)

(surplus e�ciency) each couple exactly divides the surplus: D< + EF = B<F if< = ` (F) and F = ` (<); and
(iii) (no blocking pair condition) each couple divides the total surplus in such a way that no man and woman

pair has an incentive to form a new pair: D< + EF > B<F for any< ∈ " andF ∈, .

There is always a stable outcome in the TU matching model, which serves as the benchmark theoretical
prediction for each matching market. Stable matching and payo�s satisfy some easily testable properties,
which we summarize below.

Proposition 1 (Stable matching). A matching is stable if and only if it is e�cient; that is, it maximizes the

total surplus. Equivalently, a matching ` is stable if and only if it is the solution to the linear programming

problemmax`∈M
∑
<∈" B<` (<) , whereM is the set of feasible matching.

Corollary 1 (Full matching). If every element in the surplus matrix is positive, a stable matching is a full
matching; that is, the number of matched pairs in the stable outcome reaches the maximum possible number.

Corollary 2 (E�cient matching). If there is a unique e�cient matching, this matching is the unique match-

ing in the stable outcome.

We say that man < is higher ranked than man <′———i.e., < > <′———if B<F ≥ B<′F for any woman F
with a strict inequality for some F ; women’s ranks are de�ned similarly. A key observation of Becker
(1973) is that if surplus matrix B , after reordering according to rank, satis�es supermodularity, then a
stable matching is positive-assortative, in that the highest ranked man is matched with the highest ranked
woman, the second highest ranked man is matched with the second highest ranked woman, and the =th

highest ranked man is matched with the =th highest ranked woman. To slightly abuse terminology for
expositional convenience, we say that the surplus matrix is assortative if agents can be ranked and the
matrix that is rearranged according to the ranks satis�es supermodularity. To formally de�ne an assortative
surplus matrix, we need to �rst de�ne a reordered surplus matrix.

De�nition 2 (Reordered surplus matrix). The surplus matrix B̃ is a reordered surplus matrix of surplus

matrix B if there exists a pair of permutations c" : " → " and c, :, →, such that B̃c" (<)c, (F) = B<F
for any< ∈ " and anyF ∈, .

De�nition 3 (Assortative surplus). Consider Condition (A) for a reordered matrix B̃ of matrix B :

B̃<F + B̃<′F′ > B̃<F′ + B̃<′F ∀<,<′ ∈ " andF,F ′ ∈, s.t.< > <′ andF > F ′. (A)

A reordered matrix B̃ is positive-assortative (supermodular in Agranov et al. (2022)) if Condition (A) is
satis�ed and ∀<,<′ ∈ ",∀F,F ′ ∈ , : < > <′ ⇒ B̃<F ≥ (≤)B̃<′F and F > F ′ ⇒ B̃<F ≥ (≤)B̃<F′ ;
or negative-assortative (submodular in Agranov et al. (2022)) if Condition (A) is satis�ed and ∀<,<′ ∈
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",F,F ′ ∈ , : < > <′ ⇒ B̃<F ≥ (≤)B̃<′F, and F > F ′ ⇒ B̃<F ≤ (≥)B̃<F′ . A matrix B is assor-
tative if there exists a reordered matrix B̃ that is positive-assortative or negative-assortative. A matrix B is

nonassortative ormixed if it is not assortative.

Proposition 2 (Stable/core payo�s). The set of stable payo�s (Becker, 1973), or equivalently the core (Shapley
and Shubik, 1972), is the set of solutions of the following linear programming problem:

min
∑
<∈"

D< +
∑
F∈,

EF s.t. D< + EF > B<F ∀< ∈ " andF ∈, .

With a �nite number of agents, there is always a nonsingleton set of stable payo�s (given a positive
surplus matrix). An equal split of the surplus for each pair in the stable matching is not always in the core
(as some surplus matrices chosen in the experiment will show).

De�nition 4 (Pairwise equal splits in the core). Pairwise equal splits is in the core (ESIC) of game B

if there exists e�cient matching `∗ such that payo�s D< = B<`∗ (<)/2 for each matched < ∈ " and EF =

B`∗ (F)F/2 for each matched F ∈ , . We say that pairwise equal splits is not in the core (ESNIC) of
game B otherwise.

The core is generically a nonsingleton set. Many solution concepts re�ne the core, but di�er in their
predictions. Examples in Appendix A.1 demonstrate the di�erences in the re�ned solutions such as Shapley
value (Shapley, 1953), nucleolus (Schmeidler, 1969), extreme points (Shapley and Shubik, 1972), fair division
point (Thompson, 1980), kernel (Rochford, 1984), and median stable matching (Schwarz and Yenmez, 2011).
See Núñez and Rafels (2015) for a summary of solution concepts.

3 Experiment

In this section, we present the experimental design and procedures for the �rst wave of the experiment.
The second wave, which has di�erent ending and payment rules, will be introduced in Section 4.1.2.

3.1 Treatment design

We use eight surplus con�gurations, as shown in Table 1. Each surplus con�guration represents a di�erent
matching market. The four markets shown on the left-hand side of Table 1 are balanced, and the four on
the right-hand side are imbalanced. Row players are denoted by (cold color) squares and column players
by (warm color) circles. In the experiment, we use squares and circles of di�erent colors and do not index
the subjects. In the exposition, we refer to row players as men and column players as women. For example,
the �rst square is denoted by<1.

For balanced markets, the double-underlined surpluses in each con�guration show pairings in the
unique e�cient matching. We vary the con�gurations in two dimensions: (i) whether e�cient matching
is assortative, as de�ned in De�nition 3, and (ii) whether the outcome of pairwise equal splits is in the core,
as de�ned in De�nition 4. Hence, each market (i) has pairwise equal splits in the core (ESIC, or simply
E) or pairwise equal splits not in the core (ESNIC, or simply N) and (ii) is assortative (A) or mixed (M).
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Table 1: Surplus con�gurations in the experiment

Balanced markets (6 players) Unbalanced markets (7 players)
ESIC ESNIC ESNIC ESNIC
EA6 NA6 EA7 NA7

A
ss

or
ta

tiv
e F1 F2 F3

<1 30 40 50
<2 40 60 80
<3 50 80 110

F1 F2 F3

<1 90 80 70
<2 80 60 40
<3 70 40 10

F1 F2 F3 F4

<1 30 40 50 30
<2 40 60 80 40
<3 50 80 110 50

F1 F2 F3 F4

<1 90 80 70 70
<2 80 60 40 40
<3 70 40 10 10

EM6 NM6 EM7 NM7

M
ix

ed

F1 F2 F3

<1 30 60 80
<2 60 70 100
<3 40 40 60

F1 F2 F3

<1 90 60 30
<2 100 50 30
<3 80 60 40

F1 F2 F3 F4

<1 30 60 80 30
<2 60 70 100 60
<3 40 40 60 40

F1 F2 F3 F4

<1 90 60 30 30
<2 100 50 30 30
<3 80 60 40 40

Assortative: E�cient matching is assortative; Mixed: E�cient matching is not assortative; ESIC: equal-splits in the core; ESNIC:
equal-splits not in the core. For balanced markets, the double-underlined surpluses in each con�guration show pairings in the
unique e�cient matching. For unbalanced markets, the double-underlined surpluses in each con�guration show pairings that are
for sure part of e�cient matching, and one of the two single-underlined surpluses in each con�guration constitutes the last pair
of e�cient matching.

We refer to the four con�gurations by EA6, EM6, NA6, and NM6. We also design the surpluses to provide
consistency across markets: The maximum total surplus that all agents can obtain is 200; the average total
surplus that all agents can obtain is 180 if they are matched fully and randomly; and the minimum total
surplus they can obtain if they are all matched is 160.

The only di�erence between imbalanced and balanced markets is that there is one more (warm color)
circle player in each imbalanced market. Speci�cally, each of the four surplus matrices replicates the col-
umn player that yields the lowest surplus in the corresponding balanced market setting. Though pairwise
equal splits are no longer in the core (because the duplicate players would get zero in the core), we refer to
the four markets by EA7, NA7, EM7, and NM7 to clarify the connection with their balanced counterparts.

We employ a between-subjects design for both balanced and imbalanced markets and a within-subjects
design for the four di�erent con�gurations of each market type. That is, subjects play either the four
balanced markets or the four imbalanced markets, but they play the four markets in di�erent orders. Using
the Latin square method,7 for balanced and imbalanced markets, we each have four treatment orders:

1 2 3 4
Treatment 1 EA NA EM NM
Treatment 2 NM EA NA EM
Treatment 3 EM NM EA NA
Treatment 4 NA EM NM EA

At the beginning of the experiment, subjects are randomly selected to form a group (of six or seven),
and this grouping remains �xed throughout the experiment. They remain anonymous, and their roles can
7We thank Yan Chen for this suggestion.
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change from round to round. Subjects within a group play the four markets in the order that corresponds
to their assigned treatment. Each market is played for 7 rounds, so they play 28 rounds in total.8 At the
beginning of each round, each subject is randomly assigned a (color) shape that represents their role. A
(cold color) square can only be matched with a (warm color) circle. Each market lasts at least 3 minutes.
Within the 3-minute interval, anyone can propose to anyone on the opposite side. To propose, a subject
clicks the color they wish to propose to and decides the division of surplus. The receiver of a proposal has
30 seconds to accept or reject. When the proposer is waiting for the response, the proposer cannot make
a new proposal to anyone. If a proposal is rejected, both sides are free to make and receive new o�ers.

If a proposal is accepted, a temporary match is reached; information on the temporary match and
division of the surplus is shown to everyone in the market. When a temporary match is reached, both
subjects can still make and receive proposals. One can always break their current temporary match by
forming a new temporary match (either by proposing to a new person and being accepted or by accepting
another proposal). A market ends at the 3-minute mark and all temporary matches become permanent,
unless someone is released from a temporary match in the last 15 seconds; in that case, they have 15
additional seconds to make a new proposal. If another subject is bumped from their temporary match as
a result of the new proposal, the bumped subject gets a chance to make a proposal. This process of adding
15 seconds continues until no new proposal is accepted. Subjects can see the history of �nal matches in
previous rounds.9

3.2 Procedures

The experiment was conducted at the Shanghai University of Finance and Economics. Chinese subjects
were recruited from the subject pool of the Economics Lab through Ancademy, a platform for social sci-
ences experiments; most subjects installed and used the app on their phones. In the �rst wave of the
experiment, 296 subjects participated: 156 in balanced markets and 140 in imbalanced markets. Each sub-
ject participated only once. We ran 8 sessions for the balanced markets and 6 sessions for imbalanced
markets. In each session, we ran 3–6 independent markets. For balanced markets, the number of times
each treatment order is used is 7, 7, 6, and 6, which yields 728 individual rounds of games. For imbalanced
markets, we used each treatment order 5 times, yielding 560 individual rounds. Subjects were mostly
undergraduate students from various �elds of study.

The experiment was computerized using z-Tree (Fischbacher, 2007) and conducted in Chinese. Upon
arrival, each subject was randomly assigned a card with their table number and seated in the correspond-
ing cubicle. Prior to the start of the experiment, subjects read and signed a consent form agreeing to their
participation. All instructions were displayed on their computer screens. Control questions were con-
ducted to check their understanding of the instructions. Appendix A.2 contains English translations of the

8One reason we choose 7 rounds for each market is to ensure an ex-ante equal opportunity for subjects in imbalanced markets,
since one of the 7 subjects is for sure unmatched and gets zero payo� in each round.

9To be clear, historical information is based on roles (squares and circles) but not on individual subjects, so there is no way to
establish a bargaining style or reputation across periods. Subjects may learn better the overall structure of the game over time
and consequently perform better (as suggested by the experimental results), but they cannot learn about any particular individual
over time.
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instructions and screenshots.
Subjects were paid the sum of their payo�s in 28 rounds at an exchange rate of 12 units of payo�s to

1 CNY in balanced markets. To keep the average earnings comparable between balanced and imbalanced
markets, we lowered the exchange rate of the experimental currency from 12 to 10 in imbalanced markets.
Everything else is kept the same as in balanced markets. After �nishing the experiment, subjects received
their earnings in cash. Average earnings were 85 CNY (equivalent to about 12 USD, or about 20 PPP-
adjusted USD) for balanced markets, and 93 CNY for imbalanced markets (equivalent to about 14 USD, or
about 23 PPP-adjusted USD). Each session lasted around 2 hours.

3.3 Discussion

We brie�y discuss the rationale behind some elements of our design for the �rst wave of the experiment.
First, we impose the 3-minute soft deadline primarily for practical purposes. In each experimental session,
to ensure ex-ante equal opportunity for subjects in imbalanced markets, each market type is played 7
rounds for a total of 28 rounds. If the average duration of each round is 3 minutes, we can control the
entire duration of the experiment within 2 hours (including time spent explaining instructions and paying
subjects). Imposing a soft deadline inevitably creates frictions. We change the game-ending rule in the
second wave of the experiment to a 30-second inactivity rule, consistent with Agranov et al. (2022).

Second, we pay subjects for every round for fairness in imbalanced markets. If we instead pay only
one random round, this would result in a zero payo� for at least one subject. Paying the sum of payo�s
for all rounds with feedback on earnings can potentially lead to income e�ects, which may push for equal
splits. Nevertheless, the problem is mitigated by varying the order of the games and we do see signi�-
cant di�erences in how often subjects end up with equal splits in di�erent markets. In the second wave
of the experiment, we change the payment rule to paying randomly for one round for each of the four
con�gurations.

Third, one may vary the appearance of each surplus matrix with reordered rows and columns to avoid
the potential appearance bias that matches on the diagonal are more likely to form. However, each 6-player
surplus matrix has 3! × 3! = 36 ways of appearing, and each 7-player surplus matrix has 3! × 4!/2 = 72

ways of appearing, so there are 4! × (724 + 364) ≈ 6.85 × 109 possible order and appearance treatments.
It is unclear how to simultaneously vary the appearance of each matrix and the ordering of di�erent
matrices using a reasonable number of participants. Our results suggest that subjects are not making
decisions based on the heuristic of matching with diagonal partners. There does not appear to be a higher
frequency of diagonal pairs when the pairs are not e�cient (Table 2a). Furthermore, the overall more
e�cient outcomes in EM6 (o�-diagonal e�cient matching) over NA6 (diagonal e�cient matching) suggest
that the appearance bias does not have a signi�cant e�ect on matching and bargaining outcomes.

4 Results

In this section, we focus on the two most important aspects of the model: (i) the aggregate outcomes of
matching and surplus and (ii) individual payo�s. We discuss other experimental �ndings in Appendix D.
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4.1 Aggregate outcomes: Matching and surplus

4.1.1 Wave 1

Table 2a presents the raw distributions of matches and singles. We observe signi�cant instances of singles
and ine�cient matches.

Table 2: Aggregate outcomes: wave 1

(a) Frequency of being matched and unmatched in the experiment: wave 1

EA6 NA6 EA7 NA7
F1 F2 F3 ∅

<1 92% 4% 1% 4%
<2 4% 87% 3% 5%
<3 1% 5% 92% 2%
∅ 4% 4% 4%

F1 F2 F3 ∅
2% 21% 70% 7%
27% 51% 6% 16%
68% 10% 2% 19%
3% 18% 21%

F1 F2 F3 F4 ∅
53% 1% 1% 44% 1%
8% 72% 6% 9% 4%
0% 11% 88% 0% 1%
39% 16% 5% 47%

F1 F2 F3 F4 ∅
1% 9% 46% 42% 1%
16% 59% 8% 9% 8%
76% 9% 0% 1% 14%
6% 23% 46% 47%

EM6 NM6 EM7 NM7
F1 F2 F3 ∅

<1 0% 83% 8% 9%
<2 3% 8% 85% 4%
<3 91% 1% 0% 8%
∅ 7% 8% 7%

F1 F2 F3 ∅
20% 40% 9% 31%
75% 2% 6% 17%
3% 47% 37% 13%
1% 12% 48%

F1 F2 F3 F4 ∅
0% 83% 11% 0% 6%
9% 4% 74% 8% 4%
51% 1% 0% 44% 3%
39% 11% 15% 48%

F1 F2 F3 F4 ∅
23% 56% 6% 4% 11%
71% 2% 3% 4% 20%
1% 23% 32% 39% 5%
4% 19% 59% 54%

Note. In each table, each cell not in the last row or column indicates the percentage of markets in which a pair has formed
between the row player and column player. The last row reports the percentage of markets in which each respective column
player is unmatched, and the last column reports the percentage for each row player.

(b) Tests of hypotheses on aggregate outcomes: wave 1

Hypotheses EA6 EM6 NA6 NM6 EA7 EM7 NA7 NM7
1a: # matched pairs=3 2.88∗∗∗ 2.79∗∗∗ 2.58∗∗∗ 2.40∗∗∗ 2.93∗ 2.86∗∗∗ 2.78∗∗∗ 2.64∗∗∗

(4.04) (5.61) (8.84) (20.91) (2.52) (4.79) (4.61) (8.18)
1b: full matching=1 0.88∗∗∗ 0.79∗∗∗ 0.58∗∗∗ 0.41∗∗∗ 0.94∗ 0.86∗∗∗ 0.78∗∗∗ 0.64∗∗∗

(4.04) (5.61) (8.84) (21.02) (2.65) (4.79) (4.61) (8.18)
2a: # e�ciently matched pairs=3 2.71∗∗∗ 2.59∗∗∗ 1.89∗∗∗ 1.52∗∗∗ 2.56∗∗∗ 2.53∗∗∗ 2.23∗∗∗ 1.99∗∗∗

(4.91) (6.43) (11.31) (20.92) (5.36) (5.64) (7.92) (11.97)
2b: e�cient matching=1 0.83∗∗∗ 0.74∗∗∗ 0.43∗∗∗ 0.26∗∗∗ 0.71∗∗∗ 0.69∗∗∗ 0.55∗∗∗ 0.46∗∗∗

(4.58) (6.70) (11.40) (22.69) (5.51) (6.01) (8.64) (10.81)
2c: % surplus achieved 0.96∗∗∗ 0.93∗∗∗ 0.87∗∗∗ 0.84∗∗∗ 0.95∗∗∗ 0.92∗∗∗ 0.91∗∗∗ 0.87∗∗∗

(4.36) (5.45) (9.57) (18.60) (3.94) (5.42) (5.85) (8.57)
3a: stable outcome=1 0.76∗∗∗ 0.54∗∗∗ 0.07∗∗∗ 0.05∗∗∗ 0.00 0.00 0.00 0.00

(6.09) (10.02) (47.22) (53.96) (.) (.) (.) (.)
t statistics in parentheses; standard errors clustered at group level; Stars indicate statistically signi�cant di�erences
between canonical theoretical predictions and experimental observations: * p<0.05, ** p<0.01, *** p<0.001;

The canonical theory predicts (1) full matching (Corollary 1), (2) e�cient matching and e�cient surplus
(Corollary 2), and (3) a stable matching and bargaining outcome (Proposition 1). We test these predictions
in several ways using di�erent outcome measures. We state the hypotheses below.

Hypothesis 1 (Full matching). (a) The number of matched pairs is the maximum feasible number; (b) Full

matching is always achieved.

Row 1a of Table 2b shows the average number of matched pairs by market type, which ranges from 2.40
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in NM6 to 2.93 in EA7. For each of the eight market types, we can reject the hypothesis that the maximum
number of matched pairs is achieved. We observe comparable results in previous experiments.10

Nonetheless, the market does not completely break down. Row 1b of Table 2b shows the proportion
of full matching by market type. It ranges from 41% in NM6 to 94% in EA7. For every market type except
NM6, three pairs are matched in more than 58% of the rounds. In almost all games, there are more than
two matched pairs. There is one matched pair in three of the 1,288 games (less than 0.3% of all games): two
NM6 games of the 728 balanced market games and one EA7 game of the 560 imbalanced market games.

In a frictionless setting, we should expect that e�cient matching———even if it is not unique———is always
reached. It goes without saying that this prediction is rejected with the observation that some subjects do
not match. Hence, we also test a more restrictive hypothesis: Some subjects may remain unmatched———and
we remain agnostic about the reason———but when the maximum feasible number of matches is reached, the
cooperative model predicts e�cient matching. We report additional results in Table B1a in Appendix B.

Hypothesis 2. (a) The number of e�ciently matched pairs is the maximum feasible number; (b) E�cient

matching is always achieved; (c) E�cient surplus is achieved. These hypotheses also hold given full matching.

Rows 2a-2c of Table 2b test these hypotheses. Row 2a shows that the number of e�ciently matched
pairs ranges from 1.52 (in NM6) to 2.71 (in EA7), far from the maximum number of 3. Row 2b provides a
breakdown of the types of matching with respect to the number of e�ciently matched and ine�ciently
mismatched pairs. In all market types except NA6 (43%), NM6 (26%), and NM7 (46%), e�cient matching
is achieved in the majority of rounds. Row 2c shows that the e�ciency loss due to ine�cient matches is
statistically signi�cant: The total surplus achieved ranges from 92% (EM7) to 96% (in EA6) in ESIC markets,
and from 84% (in NM6) to 91% (NA7) in ESNIC markets.

An outcome is stable when not only the matching is e�cient, but also the combination of individual
payo�s derived from pairwise surplus division is in the core. Hence, reaching a stable outcome———e�cient
matching along with a stable division of surpluses———is more stringent than achieving e�cient matching.
Because the payo�s are transferable, the matching in any stable outcome is necessarily e�cient.

Hypothesis 3. (a) A stable outcome is achieved ; (b) A stable- outcome———an outcome in which no pair of

agents can improve their joint payo�s by more than - units———is achieved .

Row 3a of Table 2b shows the probability that an outcome is stable. In EA6 and EM6———the balanced
ESIC markets———in the majority of cases, subjects divide up the surplus in a way that cannot be improved
upon by any blocking pair (76% and 54%, respectively).11 However, in NA6 and NM6———the balanced ESNIC
markets———e�cient matching is achieved less frequently, and even when it is achieved, blocking pairs are
more likely to exist.

In our imbalanced markets, stable outcomes always involve a matched subject and an unmatched sub-
ject who gets zero payo�. Strictly speaking, a stable outcome is not reached in any imbalanced markets
10For instance, Nalbantian and Schotter (1995) consider a 3-by-3 market with pairwise equal splits in the core and nonassortative

e�cient matching (i.e., a market of type EM6). In their experiment, 9.3% (14 of 150 potential matches) fail to match, which
translates to 2.79 pairs, compared with 2.76 pairs in our experiment’s EM6 market.

11Row 3a” of Table B1a shows the probability that an outcome is stable, conditioning on e�cient matching. The conditional
probabilities are 92% in EA6 and 74% in EM6.
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in wave 1 of our experiment, because no matched subject receives zero. Even with a looser de�nition of
stability, a signi�cant portion of imbalanced markets have blocking pairs that can improve by more than
10 units of payo�, but they do not form a match by the end of the game. See Table B1a in Appendix B.
This signi�cant discrepancy between theory and experiment in stable payo�s suggests that players are
behaving in a way that is systematically di�erent from what the cooperative theory predicts.

4.1.2 Wave 2

The results in Section 4.1.1 show that the matching rate and e�ciency rate di�er signi�cantly from 100%.
One plausible reason for this could be that some subjects may not have enough time to react and form new
matches after they are released by the end of the 3 minutes, even with the additional 15 seconds provided.
To make sure that frictions created by the ending rule do not drive our main �ndings on matching patterns
and surplus divisions, we run an additional wave of the experiment with an alternative ending rule as a
robustness check.

In wave 2 of the experiment, we use the same eight surplus con�gurations as in wave 1. We again
employ a between-subjects design for the balanced and imbalanced markets, and a within-subjects design
for the four di�erent con�gurations of each market type. The main design di�erence lies in the ending rule:
In wave 2, the market ends when no new proposals are made within 30 seconds. In imbalanced markets,
to potentially shorten the market length, we added a “Move to the next round” button. As soon as 6 of the
7 subjects press this button, the market ends. This means that the market continues as long as it is active,
and ends when there is no activity for a certain period of time. To adjust to the change in the ending rule,
we make another change in the design: In wave 1, the receiver of a proposal has 30 seconds to accept or
reject the proposal; in wave 2, we shorten the time to 15 seconds. This is to avoid a scenario in which
the market may end immediately if the receiver does not respond within 30 seconds, which leaves the
proposer no time to make a new proposal. This scenario would create additional frictions in the market,
so we aim to avoid it.

In addition to changing the ending rule, we also reduce the number of rounds for which subjects are
paid in order to minimize the in�uence of income e�ects and coordination on surplus division. In wave
1, we pay the sum of payo�s for all rounds, but in wave 2, we only pay subjects four randomly selected
rounds, one for each con�guration. This helps to ensure that the results are not in�uenced by these factors.

The experiment was again conducted at the Shanghai University of Finance and Economics. In total,
130 subjects participated: 60 in balanced markets and 70 in imbalanced markets. Therefore, there were
exactly 10 independent groups for each market type. Each subject participated only once, and did not
participate in the wave 1 experiment. We ran 2 sessions for the balanced markets and 3 sessions for the
imbalanced markets. Because markets tended to last longer in wave 2, we let subjects play 5 rounds instead
of 7 rounds for each con�guration, for 20 rounds in total.12 At the end of the experiment, subjects were
paid for four randomly selected rounds out of the total rounds they played at the exchange rate of 1 unit of

12In balanced markets, we initially planned to let subjects play 28 rounds (7 rounds for each con�guration). However, due to a
technical mistake, subjects ended up playing 5 rounds for each of the four con�gurations, followed by 8 rounds of the fourth
con�guration. We dropped these last 8 rounds from our experimental analysis.
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payo� to 1 CNY. Average earnings were 140 CNY (equivalent to about 19 USD, or about 32 PPP-adjusted
USD). On average, the sessions lasted 2.5 hours. The balanced markets took 3.5 minutes per market and
the imbalanced markets took 5.1 minutes per market.

Table 3: Aggregate outcomes: wave 2

(a) Frequency of being matched and unmatched in the experiment: wave 2

EA6 NA6 EA7 NA7
F1 F2 F3 ∅

<1 98% 0% 0% 2%
<2 0% 96% 2% 2%
<3 0% 2% 98% 0%
∅ 2% 2% 0%

F1 F2 F3 ∅
6% 26% 68% 0%
30% 54% 16% 0%
64% 14% 10% 12%
0% 6% 6%

F1 F2 F3 F4 ∅
66% 6% 0% 26% 2%
6% 68% 16% 10% 0%
0% 16% 84% 0% 0%
28% 10% 0% 64%

F1 F2 F3 F4 ∅
0% 10% 48% 42% 0%
12% 66% 10% 12% 0%
86% 12% 2% 0% 0%
2% 12% 40% 46%

EM6 NM6 EM7 NM7
F1 F2 F3 ∅

<1 0% 96% 2% 2%
<2 0% 2% 98% 0%
<3 100% 0% 0% 0%
∅ 0% 2% 0%

F1 F2 F3 ∅
16%50% 22% 12%
82% 0% 8% 10%
0% 46% 48% 6%
2% 4% 22%

F1 F2 F3 F4 ∅
2% 80% 16% 0% 2%
10% 10% 72% 6% 2%
46% 0% 0% 52% 2%
42% 10% 12% 42%

F1 F2 F3 F4 ∅
2% 92% 2% 4% 0%
98% 0% 0% 0% 2%
0% 6% 50% 44% 0%
0% 2% 48% 52%

Note. In each table, each cell not in the last row or column indicates the percentage of markets in which a pair has formed
between the row player and column player. The last row reports the percentage of markets in which each respective column
player is unmatched, and the last column reports the percentage for each row player.

(b) Tests of hypotheses on aggregate outcomes: wave 2

Hypotheses EA6 EM6 NA6 NM6 EA7 EM7 NA7 NM7
1a: # matched pairs=3 2.96 2.98 2.88∗∗ 2.72∗∗ 2.98 3.00 3.00 2.98

(1.00) (1.00) (3.67) (3.77) (1.00) (.) (.) (1.00)
1b: full matching=1 0.98 0.98 0.88∗∗ 0.74∗∗ 0.98 1.00 1.00 0.98

(1.00) (1.00) (3.67) (3.88) (1.00) (.) (.) (1.00)
2a: # e�ciently matched pairs=3 2.92 2.94 1.86∗∗∗ 1.80∗∗∗ 2.44∗∗ 2.54∗∗∗ 2.42∗∗∗ 2.84∗

(1.50) (1.41) (5.40) (6.80) (4.73) (5.92) (5.30) (2.45)
2b: e�cient matching=1 0.96 0.96 0.50∗∗∗ 0.44∗∗∗ 0.68∗∗ 0.71∗∗∗ 0.66∗∗∗ 0.92∗

(1.50) (1.50) (5.51) (7.80) (4.71) (7.66) (5.67) (2.45)
2c: % surplus achieved 0.99 0.99 0.94∗∗∗ 0.91∗∗∗ 0.98∗∗ 0.96∗∗∗ 0.97∗∗ 0.99

(1.12) (1.17) (5.93) (4.90) (3.50) (5.59) (3.58) (1.46)
3a: stable outcome=1 0.86 0.74∗∗ 0.16∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.00 0.04∗∗∗ 0.04∗∗∗

(2.09) (3.88) (11.70) (49.00) (49.00) (.) (24.00) (36.00)
t statistics in parentheses; standard errors clustered at group level; Stars indicate statistically signi�cant di�erences
between canonical theoretical predictions and experimental observations: * p<0.05, ** p<0.01, *** p<0.001;

The results of wave 2 are summarized in Table 3. Overall, they con�rm the main �ndings of wave 1,
although the matching rate and e�ciency rate are higher in wave 2. This is likely due to the change in the
ending rule, which allows more time for subjects to react and form new matches after being released by the
end of the 3 minutes. Despite this, the results of wave 2 show that the e�ciency rate is still signi�cantly
lower than what is predicted by the cooperative theory. In addition, the results for stable outcomes are
similar to those in wave 1, with a signi�cant discrepancy between theory and experiment in the propor-
tion of stable outcomes achieved. These �ndings suggest that subjects are behaving in a way that di�ers
systematically from what the cooperative theory predicts, regardless of the ending rule.

As shown in rows 1a and 1b, the number of matched pairs and the matching rate in most markets
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were not signi�cantly di�erent from 3 and 100%, respectively. However, in NA6 and NM6, the number
of matched pairs and the matching rate were signi�cantly lower than the predictions of the cooperative
theory. In comparison, the number of matched pairs and the matching rate in NA6 and NM6 improved
from wave 1 to wave 2 (from 2.58 pairs and 61% to 2.88 pairs and 88% in NA6, and from 2.40 pairs and
45% to 2.72 pairs and 74% in NM6). This improvement may be due to the change in the ending rule,
which allowed more time for subjects to react and form new matches. Row 2c shows that the percentage
of e�cient surplus achieved ranged from 96% in EM7 to 99% in EA6 and EM6, and from 91% in NM6 to
99% in NM7. The percentage of e�cient matching was not signi�cantly di�erent from 100% in EA6 and
EM6. However, ine�cient matching was still prevalent in other markets, even when full matching was
achieved. Overall, by imposing an inde�nite ending rule and higher stakes per market, both the number of
matched pairs and the percentage of e�cient surplus achieved improved compared with wave 1. However,
ine�cient matching was not eliminated in ESNIC markets.

Row 3a reports summary statistics on stable outcomes. Balanced ESIC markets (EA6 and EM6) have
high frequencies of stable outcomes, but other markets do not, and this pattern remains when we restrict
our attention to full or e�cient matching (Table B1b in Appendix B). When we consider a relaxation of
stable outcomes to stable10 outcomes, most blocking pairs cannot improve their payo�s by more than 10
units, but there remains a signi�cant portion of blocking pairs who could have jointly improved their pay-
o�s by more than 10 units. In imbalanced markets, there are some occurrences (0-4%) of stable outcomes,
meaning that some matched players get zero payo�s; in comparison, there was zero instance that matched
players get zero in wave 1. However, matched players getting zero payo�, the unique core prediction,
remains a rare occasion. The experimental �nding that the two duplicate players on the long side of the
market do not have their payo�s driven to zero remains.

4.1.3 Determinants of aggregate outcomes

We vary the surplus con�gurations in the dimensions of whether stable matching is assortative and
whether pairwise equal splits are in the core, because we conjecture that in reality, the two dimensions
may in�uence people’s actual decisions in matching. Several papers report how strategic complexity af-
fects plays in games. Bednar et al. (2012) demonstrate that the prevalent strategies in games that are less
cognitively demanding are more likely to be used in games that are more cognitively demanding. Luhan
et al. (2017) and He and Wu (2020) show that subjects may not use a certain e�cient strategy due to its
complexity, but instead settle on a simpler but ine�cient strategy. Under nonassortative e�cient matching,
the stable matching pattern is less obvious. Hence, nonassortative matching———even when pairwise equal
splits are in the core———may be perceived by subjects as more complex and more cognitively demanding.
Consequently, subjects may settle on ine�cient matching patterns, such as the ones on the diagonals or
accept payo�s that are not supported in the core.

Equal splits have been widely observed in bilateral bargaining, especially when they are also e�cient.
Two arguments are commonly used to support the prevalence of equal splits in the data: the focal point
theory of Schelling (1960) and distributional social preferences (Fehr and Schmidt, 1999; Bolton and Ocken-
fels, 2000). When equal splits are not e�cient, there is mixed evidence on the trade-o�s between equality
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and e�ciency; see Roth and Malouf (1979); Ho�man and Spitzer (1982); Roth and Murnighan (1982); Roth
et al. (1989); Ochs and Roth (1989), Herreiner and Puppe (2010); Roth (1995); Camerer (2003); Anbarci and
Feltovich (2013, 2018); Isoni et al. (2014); and Galeotti et al. (2018), among many others, on reporting and
understanding equal splits in bargaining experiments. In our experiment, e�ciency is aligned with stable
matching. Hence, when pairwise equal splits are stable, they are also e�cient. However, when they are
not in the core, subjects will face trade-o�s between equality and e�ciency, which may negatively a�ect
the rate of matching, the rate of stable matching, and overall e�ciency.

Hypothesis 4. For balanced markets, (i) the number of matched pairs, (ii) the number of e�ciently matched

pairs, and (iii) the percentage of e�cient surplus achieved are the same (i) in assortative markets as in nonas-

sortative markets and (ii) in ESIC markets as in ESNIC markets.

Tables 2b (wave 1) and 3b (wave 2) provide the following comparisons of balanced markets that con-
tradict the hypothesis. First, assortative markets (EA6 and NA6) have a higher number of matched pairs, a
higher number of e�ciently matched pairs, and a higher aggregate surplus than the nonassortative mar-
kets (EM6 and NM6). Second, ESIC markets (EA6 and EM6) have a higher number of matched pairs, a
higher number of e�ciently matched pairs, and a higher surplus than ESNIC markets (NA6 and NM6).
We con�rm the statistical signi�cance of these comparisons for balanced markets by running the OLS
regression:

~8 = V1 · ESIC8 + V2 · assortative8 + V3 · ESIC8 · assortative8 + V4 · round8 + V5 · order8 + 2 + Y6, (1)

where 8 indicates the index of the game (out of 728 balanced markets), ~8 is the dependent variable ((log)
number of matched pairs in game 8 , (log) number of e�ciently matched pairs in game 8 , or (log) surplus in
game 8); assortative8 is an indicator of whether game 8 is assortative, ESIC8 is an indicator of whether game
8 has pairwise equal splits in the core, round8 is the round (out of 7) the same market has been played,
and order8 is the order (out of 4) the game is played in. The standard errors are clustered at the group
level (recall 26 and 10 groups of subjects played balanced markets and 20 and 10 groups of subjects played
imbalanced markets in waves 1 and 2, respectively). We also run the probit model for whether the market
achieves full matching, e�cient matching, or stable outcome.

Table 4 reports the regression results. In wave 1 (wave 2), compared with other markets, ESIC markets
have 11.5% (8.03%) more matched pairs, 42.6% (45.1%) more e�ciently matched pairs, and 9.48% (10.4%)
more surplus. In addition, ESIC markets are 32.8 percentage points (pp) (23.4 pp) more likely for full
matching, 41.8 pp (46.5 pp) more likely for e�cient matching, and 41.0 pp (56.5 pp) more likely for a stable
outcome in wave 1 (wave 2). The e�ects of ESIC are comparable across the two waves. Assortativity has
a modest e�ect on matching and e�ciency. Compared with nonassortative markets, assortative markets
have 5.56% (4.84%) more matched pairs, 15.3% (1.73%) more e�ciently matched pairs, 3.66% (4.21%) more
surplus, 14.2 pp (7.88 pp) more full matching, 15.8 pp (3.64 pp) more e�cient matching, and 3.14 pp (22.3
pp) more stable outcomes in wave 1 (wave 2). Overall, the e�ects of assortativity are weaker in wave 2,
partially due to the smaller sample size and partially due to an increase in overall e�ciency.

Learning mildly improves matching outcomes. Each additional round of play of the same game is
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Table 4: Determinants of aggregate outcomes in balanced markets

(a) Determinants of outcomes in balanced markets: wave 1

(1) (2) (3) (4) (5) (6)

log (#
matched
pairs+1)

log (#
e�ciently
matched
pairs+1)

log
surplus

whether
full

matching

whether
e�cient

matching

whether
stable

outcome

ESIC 0.115∗∗∗ 0.426∗∗∗ 0.0948∗∗∗ 0.328∗∗∗ 0.418∗∗∗ 0.410∗∗∗
(7.13) (10.35) (4.48) (6.92) (9.41) (11.85)

assortative 0.0556∗∗∗ 0.153∗∗ 0.0366∗ 0.142∗∗∗ 0.158∗∗ 0.0314
(4.04) (2.92) (2.27) (3.82) (2.95) (0.79)

ESIC*assortative -0.0271 -0.115 0.00265 -0.0119 -0.0540 0.111
(-1.36) (-2.04) (0.12) (-0.16) (-0.70) (1.89)

round 0.00490∗ 0.0206∗∗ 0.00847∗∗∗ 0.0158∗ 0.0283∗∗∗ 0.0239∗∗∗
(2.64) (3.50) (3.75) (2.53) (4.31) (3.99)

order 0.0139∗∗ 0.0294∗ 0.0217∗∗ 0.0463∗∗∗ 0.0514∗∗ 0.0401∗∗
(3.39) (2.53) (3.66) (3.48) (3.01) (3.17)

constant 1.156∗∗∗ 0.666∗∗∗ 5.023∗∗∗
(68.30) (12.08) (207.72)

observations 728 728 728 728 728 728
clusters 26 26 26 26 26 26
t statistics in parentheses; standard errors clustered at group level
reported coe�cients in columns (4)–(6) are marginal e�ects from probit
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001

(b) Determinants of outcomes in balanced markets: wave 2

(1) (2) (3) (4) (5) (6)

log (#
matched
pairs+1)

log (#
e�ciently
matched
pairs+1)

log
surplus

whether
full

matching

whether
e�cient

matching

whether
stable

outcome

ESIC 0.0803∗∗ 0.451∗∗∗ 0.104∗∗ 0.234∗∗∗ 0.465∗∗∗ 0.565∗∗∗
(3.40) (6.46) (3.66) (3.81) (8.31) (7.95)

assortative 0.0484∗ 0.0173 0.0421 0.0788∗ 0.0364 0.223∗∗
(2.70) (0.19) (1.64) (2.19) (0.57) (2.79)

ESIC*assortative -0.0629∗ -0.0455 -0.0549 -0.0935 -0.0429 -0.131
(-2.61) (-0.44) (-1.68) (-1.17) (-0.43) (-1.16)

round 0.00935 0.0388∗ 0.00743 0.0330∗ 0.0487∗∗∗ 0.0408∗∗
(1.60) (2.94) (1.04) (2.18) (3.40) (3.15)

order 0.0159∗ 0.0503 0.0199∗ 0.0451∗ 0.0450 0.0150
(2.28) (2.02) (2.97) (2.51) (1.70) (0.53)

constant 1.236∗∗∗ 0.683∗∗∗ 5.118∗∗∗
(37.69) (7.31) (208.98)

observations 200 200 200 200 200 200
clusters 10 10 10 10 10 10
t statistics in parentheses; standard errors clustered at group level
reported coe�cients in columns (4)–(6) are marginal e�ects from probit
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001
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associated with 0.49% (0.94%) more matched pairs, 2.06% (3.88%) more e�ciently matched pairs, and 0.847%
(0.743%) more surplus, and each 7 (5) rounds of play of other games ahead of the current game are associated
with 1.39% (1.59%) more matched pairs and 2.17% (1.99%) more surplus in wave 1 (wave 2). These results
are statistically signi�cant at at least the 95% level in wave 1 (* in the tables), but are partially not signi�cant
in wave 2. In Appendix B, we provide robustness checks with alternative speci�cations of the regressions
regarding dependent variables (no log), rounds of plays, treatment e�ects, and heterogeneous order e�ects.
The results are consistent with those under our current speci�cations. We also test to see whether having
played any particular market would in�uence the subsequent outcomes of other markets. We �nd that
no market systematically in�uences the subsequent outcomes of other markets. In addition, we limit the
analysis to only the �rst rounds of the markets, and the results for the �rst rounds are consistent with the
full results.

Overall, for balanced markets, having pairwise equal splits in the core is a crucial determinant of
e�cient matches and surpluses, and assortativity plays a less important role. To a much lesser extent but
at a statistically signi�cant level, experience with the negotiation process slightly increases the matching
rate and e�ciency, but the increase is not tied to a particular market type (details in the appendix).

Furthermore, we consider the determinants of outcomes when both balanced and imbalanced markets
are included. Table 5 presents the results for the following regression model:

~8 = V1ESIC8 + V2assortative8 + V3balanced8 + V4ESIC8assortative8 + V5assortative8balanced8
+V6round8 + V7round8balanced8 + V8order8 + V9order8balanced8 + 2 + Y6, (2)

where balanced8 indicates whether the market in game 8 is balanced.
ESIC increases the number of matched pairs by 11.5% (8.03%), the number of e�ciently matched pairs

by 42.6% (45.1%), and the surplus by 9.48% (10.4%) in wave 1 (wave 2), and it also increases instances of full
matching, e�cient matching, and stable outcomes. Assortativity has mixed results. Controlling for other
changes, assortativity changes the number of matches by 2.94% (0.003%), the number of e�ciently matched
pairs by 6.45% (-9.17%), and the surplus by 4.32% (-0.34%) in wave 1 (wave 2). The changes by assortativity
are largely insigni�cant in wave 2. Having one additional player increases the number of matches by
11.0% (15.0%), the number of e�cient matches by 27.4% (51.2%), and the surplus by 8.31% (15.0%) in wave
1 (wave 2). Both waves show the signi�cant e�ects of adding the additional player, and wave 2 is even
more conspicuous. In wave 1, playing an additional round of any game increases the matching by 0.974%,
e�cient matching by 2.96%, and the surplus by 1.30%, but the round and order e�ects disappear in wave 2.

In summary, having pairwise equal splits in the core continues to play a prominent role in determining
matching and e�ciency, and assortativity plays a lesser role, both statistically and quantitatively. Adding
an additional player helps increase matching and e�ciency. Robustness checks with alternative dependent
variables and alternative speci�cations in Appendix B reach similar conclusions.
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Table 5: Determinants of aggregate outcomes in balanced and imbalanced markets

(a) Determinants of outcomes in all markets: wave 1

(1) (2) (3) (4) (5) (6)

log (#
matched
pairs+1)

log (#
e�ciently
matched
pairs+1)

log
surplus

whether
full

matching

whether
e�cient

matching

whether
stable

outcome

ESIC 0.115∗∗∗ 0.426∗∗∗ 0.0948∗∗∗ 0.307∗∗∗ 0.453∗∗∗ 0.410∗∗∗
(7.19) (10.44) (4.52) (6.48) (8.46) (11.85)

assortative 0.0294∗∗ 0.0645∗ 0.0432∗ 0.117∗∗ 0.0487 0.0314
(2.89) (2.16) (2.60) (2.93) (1.12) (0.79)

balanced -0.110∗∗∗ -0.274∗∗ -0.0831∗ -0.267∗∗∗ -0.382∗∗∗ 0
(-4.07) (-3.36) (-2.16) (-3.44) (-3.75) (.)

ESIC*assortative -0.0271 -0.115∗ 0.00265 -0.0111 -0.0585 0.111
(-1.37) (-2.06) (0.12) (-0.16) (-0.70) (1.89)

assortative*balanced 0.0262 0.0888 -0.00662 0.0156 0.122 0
(1.54) (1.48) (-0.29) (0.28) (1.65) (.)

round 0.00974∗∗∗ 0.0296∗∗∗ 0.0130∗∗∗ 0.0352∗∗∗ 0.0381∗∗∗ 0.0239∗∗∗
(4.70) (5.05) (4.72) (5.00) (4.31) (3.99)

round*balanced -0.00483 -0.00892 -0.00455 -0.0204∗ -0.00739 0
(-1.74) (-1.08) (-1.28) (-2.24) (-0.63) (.)

order 0.00399 0.0217 0.00694 0.0130 0.0110 0.0401∗∗
(0.84) (1.70) (1.02) (0.74) (0.63) (3.17)

order*balanced 0.00993 0.00772 0.0148 0.0304 0.0447 0
(1.58) (0.45) (1.65) (1.43) (1.74) (.)

constant 1.265∗∗∗ 0.941∗∗∗ 5.106∗∗∗
(59.79) (15.53) (170.27)

observations 1,288 1,288 1,288 1,288 1,288 728
clusters 46 46 46 46 46 26
t statistics in parentheses; standard errors clustered at group level
reported coe�cients in columns (4)–(6) are marginal e�ects from probit
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001

(b) Determinants of outcomes in all markets: wave 2

(1) (2) (3) (4) (5) (6)

log (#
matched

pairs)

log (#
e�ciently
matched
pairs+1)

log
surplus

whether
full

matching

whether
e�cient

matching

whether
stable

outcome

ESIC 0.0803∗∗ 0.451∗∗∗ 0.104∗∗ 0.140∗∗∗ 0.556∗∗∗ 0.361∗∗∗
(3.50) (6.64) (3.76) (3.81) (6.60) (6.64)

assortative 0.0000332 -0.0917∗ -0.00339 0.00303 -0.124∗∗ 0.0342
(0.01) (-2.68) (-0.60) (0.08) (-3.19) (0.58)

balanced -0.150∗∗∗ -0.512∗∗∗ -0.150∗∗∗ -0.284∗∗∗ -0.546∗∗∗ -0.105
(-4.64) (-4.55) (-5.35) (-3.83) (-4.15) (-1.06)

ESIC*assortative -0.0629∗ -0.0455 -0.0549 -0.0558 -0.0513 -0.0835
(-2.69) (-0.45) (-1.72) (-1.19) (-0.44) (-1.18)

assortative*balanced 0.0484∗ 0.109 0.0455 0.0440 0.167∗ 0.108
(2.70) (1.13) (1.78) (1.01) (1.99) (1.45)

round -0.000719 0.0103 0.000223 -0.00789 0.00625 -0.0271∗
(-0.44) (0.98) (0.07) (-0.51) (0.46) (-2.53)

round*balanced 0.0101 0.0286 0.00721 0.0276 0.0521∗ 0.0531∗∗∗
(1.71) (1.73) (0.95) (1.54) (2.35) (3.91)

order 0.0000189 0.0225 0.00182 -0.000213 0.0131 0.0261
(0.03) (1.46) (0.84) (-0.03) (0.60) (1.13)

order*balanced 0.0159∗ 0.0279 0.0181∗ 0.0271∗ 0.0408 -0.0166
(2.33) (0.97) (2.63) (2.18) (1.11) (-0.58)

constant 1.385∗∗∗ 1.195∗∗∗ 5.268∗∗∗
(269.34) (17.97) (356.45)

observations 399 399 399 399 399 399
clusters 20 20 20 20 20 20
t statistics in parentheses; standard errors clustered at group level
reported coe�cients in columns (4)–(6) are marginal e�ects from probit
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001
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4.2 Individual payo�s

We consider the individual payo�s when e�cient matching is achieved and compare them with existing
solutions that re�ne the core (Figure B1 illustrates the core payo�s). In imbalanced markets, the core
predicts a zero payo� for a matched player who has a duplicate competitor on the long side of the market.
Formal Wilcoxon signed-rank test and t-tests demonstrate that these players’ payo�s in the experiment
are all statistically signi�cantly above zero (Table B2 and Table B3 in Appendix B, respectively). There are
only a few instances in wave 2 in which a matched player gets a zero payo�. This inconsistency between
the core and the experiment warrants further attention, which we address in our noncooperative model.

Tables B4a and B4b in Appendix B present t-tests between cooperative solutions and the experimental
payo�s of balanced markets in waves 1 and 2, respectively. When the t-tests do not detect statistically
signi�cant di�erences, the solution is consistent with the experimental �nding. We consider (1) the Shapley
value, which assigns each player a payo� relative to how “important” that player is to the overall surplus
(Shapley, 1953); (2) the nucleolus, which is the lexicographical center of core payo�s (Schmeidler, 1969); (3)
the fair division point, which is the midpoint between row- and column-optimal payo�s (Thompson, 1980);
and (4) the median stable matching, which gives each player their median payo� (Schwarz and Yenmez,
2011). Among these solutions, the nucleolus and median stable matching do not match the payo�s when
the matching is e�cient (except for EA6). The fair division point performs well in balanced ESIC markets,
but not in NM6 markets. Limit equilibrium values of our noncooperative model, which we present in the
next section, match well with (i.e., fall within 2 units of) our experimental values across all markets.

5 Potential explanations

5.1 Noncooperative theory

Existing cooperative solutions———either set-valued ones like the core or singleton-valued ones like the
nucleolus———depart from the experimental results in systematic ways. To rationalize the individual payo�s
in the experiment, consider the following continuous-time model that captures the essence of our experi-
mental setup. At time zero, no one is matched. At each instant C ≥ 0, any agent can propose to anyone on
the other side of the market. A person who receives a proposal must accept or reject the proposal within
time length Δ. Neither a proposer nor a receiver of a proposal can make another proposal within time
length Δ. At each instant, when several o�ers are made simultaneously, proposals from one side of the
market are randomly selected to be sent, and whenever tie-breaking is needed next, proposals from the
other side of the market are sent.13 When a proposal is accepted the match becomes temporary, and the
temporary match and the temporarily agreed upon division of surplus are publicly announced. People
who are temporarily matched can still propose to anyone on the other side of the market other than their
matched partner. The game ends when there is no new proposal in the last Δ · (1 + Y) units of time, where
Y ∈ (0, 1), and all matches become �nal. Suppose each individual has a discount rate of A . De�ne X ≡ 4−AΔ.

13We assume this tie-breaking rule for analytic convenience. Alternative tie-breaking rules, such as having each pair of con�icting
proposals being independently determined at each instant, will not change the limit payo�s that match the experimental results,
but will introduce complications in the expression of equilibrium payo�s due to combinatorial proposer-receiver possibilities.
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Taking Δ→ 0 is equivalent to taking X → 1.14

We consider the Markov perfect equilibria of the game. At each instant, the state of the game is
summarized by the temporary matching ` and the temporary payo�s {*<}<∈" and {+F}F∈, . Because
of the rule whereby agents cannot make another o�er before Δ units of time, in equilibrium, e�ectively,
actions occur only at times that are integer multiples of Δ. Given the speci�c tie-breaking rule, we can
alternatively think of a discrete-time model in which agents have discount factors X and, in the initial
period agents on one side of the market are randomly chosen to propose. In subsequent periods the two
sides alternate in making proposals, and the game ends when there is no proposal in a period.

5.1.1 Balanced markets

Suppose there is a unique e�cient matching `∗ in a balanced matching market, as in the four balanced
markets in our experiment. Consider the following (Markov perfect) equilibrium in which players propose
to their partners in the e�cient matching. At time zero, each man< ∈ " proposes to woman `∗(<) ∈,
with the surplus division * ?

< to< and B<`∗ (<) −* ?
< to `∗(<), and each woman F ∈ , proposes to man

`∗(F) ∈ " with the surplus division B`∗ (F)F − + ?F to `∗(F) and + ?F to F . Each man < ∈ " accepts the
highest acceptable o�er, in which an o�er above X ·* A< is weakly acceptable and * A< is the optimal value
when< rejects the current o�er. Each womanF ∈, accepts the highest o�er, where an o�er above X ·+ AF
is weakly acceptable and + AF is the optimal value when F rejects the current o�er. At each instant after
time zero, each person makes an o�er that maximizes their payo� given the current temporary payo�s,
and each person accepts the highest acceptable o�er if it is above their current temporary payo�. On the
equilibrium path, each man< ∈ " proposes to woman `∗(<) ∈, and each woman F ∈, proposes to
man `∗(F) ∈ " with the division speci�ed above, and each person accepts the o�er at time zero and does
not make another o�er. The proposal each man< ∈ " makes to woman `∗(<) ∈ , at time zero yields
him a payo� of

*
?
< = B<`∗ (<) −max

{
X ·+ A

`∗ (<) , max
<′∈"\<

{
B<′`∗ (<) −* ?

<′
}}
, (3)

where
+ A
`∗ (<) = B<`∗ (<) −max

{
X ·* ?

<, max
F′∈, \`∗ (<)

{
B<F′ −

[
B`∗ (F′)F′ −* ?

`∗ (F′)

]}}
. (4)

Note that * ?

<′ is the payo� of <′ when `∗(<′) accepts, and B` (F′)F′ − * ?

` (F′) is the payo� of F ′ when
F ′ accepts. The o�er man < ∈ " proposes to woman `∗(<) ∈ , is B<`∗ (<) − * ?

< , which is the max-
imum of (i) X · + A

`∗ (<) , the continuation value that woman `∗(<) ∈ , can get if she rejects, and (ii)
max<′∈"\{<}

{
B<′`∗ (<) −* ?

<′
}
, the highest possible deviation payo� that another man <′ ∈ "\{<}

can o�er to `∗(<). The expected payo� that woman `∗(<) ∈ , gets if she rejects, + A
`∗ (<) , results

from her proposing to man < ∈ " , while ensuring that no other woman F ′ ∈ , \{F} is able to o�er
B<F′ − [B`∗ (F′)F′ −* ?

`∗ (F′) ] to< ∈ " to poach him. Analogously, the proposal each womanF ∈, makes

14The addition of frictions in the form of discount factor (and taking the frictionless limit) has been used as a tool to re�ne the
prediction of a bargaining model since Rubinstein (1982).
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to man `∗(F) ∈ " at time zero is

+
?
F = B`∗ (F)F −max

{
X ·* A

`∗ (F) , max
F′∈, \F

{
B`∗ (F)F −+ ?F′

}}
, (5)

where
* A
`∗ (F) = B`∗ (F)F −max

{
X ·+ ?F , max

<′∈"\`∗ (F)

{
B<′F −

[
B<′`∗ (<′) −+ ?`∗ (<′)

]}}
. (6)

Note that when X = 1, all core payo�s satisfy the system of =" +=, equations for {* ?
<}<∈" and {+ ?F }F∈, .

When X < 1, we can show that there is a unique set of payo�s {* ?
<}<∈" and {+ ?F }F∈, that satisfy the

system of equations. The proofs are provided in Appendix C.

Theorem 1. For any X ∈ (0, 1), there exists a unique solution to the system of equations (3)–(6). Moreover, if

we replace `∗ with any ` ≠ `∗ in the system of equations (3)–(6), there is no solution.

Theorem 1 establishes the existence of a unique solution to the system of equations with e�cient
matching, which is supported as an MPE, and that ine�cient matching cannot be supported in any MPE.
This result contrasts with Proposition 2, which shows that the set of stable payo�s is not a singleton in
the canonical cooperative model. Furthermore, Proposition 3 implies that we should expect the outcome
of pairwise equal splits as the unique equilibrium outcome in the limit if and only if it is in the core.

Proposition 3. Suppose B<F > 0 for any< ∈ " and F ∈ , . There exists a X ∈ (0, 1), such that for any

X ∈ (X, 1), when pairwise equal splits are in the core, the equilibrium values are

*
?
< =

B<`∗ (<)

1 + X for any< ∈ " and + AF =
B`∗ (F)F

1 + X for anyF ∈, .

+
?
F =

B`∗ (F)F

1 + X for anyF ∈, and* A< =
B<`∗ (<)

1 + X for any< ∈ ".

When pairwise equal splits are not in the core, there exists a X ∈ [0, 1), such that for any X ∈ [X, 1), the
equilibrium values above are not satis�ed.

The expected equilibrium payo�s are *< ≡ * ?
</2 + [B<`∗ (<) − +

?

`∗ (<) ]/2 for each < ∈ " and +F ≡
+
?
F/2 + [B`∗ (F)F − *

?

`∗ (F) ]/2 for each F ∈ , . These values as X → 1 coincide with the payo�s in the
experiment. Notably, * ?

< = * A< and + ?F = + AF as X → 1 in games with pairwise equal splits in the core,
but * ?

< ≠ * A< and + ?F ≠ + AF in the two games with pairwise equal splits not in the core, even in the limit
as X → 1. This suggests that on the one hand, in markets with pairwise equal splits in the core, outside
options do not play a role in equilibrium and agents e�ectively engage in Nash/Rubinstein bargaining in
pairs; in other words, market forces are minimal. On the other hand, in markets with pairwise equal splits
not in the core, outside threats alter bargaining and in�uence equilibrium payo�s and market forces play a
signi�cant role. These distinctions between markets with and without pairwise equal splits in the core are
also observed in noncooperative games with permanently accepted o�ers (Elliott and Nava, 2019; Talamàs,
2020; Agranov et al., 2022; Agranov and Elliott, 2021). By calculating the equilibrium payo�s in the four
balanced markets, we formalize the following hypothesis:15

15We only demonstrate men’s payo�s, because women’s payo�s are pinned down by men’s in e�cient matching.
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Hypothesis 2a. The average individual payo�s for men in the four balanced markets are*1 = 15,*2 = 30,

and *3 = 55 in EA6; *1 = 50, *2 = 30, and *3 = 20 in NA6; *1 = 30, *2 = 50, and *3 = 20 in EM6; and

*1 = 30,*2 = 40, and*3 = 30 in NM6.

Figure 1a shows the match between the data and the predictions of our model for balanced markets.
The theoretically predicted payo�s in e�cient matching fall within the 99% con�dence interval of the data
mean. The theory not only matches well with the average payo�, but also with the more detailed realized
behavior. The modal outcome matches the theoretical prediction, shown in Figures B2a and B2c in Ap-
pendix B for wave 1 and wave 2, respectively. The �gures present the histograms of payo�s of individuals
in the e�cient matching, with bandwidth of 1.16 In addition, our theory matches other experimental re-
sults in the literature with comparable experimental settings, as summarized in Table B5, which reports
the surplus matrices in other experiments, their types according to categorization of assortativity, ESIC,
and balancedness, as well as average payo�s of all and/or e�cient matches, with standard errors included
whenever they are reported. By our categorization, all of the surplus matrices in previous experiments are
assortative, while some have pairwise equal splits in the core and some do not. In comparison, we vary
whether pairwise equal splits are in the core and examine markets with nonassortative surplus matrices.

5.1.2 Imbalanced markets

Consider an imbalanced market in which two individuals are identical in terms of the surplus they generate
with anyone on the other side of the market; in the four imbalanced markets in our experiment, we have
F∗,F∗∗ ∈, such that B<F∗ = B<F∗∗ for all< ∈ " . There are two e�cient matching outcomes `∗ and `∗∗

such that betweenF∗ andF∗∗, onlyF∗ is matched and onlyF∗∗ is matched, respectively.
There are various (Markov perfect) equilibrium outcomes in this imbalanced market, in the spirit of

the folk theorem. To �x ideas, consider the simplest imbalanced matching market of one man <∗ and
two women F∗ and F∗∗, with either pair being able to generate a surplus of B∗ > 0. In the �rst type of
equilibrium, man <∗ proposes to either woman F∗ or woman F∗∗ a division of the surplus B∗ into B∗ for
himself and 0 for her; woman F∗ and woman F∗∗ propose to man<∗ the same division; man<∗ accepts
a payo� weakly above B∗; and each woman accepts any division of surplus. The equilibrium outcome is a
core outcome in an imbalanced matching market, and is what we call a competitive outcome, since the two
women are competing to bene�t the man on the short side of the market. However, in this dynamic non-
cooperative setting, there are other equilibrium outcomes. Consider the following equilibrium strategies.
When man <∗ is unmatched, woman F∗ proposes to man <∗ the Rubinstein division of surplus B∗ with
B∗/(1 + X) for her and X · B∗/(1 + X) for the man; man<∗ proposes to woman F∗ the Rubinstein division
B∗/(1 + X) for himself and X · B∗/(1 + X) for woman F∗, and accepts any o�er above X · B∗/(1 + X) and
above his current temporary payo�. When <∗ is matched with F∗∗, woman F∗ proposes to man <∗ the
competitive division of surplus B∗ with B∗ for man<∗ and 0 for womanF∗, and man proposes to womanF∗

the same competitive o�er. Woman F∗∗ does not propose or accept any o�er. This is an optimal strategy
for womanF∗∗, since she knows that any proposal to or any acceptance of a proposal from man<∗ would
16The same pattern holds if we consider all matched individuals———not just the matched individuals in the e�cient matching———as

shown in Figure B3a and Figure B3c, for wave 1 and wave 2, respectively, in Appendix B.
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Figure 1: Average payo�s of matched subjects in e�cient matching

(a) Balanced markets (3 men and 3 women)

0

10

20

30

40

50

60

70

80

90

100

p
ay

o
ff

 m1m2m3w1w2w3 
EA6

 m1 m2 m3 w1 w2 w3  
EM6

 m1 m2 m3 w1 w2 w3  
NA6

 m1 m2 m3 w1 w2 w3  
NM6

Note: standard errors clustered at group level; 26 balanced groups

Average payoffs of matched subjects in efficient matching: wave 1

Core Noncooperative limit
Data mean 99% CI of data mean

0

10

20

30

40

50

60

70

80

90

100

p
ay

o
ff

 m1m2m3w1w2w3 
EA6

 m1 m2 m3 w1 w2 w3  
EM6

 m1 m2 m3 w1 w2 w3  
NA6

 m1 m2 m3 w1 w2 w3  
NM6

Note: standard errors clustered at group level; 10 balanced groups

Average payoffs of matched subjects in efficient matching: wave 2

Core Noncooperative limit
Data mean 99% CI of data mean

(b) Imbalanced markets (3 men and 4 women)
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Note. The �gures show the average payo�s of matched individuals in e�cient matching. Blue intervals indicate the range of
values in the core. Red dots in balanced markets indicate the noncooperative equilibrium payo�s in the frictionless limit. The
red dashed lines in imbalanced markets indicate the range of noncooperative equilibria and red dots indicate the payo�s in
the noncompetitive equilibrium in the frictionless limit. Crosses indicate data mean and the segments indicate 99% con�dence
intervals of data mean. The �gures show that average experimental payo�s in balanced markets are predicted by the limit
equilibrium payo�s in our noncooperative model, and average experimental payo�s in imbalanced markets are not in the core
but are between the competitive and noncompetitive equilibrium payo�s in our noncooperative model.
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still lead to a zero payo� for her. We call this equilibrium outcome a noncompetitive outcome, since the
agents on the long side of the market———the women———are not competing. Finally, using this “grim-trigger”
type of strategy, any equilibrium outcome that yields a payo�* between X ·B∗/(1+X) and B∗ for man<∗ is
possible if womanF∗∗ accepts any o�er that yields a payo� weakly above B∗−* . This results in a partially
competitive outcome in which men bene�t from some competition but not maximally.17

We can generalize these arguments to imbalanced matching markets with more individuals in which
there are two identical women F∗ and F∗∗. Consider a generalization of the noncompetitive equilibrium
described above, in which each man< ∈ " and each woman F ∈ , \{F∗∗} behave as if they are in the
equilibrium in balanced market with `∗ being the equilibrium matching with womanF∗∗ ∈, remaining
unmatched and woman F∗∗ ∈ , not attempting to make or accept a proposal. For any woman F ∈
, \{F∗∗}, whenever man `∗(F) ∈ " is temporarily matched with woman F∗∗, woman F would choose
to make a proposal that yields a payo� B`∗ (F)F∗∗ for man `∗(F). Given this grim-trigger strategy of any
woman F ∈ , \{F∗∗}, woman F∗∗ has no (strict) incentive to propose to or accept a proposal from any
man, because she knows that eventually she will receive a payo� of 0. Analogously, we can have matching
`∗∗ be sustained in equilibrium in a similar way. In this type of equilibrium, despite the imbalance of the
market, the short side does not bene�t from it.18

The second class of equilibria generalizes the other extreme of competitive equilibrium in which
women F∗ and F∗∗ compete for man `∗(F∗) = `∗∗(F∗∗) ≡ <∗. In this class, both woman F∗ and woman
F∗∗ propose to man <∗ a division of surplus B<∗F∗ = B<∗F∗∗ ≡ B∗ with payo� B∗ for man <∗ and 0 for
herself; meanwhile, man<∗ proposes to either womanF∗ or womanF∗∗ the same division of surplus.

These o�ers yield a payo� of *<∗ = B∗ for man<∗ and 0 for F∗ and F∗∗. There are two possibilities
for the other pairs of agents. First, they may be una�ected by these competitions between F∗ and F∗∗,
since they continue to obtain the noncompetitive outcome in equilibrium, and they can maintain those
noncompetitive outcomes by invoking grim-trigger strategies. Second, agents on the long side of the
market may be in�uenced by the competition with the unmatched woman F∗∗. To maximally deter the
unmatched woman, matched women may actively choose to o�er B`∗ (F)F∗∗ to man `∗(F) so that he has
no incentive to match with womanF∗∗, and womanF∗∗ has no way to poach man `∗(F). The maximum
deterrence is to o�er B`∗ (F)F∗∗ to the man, but any payo� between B`∗ (F)F−+ ?F and B`∗ (F)F∗∗ for man `∗(F)
can be supported in equilibrium for any womanF , which generates a range of equilibrium outcomes.

In the experiment, the core payo�s———the competitive outcome———are not the most plausible predictions
for these imbalanced matching markets. As a consequence, any re�nement of the core with the cooperative
approach will not yield a satisfying prediction for the imbalanced markets. Rather, we observe a range of
payo�s for men and women between the competitive outcome and the noncompetitive outcome, as shown
by the histograms of realized individual payo�s. This multiplicity is also observed in other experiments.

17This indeterminacy resonates with Rubinstein and Wolinsky (1990), who employ a noncooperative setting with permanently
accepted o�ers.

18Note that the folk-theorem-like equilibrium multiplicity in imbalanced markets is not possible in balanced markets in which
individuals can make additional nonbinding o�ers. A threat to a competitor in a balanced market is not credible, because the
competitor has a positive “outside option” with another partner. A threat to an agent on the opposing side is also not credible,
because o�ers can be made by both sides; think of bilateral Rubinstein bargaining as a balanced market with one agent on each
side: There is a unique Markov perfect equilibrium.
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For example, Leng (2023) meticulously follows the continuous-time setup of Perry and Reny (1994) that
supposedly generates only core outcomes; a range of noncore outcomes analogous to our noncompetitive
outcomes arises in markets with unequal numbers of participants on the two sides (to be precise, markets
with one seller and two buyers).

Hypothesis 2b. The ranges of payo�s are
*1 ∈ [15, 30],*2 ∈ [30, 50],*3 ∈ [55, 80],+1 ∈ [0, 20],+2 ∈ [10, 30],+3 ∈ [30, 55],+4 ∈ [0, 15] in EA7;

*1 ∈ [30, 70],*2 ∈ [30, 50],*3 ∈ [20, 40],+1 ∈ [30, 50],+2 ∈ [10, 30],+3 ∈ [0, 20],+4 ∈ [0, 20] in EM7;

*1 ∈ [30, 60],*2 ∈ [50, 80],*3 ∈ [20, 40],+1 ∈ [0, 20],+2 ∈ [0, 20],+3 ∈ [20, 50],+4 ∈ [0, 20] in NA7;

*1 ∈ [30, 40],*2 ∈ [40, 50],*3 ∈ [30, 40],+1 ∈ [50, 70],+2 ∈ [20, 30],+3 ∈ [0, 10],+4 ∈ [0, 10] in NM7.

Adding one player to a balanced market shrinks the core. The payo�s of players on the short side of the
market increase, and those of players on the long side decrease; some matched players’ payo�s are driven
to zero in the cases we consider in our experiment. However, experimentally, players’ average payo�s do
not change that drastically, as shown in Figure 1b. Only a few participants in wave 2 end up with the
competitive core outcome of zero payo�s. The noncompetitive outcome is much more frequent. Table B6
shows the proportion of instances in predicted payo� ranges of matched players in imbalanced markets.
As can be seen in the table, most individual payo�s fall in our model’s predicted range supporting the
hypothesis, but outside the canonical model’s predicted range.

Figure B2b and Figure B2d in Appendix B show that the modal payo�s of matched players continue to
be the noncompetitive payo�s in both wave 1 and wave 2; the same pattern holds if we consider all matched
individuals———not just the matched individuals in e�cient matching———as shown in Figures B3b and B3d
in Appendix B. Furthermore, notably, although they are on the long side of the market, women with the
highest bargaining power gain slightly in imbalanced markets (Figure B4). This in general supports our
prediction of a noncompetitive equilibrium in imbalanced markets.

Overall, there is some competition, which is an equilibrium outcome in our noncooperative model.
There is enough competition to reject the noncompetitive outcome as the sole outcome, but competition
does not drive the relevant players’ payo�s to zero or a�ect other players’ payo�s drastically. Payo�s
remain close to the noncompetitive outcome. In general, if the observed payo�s are not predicted by our
noncompetitive limit payo�s, then the observed payo�s are between our noncompetitive limit payo�s and
the lower (upper) bound of core payo�s for players on the short (long) side of the market.

5.2 Fairness concerns

The theoretic prediction that matched individuals receive no bene�t or pairs divide surpluses extremely
unequally occurs rarely in experiments. For example, some individuals on the long side of imbalanced
markets are predicted by the core to have zero payo�s even if they are matched, because of competition
with other individuals, but our experiment shows that the extremely competitive outcomes do not occur
frequently, if at all. One explanation is presented above by the folk-theorem-like logic in the noncooper-
ative setting, where many noncompetitive or partially competitive outcomes can be supported. However,
the extreme outcomes can still be supported in equilibrium, and the set of equilibria may depend on the
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bargaining protocol. Alternatively, inequality aversion proposed by Fehr and Schmidt (1999) and Bolton
and Ockenfels (2000), which is experimentally and empirically veri�ed by the rich subsequent literature,
may provide another explanation. When examining the behavior of subjects in our experiment, we �nd ev-
idence that they exhibit inequality-aversion preference when they choose between proposals. The results
are presented in Table D6 and discussed in Appendix D.2.

Extreme outcomes often involve unequal allocations of resources between matched partners, so for
individuals who are averse to inequality, extreme outcomes may not be easily sustained. Motivated by the
possible usefulness of incorporating fairness in matching settings to eliminate implausible extreme out-
comes, we investigate how matching and bargaining outcomes change when individuals have additional
fairness concerns in the form of inequality aversion. This investigation may lend an explanation to why
�rms pay wages above workers’ marginal product, and may have implications for setting minimum wages.

We revise preferences over payo�s following Fehr and Schmidt (1999). Agents are averse to having a
lower material payo� than their partner (disadvantageous inequality aversion) as well as a higher material
payo� (advantageous inequality aversion). Namely, when one gets G and their partner gets ~ = B − G , their
utility is

* (G,~) = G − U · (G − ~)+ − V · (~ − G)+,

+ (G,~) = ~ − U · (~ − G)+ − V · (G − ~)+,

where U ∈ [0, 1], V ∈ [0, 1], and I+ = max{0, I}. In other words, when 8 gets G and 9 gets ~, then 8’s utility
is G−U (G−~) if G ≥ ~, and G−V (~−G) otherwise. Their material payo�s and utilities are zero from staying
unmatched. Nunnari and Pozzi (2022) synthesize that the historical estimates of 85 papers are U = 0.290

and V = 0.426 with 95-percent con�dence intervals of [0.212, 0.366] and [0.240, 0.620], respectively.
Let fair core denote the core when their utilities over payo�s are in the form above. A couple’s division

of surplus G + ~ = B when expressed in terms of utilities is

(1 + 2V) (max{* (G,~),+ (G,~)} − B/2) = (1 − 2U) (B/2 −min{* (G,~),+ (G,~)}).

Potential deviators who earn utilities * and + in their current match do not have incentives to match to
divide B:

(1 + 2V) (max{* ,+ } − B/2) ≥ (1 − 2U) (B/2 −min{* ,+ }).

Figure B1 illustrates the core, the fair core, and noncooperative payo�s for each of the balanced and
imbalanced markets. Some comments follow.

First, the fair core is far from unique. It continues to provide a broad set of predictions.
Furthermore, the fair core is not a subset of the core (and neither is the core a subset of the fair core), so

it is not a re�nement of the core. One may think that inequality aversion consideration shrinks the payo�
gap between matched agents and consequently shrinks the set of fair core payo�s. The consideration
indeed shrinks the payo� gap between matched agents when one agent is getting close to zero payo�,
and hence eliminates the extreme divisions in the fair core (e.g., in imbalanced markets). However, the
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consideration also changes agents’ outside options from negotiating with other agents, which determines
their bargaining power. Because of fairness concerns, agents’ outside options may improve or worsen,
which in turn a�ect their fair core payo�s in a way that di�er from their core payo�s.

Note that if the equal-splits outcome is in the core, the outcome is still in the fair core for any combina-
tion of U and V . Connecting to the experiment, this theoretical result provides an alternative justi�cation
for the robustness of matching with equal splits in the core.

In the two balanced ESNIC markets, the experimental payo�s are illustrated to be outside the fair core.
This result suggests that fairness concerns cannot help predict the experimental payo�s.

In imbalanced markets, extreme divisions that involve zero payo�s are eliminated from the fair core:
The payo�s below V

1+2V B—6.9, 2.9, 9.2, and 9.2, respectively—are eliminated from the predictions, because
these payo�s would not give the players a utility higher than zero. This prediction is in contrast to the
noncooperative prediction that extreme payo�s can still be supported as part of equilibrium. However,
in the fair core, only those payo�s can be supported: Any payo�s above those will be blocked by the
unmatched agent who is happy with any positive payo�. E�ectively, under any point estimates of V , the
fair core predicts a unique value and hence a negligible portion of the experimental payo�s.19

6 Conclusion

We experimentally investigated an in�uential class of matching models that has received extensive theo-
retical and empirical scrutiny. Our contributions are threefold. First, we �nd that factors that are abstracted
away in the basic apparatus play important roles in determining the rate of matching, stability, and e�-
ciency. Speci�cally, both (i) whether agents can sort on their productivity and (ii) whether agents can split
their surpluses by half as a sustainable outcome in�uence the outcome of the two-sided matching market.
Second, we provide a noncooperative theory that makes a unique prediction regarding individual payo�s
in balanced markets, which is experimentally supported by our results and results in the literature. Third,
we investigate imbalanced markets and �nd that noncompetitive outcomes may arise both theoretically
and experimentally. In addition, we show that inequality aversion plays a role in a�ecting the subjects’ be-
havior in the experiment. However, incorporating inequality aversion into the cooperative model cannot
fully rationalize the experimental results.

In Appendix D, we investigate the determinants of the players’ proposing activities. First, we �nd that
proposers are more likely to propose to a receiver when their total surplus stands out among all of the
matches the proposer can achieve. Second, they are more likely to propose to a receiver if they appear
more attractive to the receiver. Third, they are more likely to propose (equally) to someone who is at their
diagonal positions only when the markets are assortative, and they appear to use equal-split as a heuristic
for making proposals when they are inexperienced. Fourth, the number of proposals is signi�cantly lower
in the ESIC markets than in the ESNIC markets, and this di�erence is entirely driven by the number of

19If we take a more relaxed stance on the estimates of V by using the 95-percent con�dence interval V ∈ [0.240, 0.620], the payo�s
are predicted to be in the interval [4.86, 8.30], [1.62, 2.76], [6.48, 11.07], and [6.48, 11.07], respectively. The proportions of
experimental payo�s of subjects that fall in the predicted ranges are 0%-61% in wave 1 and 1%-55% in wave 2, lower than those
of noncooperative predictions.
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ine�cient proposals. This �nding aligns with the prediction of the model that the outside options only
a�ect equilibrium outcomes in the ESNIC markets. Finally, when deciding whether to accept or reject
a proposal compared to their current matches, subjects care about not only their earnings but also the
fairness level of the proposals. The existence of unmatched individuals suggests that there are still frictions
present in our experimental design that prevent people from being fully matched. In this appendix, we take
a detailed look at the behavior of unmatched individuals in the experiment and break down the possible
reasons they remain unmatched. We also �nd that demographic characteristics do not play an important
role.

Our experiment serves as an initial step in understanding decentralized matching and bargaining mar-
kets by considering 3-by-3 and 3-by-4 markets. Interesting next steps worth pursuing include investigating
(i) the outcome when the market is larger (e.g., 6-by-6 markets or 12-by-12 markets) in order to study the
e�ects of market thickness on stable bargaining outcomes; (ii) the e�ects of more imbalanced ratios of
the two sides (e.g., 3-by-6 or 6-by-12 markets) and hence more competition on aggregate and individual
outcomes of the market; (iii) the e�ects of di�erent bargaining protocols on outcomes; and (iv) the e�ects
of asymmetric information on outcomes.
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Appendix

A Theoretical results and experimental instructions

A.1 Examples of the core and alternative cooperative solutions

Consider a balanced market with two men {<1,<2} and two women {F1,F2} and an imbalanced market
with three men {<1,<2,<3} and three women {F1,F2}. Surplus matrices are given by

B :

F1 F2

<1 6 5
<2 2 4

and B ′ :

F1 F2

<1 6 5
<2 2 4
<3 2 4

By our de�nition, B is not an assortative surplus matrix because the two women are unranked. In this
market, the unique stable matching `∗ is `∗(<1) = F1 and `∗(<2) = F2. The core satis�es D1 + E1 = 6,
D1 + E2 ≥ 5, D2 + E2 = 4, and D2 + E1 ≥ 2, which is equivalent to two expressions that contain only D1 and
D2: 4 ≥ D1 − D2 and D1 − D2 ≥ 1. Taking the individual rationality conditions together, we can depict the
core on a graph with D1 on the x-axis and D2 on the y-axis. As shown in Figure A1, the entire shaded area
is the core. Equal splits D1 = E1 = 3 and D2 = E2 = 2 are in the core. Re�ned solutions di�er in this market.

Figure A1: Cooperative solutions for market B = (6, 5; 2, 4)
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Note. All solutions predict e�cient matching. The �ve
points on the boundary are its extreme points (Shapley
and Shubik, 1972). A at (1, 0) is the column-optimal alloca-
tion; B at (6, 4) is the row-optimal allocation; C at (3.5, 2)
is the fair division point (Thompson, 1980); line segment
DE from (4, 1.5) to (4.5, 2) is the kernel (Rochford, 1984);
F at (10/3, 11/6) is the Shapley value (Shapley, 1953);
G at (17/4, 7/4) is the nucleolus (Schmeidler, 1969); H
at (61/15, 26/15) is the centroid of the core; and I at
(25/6, 5/3) is the median stable matching (Schwarz and
Yenmez, 2011).

The imbalanced market B ′ is generated by adding<3, a replica of<2, to the previous balanced market
B . In this new market, there is no unique stable matching because F2 matches with either <2 or <3

in e�cient matching. Consider the stable matching ˜̀ that retains the unique stable matching `∗ of the
balanced market B in the previous example: ˜̀(<1) = F1 and ˜̀(<2) = F2, ˜̀(<3) = ∅. The core of the
imbalanced market satis�es D1 + E1 = 6, D1 + E2 ≥ 5, D2 + E2 = 4, D2 + E1 ≥ 2 and three new conditions:
D3+E1 ≥ 2,D3+E2 ≥ 4, andD3 = 0. These conditions pin downD1 ∈ [1, 4] andD2 = 0, which correspond to
the bottom line of the shaded area (the core of the balanced market) in Figure A1. In general, introducing
an additional player to the market shrinks the core. Competition between<2 and<3 not only drives<2’s
core payo� to 0, but also restricts the set of core payo�s for<1.
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A.2 Experiment instructions

Experimental instructions are in Chinese. We present the English translation for balanced markets in the
�rst wave of the experiment. The instructions for imbalanced markets and ones in the second wave of the
experiment are appropriately modi�ed. Figure A2 presents a screenshot of the experiment.

Figure A2: A (translated) screenshot of the experiment

Instructions for balanced markets

Welcome page
Welcome to this experiment on decision-making. Please read the following instructions carefully.
This experiment will last about two hours. During the experiment, do not communicate with other

participants in any way. If you have any questions at any time, please raise your hand, and an experimenter
will come and assist you privately.

At the beginning of the experiment, you will be randomly assigned to a group of six participants,
and this is �xed throughout the experiment. Each participant sits behind a private computer, and all
decisions are made on the computer screen. This is an anonymous experiment: Experimenters and other
participants cannot link your name to your desk number, and thus will not know your identity or that of
other participants who make the speci�c decisions.
Payo�s

Throughout the experiment, your earnings are denoted in points. Your earnings depend on your own
choices and the choices of other participants. At the end of the experiment, your earnings will be converted
to RMB at the following rate: 12 points = 1 RMB. In addition, you will receive 20 RMB as a show-up fee.
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This show-up fee is added to your earnings during the experiment. Your total earnings will be paid to you
privately at the end of the experiment.

There are three cold colors and three warm colors in experimental roles. Cold colors are Blue, Cyan,
and Green. Warm colors are Pink, Red, and Yellow. In each of the matching games (there are 28 games in
total), each of the six participants will be randomly assigned one of the six role colors. In these matching
games, a cold color can only be matched with a warm color, and vice versa. Two cold colors and two warm
colors cannot be matched. For example, a Cyan can match with a Pink (if they both want to).

When a cold color is matched with a warm color, they can share their total earnings. The total earnings
of the two colors are depicted in the table below. In this table, you can see that a Blue and a Yellow can
share total earnings of 10 points. That is, their total earnings must equal 10.

F1 F2 F3

<1 50 20 10
<2 20 30 60
<3 30 50 20

Matching Stage

In order to reach a match, all of the six participants will go through a short matching stage that lasts
for 3 minutes.

Proposing. Each participant can propose to any of the other three colors on the opposite side of the
market. When proposing to someone, you can �rst click that color on the screen, and decide how you
want to share the total earnings.

For example, if the Red (proposer) wants to propose to the Green (receiver), the Red has to decide
how to allocate the total 60 points between them. Once the proposal is made, the Green will receive a
noti�cation of the proposal on his or her private information board. The noti�cation contains all of the
information about the proposal (who proposes and how many points each gets). Note that except for the
Green (the receiver of the proposal), other people will not receive any information about this proposal.

Accepting/rejecting proposals. When a proposal is made from a proposer to a receiver, the receiver has
30 seconds to either accept or reject the proposal.

If the receiver rejects the proposal within 30 seconds or does not accept it within 30 seconds, this
proposal is no longer valid and will disappear on the receiver’s private information board.

If the receiver accepts the proposal within 30 seconds, a temporary match between the receiver and
the proposer is made. Once a temporary match is made, a matching posting will appear on the public
information board with full information (who matched and how many points each gets).

Before the receiver decides to accept or reject a proposal (and before the 30 seconds are over), the
proposer of this proposal is not able to make any proposals to any other colors (or to make a new proposal
to the same receiver); however, the proposer of this proposal can accept a proposal from others. In this
case, his or her previous proposal becomes invalid.

Moreover, it is possible that one participant receives multiple proposals from di�erent proposers at the
same time. In this case, the receiver can choose to accept at most one proposal (or reject all of them).
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Temporary match. Once a temporary match is made, the two people in this match are still able to make
proposals to others, and they can also receive proposals from other proposers.

In the former case, if one’s new proposal is accepted, then the previous temporary match is ended, and
a new temporary match is formed. In this case, the person who was previously matched with him or her
will be noti�ed, and the matching posting will be updated on the public board.

As long as the matching stage has not ended, one can always break his or her current temporary match
by forming a new temporary match (by proposing and accepting, or by accepting another proposal). One
cannot break a current temporary match without forming a new match. If one is passively broken up with
by someone within the last 15 seconds, he or she will be granted 15 seconds to make new proposals to
others. This process of adding 15 additional seconds continues until no new proposal is accepted.

Permanent match. When the matching stage ends at the 3-minute mark, all of the temporary matches at
the end of the matching stage become permanent. All participants with a permanent match will receive the
points allocated to him or her in the match (as made by the proposers), and all of the remaining participants
are unmatched, and will receive zero points. Once everyone receives his or her points, the game is �nished.
Repetition

In this experiment, you will play four di�erent matching games. In each of the matching games the
procedures are the same; the only di�erence is the game payo�. The game payo� matrix will be shown to
you once a new game is being played. Each of the matching games will be repeated for 7 rounds. Therefore,
there are 28 rounds in total for the entire experiment. Throughout the 28 rounds, you will stay in the same
group of six participants. Before the start of the 28 rounds, you will also have the opportunity to play one
practice round. The goal of the practice round is to let you get familiar with the procedure; the points you
receive in this round will not be included in your �nal earnings.

All of the six participants in a group can also see the matching results from past rounds. The matching
results contain information about which colors are matched with each other and the number of points
they earned in the match.
Earnings

At the end, you will receive the sum of the 240 points (endowed in the beginning) and the points from
each round. Your total earnings in the experiment are equal to the total points divided by 12.

B Robustness checks

This section contains robustness checks of main empirical results and additional experimental results.

B.1 Experimental results

Table B1 reports additional tests of hypotheses on aggregate outcomes of matching and payo�s. Table B2
presents the Wilcoxon signed-rank test for payo�s of matched players with predicted zero core payo�s
in imbalanced markets, and Table B3 presents the t-tests for their payo�s. Tables B4a and B4b show the
average payo�s of matched players in e�cient matching in balanced markets in waves 1 and 2, respectively,
and their comparison to cooperative solutions. Table B6 shows the comparison for imbalanced markets.
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Table B1: Additional tests of hypotheses on aggregate outcomes: wave 1 and wave 2

(a) Additional tests of hypotheses on aggregate outcomes: wave 1

EA6 EM6 NA6 NM6 EA7 EM7 NA7 NM7
2a’: # e�ciently matched pairs=3
given full matching

2.86∗∗ 2.87∗∗ 2.41∗∗∗ 2.08∗∗∗ 2.64∗∗∗ 2.71∗∗∗ 2.48∗∗∗ 2.39∗∗∗
(3.22) (3.55) (6.06) (5.75) (5.10) (4.43) (5.95) (5.73)

2b’: e�cient matching=1
given full matching

0.93∗∗ 0.94∗∗ 0.72∗∗∗ 0.62∗∗∗ 0.75∗∗∗ 0.80∗∗∗ 0.69∗∗∗ 0.66∗∗∗
(3.22) (3.55) (6.27) (5.80) (5.60) (3.90) (6.80) (5.33)

2c’: % surplus achieved=1
given full matching

1.00∗∗ 1.00∗∗ 0.98∗∗∗ 0.97∗∗∗ 0.97∗∗∗ 0.97∗∗ 0.96∗∗∗ 0.96∗∗∗
(3.22) (3.55) (4.75) (5.63) (5.78) (2.93) (4.38) (4.60)

3b: stable10 outcome=1 0.83∗∗∗ 0.74∗∗∗ 0.41∗∗∗ 0.23∗∗∗ 0.40∗∗∗ 0.09∗∗∗ 0.13∗∗∗ 0.35∗∗∗
(4.58) (6.70) (11.68) (25.00) (11.02) (34.94) (28.18) (13.23)

3a’: stable outcome=1
given full matching

0.86∗∗∗ 0.69∗∗∗ 0.10∗∗∗ 0.12∗∗∗ 0.00 0.00 0.00 0.00
(4.95) (6.91) (31.59) (22.23) (.) (.) (.) (.)

3b’: stable10 outcome=1
given full matching

0.93∗∗ 0.94∗∗ 0.69∗∗∗ 0.56∗∗∗ 0.41∗∗∗ 0.10∗∗∗ 0.15∗∗∗ 0.50∗∗∗
(3.22) (3.55) (6.16) (6.55) (10.92) (31.83) (23.48) (7.10)

3a”: stable outcome=1
given e�cient matching

0.92∗∗ 0.74∗∗∗ 0.14∗∗∗ 0.21∗∗∗ 0.00 0.00 0.00 0.00
(3.37) (5.95) (20.88) (10.69) (.) (.) (.) (.)

3b”: stable10 outcome=1
given e�cient matching

1.00 1.00 0.94 0.91∗ 0.54∗∗∗ 0.13∗∗∗ 0.22∗∗∗ 0.73∗∗
(.) (.) (1.32) (2.42) (6.98) (24.48) (14.99) (3.62)

clusters 26 26 26 26 20 20 20 20
Stars indicate statistically signi�cant di�erences between canonical theoretical predictions and experimental observations:
* p<0.05, ** p<0.01, *** p<0.001; t statistics in parentheses; standard errors clustered at group level

(b) Additional tests of hypotheses on aggregate outcomes: wave 2

EA6 EM6 NA6 NM6 EA7 EM7 NA7 NM7
2a’: # e�ciently matched pairs=3
given full matching

2.96 2.96 2.06∗∗ 2.16∗ 2.50∗∗ 2.54∗∗∗ 2.42∗∗∗ 2.88
(1.00) (1.00) (4.19) (2.92) (4.25) (5.92) (5.30) (1.96)

2b’: e�cient matching=1
given full matching

0.98 0.98 0.57∗∗ 0.64∗ 0.70∗∗ 0.71∗∗∗ 0.66∗∗∗ 0.94
(1.00) (1.00) (4.22) (3.15) (4.51) (7.66) (5.67) (1.96)

2c’: % surplus achieved=1
given full matching

1.00 1.00 0.96∗ 0.98∗ 0.98∗∗ 0.96∗∗∗ 0.97∗∗ 1.00
(1.00) (1.00) (3.19) (2.73) (3.66) (5.59) (3.58) (1.96)

3b: stable10 outcome=1 0.96 0.96 0.42∗∗∗ 0.34∗∗∗ 0.58∗∗∗ 0.38∗∗∗ 0.40∗∗∗ 0.78∗
(1.50) (1.50) (6.33) (8.34) (6.68) (6.15) (7.61) (3.16)

3a’: stable outcome=1
given full matching

0.88 0.76∗∗ 0.18∗∗∗ 0.05∗∗∗ 0.02∗∗∗ 0.00 0.04∗∗∗ 0.04∗∗∗
(1.77) (3.76) (9.87) (19.00) (49.00) (.) (24.00) (36.00)

3b’: stable10 outcome=1
given full matching

0.98 0.98 0.48∗∗∗ 0.50∗∗ 0.60∗∗∗ 0.38∗∗∗ 0.40∗∗∗ 0.80∗
(1.00) (1.00) (5.34) (4.39) (6.21) (6.15) (7.61) (2.74)

3a”: stable outcome=1
given e�cient matching

0.90 0.77∗∗ 0.24∗∗∗ 0.06∗∗∗ 0.05∗∗∗ 0.00 0.04∗∗∗ 0.04∗∗∗
(1.46) (3.66) (7.39) (17.00) (19.00) (.) (24.00) (36.00)

3b”: stable10 outcome=1
given e�cient matching

1.00 1.00 0.82∗ 0.72 0.86∗ 0.51∗∗ 0.59∗∗ 0.85∗
(.) (.) (2.37) (2.24) (2.28) (3.82) (4.15) (2.35)

clusters 10 10 10 10 10 10 10 10
Stars indicate statistically signi�cant di�erences between canonical theoretical predictions and experimental observations:
* p<0.05, ** p<0.01, *** p<0.001; t statistics in parentheses; standard errors clustered at group level
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Table B2: Wilcoxon signed-rank test for payo�s of matched players with predicted zero core payo�s in
imbalanced markets

(a) Wilcoxon signed-rank tests for payo�s of matched players with predicted zero core payo�s in imbalanced markets:
wave 1

role #clusters probability Ho

EA7w1 20 9.54e-07
EA7w4 20 9.54e-07
EM7w3 20 9.54e-07
EM7w4 20 9.54e-07
NA7w1 20 9.54e-07
NA7w4 20 9.54e-07
NM7w3 19 1.91e-06
NM7w4 20 9.54e-07

We average payo�s of each group and test Ho: median=0 vs Ha: median>0

(b) Wilcoxon signed-rank tests for payo�s of matched players with predicted zero core payo�s in imbalanced mar-
kets: wave 1

role #clusters probability Ho

EA7w1 10 .0009766
EA7w4 9 .0078125
EM7w3 10 .0009766
EM7w4 10 .0009766
NA7w1 10 .0009766
NA7w4 10 .0009766
NM7w3 10 .0019531
NM7w4 10 .0009766

We average payo�s of each group and test Ho: median=0 vs Ha: median>0

Note. In the experiment, F3 in EA7 is never matched in one group in wave 1, and F4 in EA7 is never matched in one group in
wave 2, so the number of clusters is 19 and 9, respectively.
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Table B3: T-tests for payo�s of matched players with predicted zero core payo�s in imbalanced markets

(a) T-tests for payo�s of matched players with predicted zero core payo�s in imbalanced markets: wave 1

data core t-stat #clusters CI
EA7w1 9.57 0 16.467∗∗∗ 20 8.43,10.71
EA7w4 8.23 0 15.022∗∗∗ 20 7.16,9.30
EM7w3 14.15 0 15.121∗∗∗ 20 12.31,15.98
EM7w4 14.62 0 22.240∗∗∗ 20 13.33,15.91
NA7w1 13.77 0 15.787∗∗∗ 20 12.06,15.47
NA7w4 13.87 0 17.056∗∗∗ 20 12.27,15.46
NM7w3 8.17 0 10.823∗∗∗ 19 6.69,9.65
NM7w4 7.82 0 10.267∗∗∗ 20 6.33,9.31
t statistics in parentheses
standard errors clustered at group level
* p<0.05, ** p<0.01, *** p<0.001

(b) T-tests for payo�s of matched players with predicted zero core payo�s in imbalanced markets: wave 2

data core t-stat #clusters CI
EA7w1 5.06 0 7.652∗∗∗ 10 3.76,6.36
EA7w4 5.38 0 3.754∗∗ 9 2.57,8.19
EM7w3 9.07 0 5.959∗∗∗ 10 6.09,12.06
EM7w4 11.25 0 4.130∗∗ 10 5.91,16.58
NA7w1 7.75 0 5.170∗∗∗ 10 4.81,10.68
NA7w4 8.98 0 5.997∗∗∗ 10 6.05,11.92
NM7w3 2.91 0 4.222∗∗ 10 1.56,4.25
NM7w4 5.75 0 3.541∗∗ 10 2.57,8.94
t statistics in parentheses
standard errors clustered at group level
* p<0.05, ** p<0.01, *** p<0.001

Note. In the experiment, F3 in EA7 is never matched in one group in wave 1, and F4 in EA7 is never matched in one group in
wave 2, so the number of clusters is 19 and 9, respectively.
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Table B4: T-tests for payo�s of matched players in e�cient matching in balanced markets

(a) T-tests for payo�s of matched players in e�cient matching in balanced markets: wave 1

data
mean

our
model

Shapley
value

(Shapley,
1953)

nucleolus

(Schmeidler,
1969)

fair
division

(Thompson,
1980)

median stable
matching

(Schwarz & Yenmez,
2011)

EA6m1 15.1 15.0 18.2∗∗∗ 15.0 15.0 15.0
(-0.76) (39.26) (-0.76) (-0.76) (-0.76)

EA6m2 30.0 30.0 31.3∗∗∗ 30.0 30.0 30.0
(0.13) (9.69) (0.13) (0.13) (0.13)

EA6m3 55.1 55.0 50.5∗∗∗ 55.0 55.0 55.0
(-0.38) (-28.86) (-0.38) (-0.38) (-0.38)

EA6w1 14.9 15.0 18.2∗∗∗ 15.0 15.0 15.0
(0.76) (40.79) (0.76) (0.76) (0.76)

EA6w2 30.0 30.0 31.3∗∗∗ 30.0 30.0 30.0
(-0.13) (9.43) (-0.13) (-0.13) (-0.13)

EA6w3 54.9 55.0 50.5∗∗∗ 55.0 55.0 55.0
(0.38) (-28.09) (0.38) (0.38) (0.38)

EM6m1 30.4 30.0 31.8∗∗∗ 32.5∗∗∗ 30.0 32.2∗∗∗
(-1.26) (4.93) (7.20) (-1.26) (6.26)

EM6m2 49.7 50.0 45.7∗∗∗ 47.5∗∗∗ 50.0 47.8∗∗∗
(1.83) (-22.16) (-12.02) (1.83) (-10.47)

EM6m3 19.7 20.0 21.8∗∗∗ 20.0 20.0 20.0
(0.82) (5.34) (0.82) (0.82) (0.82)

EM6w1 20.3 20.0 18.2∗∗∗ 20.0 20.0 20.0
(-0.82) (-5.34) (-0.82) (-0.82) (-0.82)

EM6w2 29.6 30.0 28.2∗∗∗ 27.5∗∗∗ 30.0 27.8∗∗∗
(1.26) (-4.93) (-7.20) (1.26) (-6.26)

EM6w3 50.3 50.0 54.3∗∗∗ 52.5∗∗∗ 50.0 52.2∗∗∗
(-1.83) (22.16) (12.02) (-1.83) (10.47)

NA6m1 48.5 50.0∗∗∗ 46.2∗∗∗ 55.0∗∗∗ 50.0∗∗∗ 55.0∗∗∗
(3.77) (-5.63) (16.05) (3.77) (16.05)

NA6m2 29.9 30.0 31.3∗∗ 30.0 30.0 30.0
(0.26) (3.41) (0.26) (0.26) (0.26)

NA6m3 20.9 20.0 22.5∗∗ 15.0∗∗∗ 20.0 15.0∗∗∗
(-1.65) (3.11) (-11.18) (-1.65) (-11.18)

NA6w1 49.1 50.0 46.2∗∗∗ 55.0∗∗∗ 50.0 55.0∗∗∗
(1.65) (-5.65) (11.18) (1.65) (11.18)

NA6w2 30.1 30.0 31.3∗∗ 30.0 30.0 30.0
(-0.26) (2.89) (-0.26) (-0.26) (-0.26)

NA6w3 21.5 20.0∗∗∗ 22.5∗ 15.0∗∗∗ 20.0∗∗∗ 15.0∗∗∗
(-3.77) (2.37) (-16.05) (-3.77) (-16.05)

NM6m1 29.1 30.0 28.0∗ 17.5∗∗∗ 20.0∗∗∗ 18.3∗∗∗
(1.59) (-2.12) (-21.60) (-16.97) (-20.05)

NM6m2 42.0 40.0 31.7∗∗∗ 20.0∗∗∗ 25.0∗∗∗ 20.6∗∗∗
(-1.97) (-10.01) (-21.27) (-16.45) (-20.73)

NM6m3 27.6 30.0∗∗ 27.7 22.5∗∗∗ 20.0∗∗∗ 22.8∗∗∗
(3.34) (0.11) (-7.05) (-10.52) (-6.66)

NM6w1 58.0 60.0 68.3∗∗∗ 80.0∗∗∗ 75.0∗∗∗ 79.4∗∗∗
(1.97) (10.01) (21.27) (16.45) (20.73)

NM6w2 30.9 30.0 32.0∗ 42.5∗∗∗ 40.0∗∗∗ 41.7∗∗∗
(-1.59) (2.12) (21.60) (16.97) (20.05)

NM6w3 12.4 10.0∗∗ 12.3 17.5∗∗∗ 20.0∗∗∗ 17.2∗∗∗
(-3.34) (-0.11) (7.05) (10.52) (6.66)

clusters 26 26 26 26 26 26
t statistics in parentheses; standard errors clustered at group level
Stars indicate signi�cant di�erences between data and theory: * p<0.05, ** p<0.01, *** p<0.001
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(b) T-tests for payo�s of matched players in e�cient matching in balanced markets: wave 2

data
mean

our
model

Shapley
vale

(Shapley,
1953)

nucleolus

(Schmeidler,
1969)

fair
division

(Thompson,
1980)

median stable
matching

(Schwarz & Yenmez,
2011)

EA6m1 14.9 15.0 18.2∗∗∗ 15.0 15.0 15.0
(0.47) (12.41) (0.47) (0.47) (0.47)

EA6m2 29.9 30.0 31.3∗∗∗ 30.0 30.0 30.0
(0.58) (9.59) (0.58) (0.58) (0.58)

EA6m3 55.0 55.0 50.5∗∗∗ 55.0 55.0 55.0
(0.08) (-40.14) (0.08) (0.08) (0.08)

EA6w1 15.1 15.0 18.2∗∗∗ 15.0 15.0 15.0
(-0.47) (11.46) (-0.47) (-0.47) (-0.47)

EA6w2 30.1 30.0 31.3∗∗∗ 30.0 30.0 30.0
(-0.58) (8.44) (-0.58) (-0.58) (-0.58)

EA6w3 55.0 55.0 50.5∗∗∗ 55.0 55.0 55.0
(-0.08) (-40.31) (-0.08) (-0.08) (-0.08)

EM6m1 30.3 30.0 31.8∗∗ 32.5∗∗∗ 30.0 32.2∗∗∗
(-0.87) (4.64) (6.66) (-0.87) (5.82)

EM6m2 49.2 50.0 45.7∗∗∗ 47.5∗ 50.0 47.8∗
(1.50) (-6.56) (-3.16) (1.50) (-2.63)

EM6m3 19.9 20.0 21.8∗∗∗ 20.0 20.0 20.0
(0.47) (8.70) (0.47) (0.47) (0.47)

EM6w1 20.1 20.0 18.2∗∗∗ 20.0 20.0 20.0
(-0.47) (-8.70) (-0.47) (-0.47) (-0.47)

EM6w2 29.7 30.0 28.2∗∗ 27.5∗∗∗ 30.0 27.8∗∗∗
(0.87) (-4.64) (-6.66) (0.87) (-5.82)

EM6w3 50.8 50.0 54.3∗∗∗ 52.5∗ 50.0 52.2∗
(-1.50) (6.56) (3.16) (-1.50) (2.63)

NA6m1 48.6 50.0 46.2∗ 50.0 50.0 55.0∗∗∗
(1.64) (-2.90) (1.64) (1.64) (7.58)

NA6m2 31.3 30.0 31.3 30.0 30.0 30.0
(-2.18) (-0.03) (-2.18) (-2.18) (-2.18)

NA6m3 21.8 20.0 22.5 20.0 20.0 15.0∗∗∗
(-1.64) (0.70) (-1.64) (-1.64) (-6.31)

NA6w1 48.2 50.0 46.2 50.0 50.0 55.0∗∗∗
(1.64) (-1.95) (1.64) (1.64) (6.31)

NA6w2 28.7 30.0 31.3∗∗ 30.0 30.0 30.0
(2.18) (4.33) (2.18) (2.18) (2.18)

NA6w3 21.4 20.0 22.5 20.0 20.0 15.0∗∗∗
(-1.64) (1.32) (-1.64) (-1.64) (-7.58)

NM6m1 25.7 30.0∗∗ 28.0∗ 17.5∗∗∗ 20.0∗∗∗ 18.3∗∗∗
(4.69) (2.50) (-8.97) (-6.24) (-8.05)

NM6m2 39.5 40.0 31.7∗∗ 20.0∗∗∗ 25.0∗∗∗ 20.6∗∗∗
(0.24) (-3.54) (-8.84) (-6.57) (-8.58)

NM6m3 22.5 30.0∗∗∗ 27.7∗∗ 22.5 20.0 22.8
(5.65) (3.90) (0.01) (-1.88) (0.22)

NM6w1 60.5 60.0 68.3∗∗ 80.0∗∗∗ 75.0∗∗∗ 79.4∗∗∗
(-0.24) (3.54) (8.84) (6.57) (8.58)

NM6w2 34.3 30.0∗∗ 32.0∗ 42.5∗∗∗ 40.0∗∗∗ 41.7∗∗∗
(-4.69) (-2.50) (8.97) (6.24) (8.05)

NM6w3 17.5 10.0∗∗∗ 12.3∗∗ 17.5 20.0 17.2
(-5.65) (-3.90) (-0.01) (1.88) (-0.22)

clusters 10 10 10 10 10 10
t statistics in parentheses; standard errors clustered at group level
Stars indicate signi�cant di�erences between data and theory: * p<0.05, ** p<0.01, *** p<0.001
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Table B5: Payo�s in comparable experiments in the literature

Nalbantian and Schotter (1995) m1/m2/m3 w1/w2/w3
surplus matrix type theory e�cient all theory e�cient all

(4, 3, 3; 3, 4, 3; 3, 3, 4) EA6 2 2.21 2 2 1.79 2
Agranov and Elliott (2021) m1/w2 m2/w1

surplus matrix type theory e�cient all theory e�cient all
(20, 15; 0 20) EA4 10 10.0 (0.03) 9.8 (0.12) 10 10.0 (0.03) 9.8 (0.09)

Agranov and Elliott (2021) m1/w2 m2/w1
surplus matrix type theory e�cient all theory e�cient all
(20, 25; 0 20) NA4 7.5 7.5 (0.18) 6.2 (0.35) 12.5 12.3 (0.08) 12.3 (0.16)

Agranov and Elliott (2021) m1/w2 m2/w1
surplus matrix type theory e�cient all theory e�cient all
(20, 30; 0 20) NA4 5 4.9 (0.18) 3.6 (0.05) 15 15.0 (0.14) 14.2 (0.05)

Agranov et al. (2022) m1/w1 m2/w2 m3/w3
surplus matrix type theory all theory all theory all

(8, 16, 24;
16, 32, 48; 24, 48, 72) EA6 4 4.11 (0.06) 16 16.07 (0.37) 36 35.86 (0.1)

(8, 32, 56;
32, 48, 64; 56, 64, 72) NA6 16 16.07 (0.37) 24 23.81 (0.25) 40 38.87 (0.45)

Note. We report results from the CIEA setting in Nalbantian and Schotter (1995), Experiment III in Agranov and Elliott (2021), and
the complete-information setting in Agranov et al. (2022). We report the surplus matrices used in the experiments, their types
according to our categorization of assortativity, ESIC, and number of players, and their average payo�s in all and/or e�cient
matches, with standard errors in parentheses whenever they are reported. Agranov et al. (2022) do not separate e�cient matches
from all matches, possibly because of the high e�ciency achieved in their complete-information part of the experiment, while
the other two papers do.
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Table B6: Proportion of instances in predicted payo� ranges of matched players in imbalanced markets

(a) Proportion of instances in predicted payo� ranges of
matched players in imbalanced markets: wave 1

our model
proportion in

predicted range
our model

proportion in
predicted range

core
#obs

EA7m1 0.97 0.00 138
EA7m2 0.80 0.04 134
EA7m3 0.69 0.12 138
EA7w1 0.93 0.00 85
EA7w2 0.80 0.09 118
EA7w3 0.73 0.14 133
EA7w4 0.97 0.01 74
EM7m1 0.84 0.00 139
EM7m2 0.71 0.02 129
EM7m3 0.55 0.55 121
EM7w1 0.61 0.61 131
EM7w2 0.80 0.08 108
EM7w3 0.92 0.00 76
EM7w4 0.86 0.01 74
NA7m1 0.77 0.07 131
NA7m2 0.57 0.04 134
NA7m3 0.97 0.00 136
NA7w1 0.94 0.00 85
NA7w2 0.78 0.06 124
NA7w3 0.66 0.08 119
NA7w4 0.93 0.00 73
NM7m1 0.53 0.53 124
NM7m2 0.52 0.80 112
NM7m3 0.80 0.01 133
NM7w1 0.62 0.90 134
NM7w2 0.60 0.60 114
NM7w3 0.81 0.00 57
NM7w4 0.75 0.00 64

(b) Proportion of instances in predicted payo� ranges of
matched players in imbalanced markets: wave 2

our model
proportion in

predicted range
our model

proportion in
predicted range

core
#obs

EA7m1 0.94 0.06 49
EA7m2 0.94 0.40 50
EA7m3 0.80 0.38 50
EA7w1 0.97 0.03 36
EA7w2 0.87 0.36 45
EA7w3 0.90 0.48 50
EA7w4 1.00 0.17 18
EM7m1 0.90 0.04 50
EM7m2 0.92 0.30 50
EM7m3 0.78 0.78 50
EM7w1 0.86 0.86 49
EM7w2 0.93 0.43 44
EM7w3 0.93 0.03 30
EM7w4 0.93 0.04 27
NA7m1 0.90 0.22 49
NA7m2 0.80 0.22 49
NA7m3 1.00 0.06 49
NA7w1 1.00 0.03 29
NA7w2 0.91 0.22 45
NA7w3 0.86 0.34 44
NA7w4 1.00 0.07 29
NM7m1 0.72 0.72 50
NM7m2 0.61 0.94 49
NM7m3 0.90 0.08 50
NM7w1 0.62 0.94 50
NM7w2 0.76 0.76 49
NM7w3 0.96 0.12 26
NM7w4 0.83 0.04 24
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B.2 Determinants of outcomes in balanced markets

To check the robustness of our results regarding Hypothesis 4, we present the results from regressions with
alternative dependent variables and alternative speci�cations: We consider (i) the outcomes of interest
directly as dependent variables in addition to their logged values, and (ii) the following speci�cations, in
which speci�cation (1) is the leading speci�cation we presented in the main text.

(1) ~8 = V1 · ESIC8 + V2 · assortative8 + V3 · ESIC8 · assortative8 + V4 · round8 + V5 · order8 + 2 + Y6,

(2) ~8 = V1 · ESIC8 + V2 · assortative8 + V3 · ESIC8 · assortative8 + V4 · round8 +

V5 · (treat8 = 2) + V6 · (treat8 = 3) + V7 · (treat8 = 4) + 2 + Y6,

(3) ~8 = V1 · ESIC8 + V2 · assortative8 + V3 · ESIC8 · assortative8 + V4 · round8 +

V5 · (treat8 = 2) + V6 · (treat8 = 3) + V7 · (treat8 = 4) + 2 + Y6
V8 · (order8 = 2) + V9 · (order8 = 3) + V10 · (order8 = 4) + 2 + Y6,

where 8 is the index of a game (out of 728 balanced markets); ~8 is the variable of interest or its log trans-
formation; assortative8 is the indicator of whether the market played in the game is assortative; ESIC8 is
the indicator of whether the market has ES in the core; round8 is the round (out of 7) the same market has
been played; order8 is the order (out of 4) the game is played in; treat8 is the treatment order (out of 4).

Table B7a–B7b presents the results for determinants of the number of matched pairs and its log. All
else equal, ESIC increases the number of matches by 0.390 to 0.394 (or by 11.4% to 11.5%) in wave 1 and
by 0.260 to 0.270 (or by 7.72% to 8.03%) in wave 2, and assortativity increases the number of matched pairs
by 0.181 to 0.189 (or by 5.35% to 5.556%) in wave 1 and by 0.153 to 0.160 (or by 4.64% to 4.84%) in wave 2,
depending on whether learning over time is controlled for. The evidence suggests that ESIC plays a more
important role than assortativity in determining the number of matches. There is evidence that learning
mildly improves the expected number of matches over time. Having played the same game for one more
round increases the number of matches by 0.490% in wave 1 and 0.935% (insigni�cant) in wave 2. Having
played another con�guration increases the number of matches by 1.39% in wave 1 and 1.59% in wave 2.

Table B7c–B7d presents the results for determinants of the number of e�ciently matched pairs. All
else equal, ESIC increases the number of e�ciently matched pairs by 1.071 to 1.078 (or by 42.4% to 42.6%)
in wave 1 and by 1.140 to 1.162 (or by 44.1% to 45.1%) in wave 2, and assortativity increases the number of
e�ciently matched pairs by 0.374 to 0.388 (or by 14.9% to 15.4%) in wave 1 and by 0.0571 to 0.0600 (or by
1.62% to 1.73%, insigni�cant) in wave 2, depending on whether learning over time is controlled for.

Table B7e–B7f presents the results for determinants of the surplus. All else equal, ESIC increases
surplus by 9.32% to 9.49% in wave 1 and 9.99% to 10.4% in wave 2, and assortativity increases surplus by
3.33% to 3.66% in wave 1 and by 3.95% to 4.21% (insigni�cant) in wave 2 depending on whether learning
is controlled for. There is some gain from learning. Having the same game one more round increases
e�ciency by 0.526% to 0.847% in wave 1 and 0.743% (insigni�cant) in wave 2. Having played another
con�guration increases e�ciency by 1.57% in wave 1 and 1.99% in wave 2.
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Table B7: Determinants of aggregate outcomes in balanced markets

(a) Determinants of number of matched pairs in balanced markets: wave 1

(1) (2) (3) (4) (5) (6)
y y y log(y+1) log(y+1) log(y+1)

ESIC 0.394∗∗∗ 0.390∗∗∗ 0.392∗∗∗ 0.115∗∗∗ 0.114∗∗∗ 0.114∗∗∗
(7.01) (7.18) (7.14) (7.13) (7.30) (7.27)

assortative 0.189∗∗∗ 0.181∗∗ 0.188∗∗∗ 0.0556∗∗∗ 0.0535∗∗∗ 0.0556∗∗∗
(3.94) (3.67) (3.92) (4.04) (3.74) (4.02)

ESIC*assortative -0.0897 -0.0824 -0.0869 -0.0271 -0.0250 -0.0263
(-1.28) (-1.12) (-1.26) (-1.36) (-1.19) (-1.34)

round 0.0165∗ 0.0165∗ 0.0165∗ 0.00490∗ 0.00490∗ 0.00490∗
(2.58) (2.57) (2.57) (2.64) (2.64) (2.63)

order 0.0474∗∗ 0.0139∗∗
(3.38) (3.39)

treat=2 -0.0153 -0.0153 -0.00440 -0.00440
(-0.33) (-0.32) (-0.33) (-0.32)

treat=3 0.0340 0.0340 0.00908 0.00908
(0.56) (0.56) (0.51) (0.51)

treat=4 0.105∗ 0.105∗ 0.0296∗ 0.0296∗
(2.60) (2.59) (2.52) (2.51)

order=2 0.0863 0.0248
(1.59) (1.60)

order=3 0.127∗ 0.0371∗
(2.39) (2.41)

order=4 0.145∗∗ 0.0423∗∗
(2.94) (2.94)

constant 2.208∗∗∗ 2.302∗∗∗ 2.209∗∗∗ 1.156∗∗∗ 1.184∗∗∗ 1.157∗∗∗
(39.03) (64.14) (39.20) (68.30) (114.31) (69.20)

observations 728 728 728 728 728 728
clusters 26 26 26 26 26 26
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001

(b) Determinants of number of matched pairs in balanced markets: wave 2

(1) (2) (3) (4) (5) (6)
y y y log(y+1) log(y+1) log(y+1)

ESIC 0.270∗∗ 0.260∗∗ 0.268∗∗ 0.0803∗∗ 0.0772∗∗ 0.0797∗∗
(3.53) (3.48) (3.80) (3.40) (3.38) (3.65)

assortative 0.160∗ 0.160 0.153∗ 0.0484∗ 0.0484 0.0464∗
(2.65) (2.02) (3.06) (2.70) (2.04) (3.15)

ESIC*assortative -0.201∗ -0.180∗ -0.196∗ -0.0629∗ -0.0565∗ -0.0617∗
(-2.58) (-2.81) (-2.54) (-2.61) (-2.87) (-2.53)

round 0.0325 0.0325 0.0325 0.00935 0.00935 0.00935
(1.76) (1.75) (1.73) (1.60) (1.60) (1.58)

order 0.0516∗ 0.0159∗
(2.35) (2.28)

treat=2 -0.00833 -0.00833 0.000547 0.000547
(-0.12) (-0.12) (0.03) (0.03)

treat=3 -0.0917 -0.0917 -0.0254 -0.0254
(-1.56) (-1.55) (-1.30) (-1.29)

treat=4 -0.0500 -0.0500 -0.0114 -0.0114
(-0.83) (-0.83) (-0.59) (-0.59)

order=2 -0.00469 -0.00111
(-0.07) (-0.06)

order=3 0.0796 0.0258
(1.52) (1.51)

order=4 0.144 0.0442
(2.00) (1.93)

constant 2.493∗∗∗ 2.663∗∗∗ 2.611∗∗∗ 1.236∗∗∗ 1.285∗∗∗ 1.269∗∗∗
(23.27) (28.04) (23.25) (37.69) (43.70) (34.77)

observations 200 200 200 200 200 200
clusters 10 10 10 10 10 10
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001
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(c) Determinants of number of e�ciently matched pairs in balanced markets: wave 1

(1) (2) (3) (4) (5) (6)
y y y log(y+1) log(y+1) log(y+1)

ESIC 1.078∗∗∗ 1.071∗∗∗ 1.076∗∗∗ 0.426∗∗∗ 0.424∗∗∗ 0.426∗∗∗
(10.28) (10.11) (10.28) (10.35) (10.30) (10.28)

assortative 0.387∗∗ 0.374∗∗ 0.388∗∗ 0.153∗∗ 0.149∗ 0.154∗∗
(3.02) (2.81) (3.07) (2.92) (2.75) (2.94)

ESIC*assortative -0.261 -0.247 -0.256 -0.115 -0.110 -0.113
(-1.82) (-1.58) (-1.81) (-2.04) (-1.84) (-2.04)

round 0.0553∗∗∗ 0.0553∗∗∗ 0.0553∗∗∗ 0.0206∗∗ 0.0206∗∗ 0.0206∗∗
(3.99) (3.98) (3.97) (3.50) (3.50) (3.49)

order 0.0878∗∗ 0.0294∗
(2.85) (2.53)

treat=2 0.0561 0.0561 0.0278 0.0278
(0.90) (0.89) (1.27) (1.26)

treat=3 0.116 0.116 0.0441 0.0441
(1.02) (1.01) (1.00) (1.00)

treat=4 0.211∗∗ 0.211∗∗ 0.0849∗∗ 0.0849∗∗
(2.84) (2.84) (2.88) (2.87)

order=2 0.142 0.0399
(1.37) (0.98)

order=3 0.267 0.0861
(2.05) (1.74)

order=4 0.251∗ 0.0827∗
(2.60) (2.28)

constant 1.069∗∗∗ 1.205∗∗∗ 1.032∗∗∗ 0.666∗∗∗ 0.705∗∗∗ 0.650∗∗∗
(7.79) (12.12) (7.54) (12.08) (17.55) (12.52)

observations 728 728 728 728 728 728
clusters 26 26 26 26 26 26
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001

(d) Determinants of number of e�ciently matched pairs in balanced markets: wave 2

(1) (2) (3) (4) (5) (6)
y y y log(y+1) log(y+1) log(y+1)

ESIC 1.162∗∗∗ 1.140∗∗∗ 1.155∗∗∗ 0.451∗∗∗ 0.441∗∗∗ 0.449∗∗∗
(7.18) (5.93) (6.94) (6.46) (5.23) (6.15)

assortative 0.0600 0.0600 0.0571 0.0173 0.0173 0.0162
(0.27) (0.25) (0.24) (0.19) (0.17) (0.15)

ESIC*assortative -0.124 -0.0800 -0.110 -0.0455 -0.0254 -0.0412
(-0.50) (-0.35) (-0.42) (-0.44) (-0.25) (-0.37)

round 0.105∗ 0.105∗ 0.105∗ 0.0388∗ 0.0388∗ 0.0388∗
(3.13) (3.12) (3.09) (2.94) (2.93) (2.91)

order 0.111 0.0503
(1.79) (2.02)

treat=2 0.142 0.142 0.0587 0.0587
(0.79) (0.79) (0.82) (0.81)

treat=3 0.158∗∗ 0.158∗∗ 0.0655∗ 0.0655∗
(3.68) (3.65) (2.48) (2.46)

treat=4 -0.175∗∗ -0.175∗∗ -0.0765∗∗∗ -0.0765∗∗∗
(-4.13) (-4.09) (-5.02) (-4.98)

order=2 0.206 0.0767
(1.00) (0.82)

order=3 0.151 0.0792
(0.71) (0.85)

order=4 0.385 0.167
(1.73) (1.85)

constant 1.209∗∗∗ 1.430∗∗∗ 1.246∗∗∗ 0.683∗∗∗ 0.787∗∗∗ 0.707∗∗∗
(5.33) (14.77) (6.54) (7.31) (17.21) (8.24)

observations 200 200 200 200 200 200
clusters 10 10 10 10 10 10
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001
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(e) Determinants of surplus in balanced markets

(1) (2) (3) (4) (5) (6)
s s s log(s) log(s) log(s)

ESIC 17.02∗∗∗ 16.76∗∗∗ 16.82∗∗∗ 0.0949∗∗∗ 0.0932∗∗∗ 0.0935∗∗∗
(5.04) (5.04) (4.91) (4.47) (4.43) (4.34)

assortative 6.285∗ 5.769 5.974∗ 0.0366∗ 0.0333 0.0346
(2.44) (2.04) (2.25) (2.27) (1.86) (2.05)

ESIC*assortative 0.185 0.714 0.585 0.00256 0.00600 0.00525
(0.05) (0.18) (0.16) (0.11) (0.25) (0.24)

round 0.821∗ 1.315∗∗∗ 1.234∗∗ 0.00526∗ 0.00847∗∗∗ 0.00792∗∗
(2.09) (3.73) (3.55) (2.11) (3.74) (3.59)

order 2.409∗∗ 0.0157∗∗
(3.60) (3.55)

treat=2 -1.071 -1.071 -0.00534 -0.00534
(-0.36) (-0.36) (-0.28) (-0.28)

treat=3 0.765 0.765 0.00209 0.00209
(0.18) (0.18) (0.07) (0.07)

treat=4 4.932 4.932 0.0275 0.0275
(2.02) (2.01) (1.71) (1.71)

order=2 -5.503∗ -0.0348
(-2.10) (-1.97)

order=3 1.195 0.00909
(0.44) (0.54)

order=4 2.658 0.0178
(0.89) (0.96)

constant 156.9∗∗∗ 162.2∗∗∗ 162.7∗∗∗ 5.039∗∗∗ 5.074∗∗∗ 5.077∗∗∗
(54.63) (77.80) (67.95) (239.51) (355.22) (306.07)

observations 728 728 728 728 728 728
clusters 26 26 26 26 26 26
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001

(f) Determinants of surplus in balanced markets: wave 2

(1) (2) (3) (4) (5) (6)
s s s log(s) log(s) log(s)

ESIC 17.05∗∗ 16.40∗∗ 16.91∗∗∗ 0.104∗∗ 0.0999∗∗ 0.103∗∗
(4.62) (4.26) (4.81) (3.66) (3.52) (3.83)

assortative 5.800 5.800 5.429 0.0421 0.0421 0.0395
(1.56) (1.16) (1.60) (1.64) (1.26) (1.76)

ESIC*assortative -7.694 -6.400 -7.429 -0.0549 -0.0470 -0.0534
(-1.59) (-1.44) (-1.59) (-1.68) (-1.54) (-1.67)

round 1.575 1.575 1.575 0.00743 0.00743 0.00743
(1.63) (1.63) (1.61) (1.04) (1.04) (1.03)

order 3.236∗ 0.0199∗
(3.03) (2.97)

treat=2 1.583 1.583 0.0103 0.0103
(0.94) (0.94) (0.92) (0.91)

treat=3 -1.083 -1.083 -0.0117 -0.0117
(-0.55) (-0.55) (-0.69) (-0.69)

treat=4 -1.000 -1.000 -0.00374 -0.00374
(-0.53) (-0.53) (-0.30) (-0.29)

order=2 0.343 -0.00363
(0.09) (-0.14)

order=3 5.143 0.0321
(1.66) (1.69)

order=4 9.200∗ 0.0545∗
(2.72) (2.55)

constant 169.4∗∗∗ 177.5∗∗∗ 174.0∗∗∗ 5.118∗∗∗ 5.169∗∗∗ 5.150∗∗∗
(44.07) (58.57) (42.05) (208.98) (274.58) (189.74)

observations 200 200 200 200 200 200
clusters 10 10 10 10 10 10
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001
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B.3 Determinants of outcomes in all balanced and imbalanced markets

To check the robustness of our results regarding Hypothesis 4, we present the results from regressions with
alternative dependent variables and alternative speci�cations: We consider (i) the outcomes of interest
directly as dependent variables in addition to their logged values, and (ii) the following speci�cations:

(1) ~8 = V1ESIC8 + V2assortative8 + V3balanced8 + V4ESIC8assortative8 + V5assortative8balanced8
+V6round8 + V7round8balanced8 + V8order8 + V9order8balanced8 + 2 + Y6,

(2) ~8 = V1ESIC8 + V2assortative8 + V3balanced8 + V4ESIC8assortative8 + V5assortative8balanced8
+V6round8 + V7round8balanced8
+V8(treat8 = 2) + V9(treat8 = 3) + V10(treat8 = 4) + 2 + Y6
+V11(treat8 = 2)balanced8 + V12(treat8 = 3)balanced8 + V13(treat8 = 4)balanced8 ,

(3) ~8 = V1ESIC8 + V2assortative8 + V3balanced8 + V4ESIC8assortative8 + V5assortative8balanced8
+V6round8 + V7round8balanced8 + V8order8 + V9order8balanced8
+V10(treat8 = 2) + V11(treat8 = 3) + V12(treat8 = 4) + 2 + Y6
+V13(treat8 = 2)balanced8 + V14(treat8 = 3)balanced8 + V15(treat8 = 4)balanced8 ,

where 8 is the index of a game (out of 728 balanced markets); ~8 is the variable of interest or its log (or log of
#e�cient matches+1); assortative8 is the indicator of whether the market played in the game is assortative;
ESIC8 is the indicator of whether the market has ES in the core; round8 is the round (out of 7) the same
market has been played; order8 is the order (out of 4) the game is played in; treat8 is the treatment order
(out of 4). The results are very stable across the di�erent speci�cations.

Table B8a–B8b shows the determinants of the number of matched pairs when both balanced and im-
balanced markets are considered. ESIC and assortativity continue to have signi�cant in�uences on market
outcome: ESIC markets have 0.390 to 0.394 (or 11.4% to 11.5%) more matched pairs in wave 1 and 0.26 to
0.27 (or 7.72% to 8.03%) more matched pairs in wave 2, and assortative markets have 0.104 (or 2.94%) more
matched pairs in wave 1, but no di�erence in wave 2. Having an additional player increases the number
of matched pairs. In particular, 0.370 to 0.458 more pairs in wave 1 and 0.345 to 0.504 more pairs in wave
2 are matched in imbalanced markets on average, which increases the matching rate by 10.8% to 13.4% in
wave 1 and by 10.3% to 15.0% in wave 2.

Table B8c–B8d shows that assortativity does not increase the number of e�ciently matched pairs at
a statistically signi�cant level. In comparison, ESIC increases the number of e�ciently matched pairs by
1.071 to 1.078 (or by 42.4% to 42.6%) in wave 1 and by 1.14 to 1.162 (or by 44.1% to 45.1%) in wave 2. Having
an additional player increases the number of e�ciently matched pairs by 0.736 to 0.986 (or by 27.4% to
37.2%) in wave 1 and by 1.264 to 1.470 (or by 51.2% to 59.0%) in wave 2.

Table B8e–B8f shows that ESIC increases surplus by 9.32% to 9.48% in wave 1 and 9.99% to 10.4% in wave
2; assortativity increases surplus by 4.32% in wave 1 and has no e�ect in wave 2; and having one additional
player increases surplus by 7.49% to 11.4% in wave 1 and 11.1% to 15.6% in wave 2. All aforementioned
e�ects are statistically signi�cant at at least the 95% signi�cance level.
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Table B8: Determinants of aggregate outcomes in all balanced and imbalanced markets

(a) Determinants of number of matched pairs, all markets: wave 1

(1) (2) (3) (4) (5) (6)
y y y log(y+1) log(y+1) log(y+1)

ESIC 0.394∗∗∗ 0.390∗∗∗ 0.394∗∗∗ 0.115∗∗∗ 0.114∗∗∗ 0.115∗∗∗
(7.07) (7.24) (7.05) (7.19) (7.36) (7.17)

assortative 0.104∗∗ 0.104∗∗ 0.104∗∗ 0.0294∗∗ 0.0294∗∗ 0.0294∗∗
(2.97) (2.96) (2.96) (2.89) (2.88) (2.88)

bal(anced) -0.375∗∗∗ -0.370∗∗∗ -0.458∗∗∗ -0.110∗∗∗ -0.108∗∗∗ -0.134∗∗∗
(-4.10) (-7.17) (-5.31) (-4.07) (-7.24) (-5.30)

ESIC*assortative -0.0897 -0.0824 -0.0897 -0.0271 -0.0250 -0.0271
(-1.29) (-1.13) (-1.28) (-1.37) (-1.20) (-1.36)

assortative*bal 0.0850 0.0777 0.0850 0.0262 0.0241 0.0262
(1.44) (1.29) (1.44) (1.54) (1.38) (1.54)

round 0.0335∗∗∗ 0.0335∗∗∗ 0.0335∗∗∗ 0.00974∗∗∗ 0.00974∗∗∗ 0.00974∗∗∗
(4.73) (4.73) (4.72) (4.70) (4.69) (4.69)

round*bal -0.0170 -0.0170 -0.0170 -0.00483 -0.00483 -0.00483
(-1.79) (-1.79) (-1.79) (-1.74) (-1.74) (-1.74)

order 0.0136 0.0136 0.00399 0.00399
(0.83) (0.83) (0.84) (0.84)

order*bal 0.0338 0.0338 0.00993 0.00993
(1.57) (1.57) (1.58) (1.58)

treat=2 -0.0429 -0.0429 -0.0123 -0.0123
(-1.53) (-1.53) (-1.53) (-1.53)

treat=3 -0.0571 -0.0571 -0.0164 -0.0164
(-1.51) (-1.51) (-1.51) (-1.51)

treat=4 -0.121 -0.121 -0.0358 -0.0358
(-1.79) (-1.79) (-1.77) (-1.77)

(treat=2)*bal 0.0276 0.0276 0.00793 0.00793
(0.51) (0.51) (0.51) (0.51)

(treat=3)*bal 0.0912 0.0912 0.0255 0.0255
(1.29) (1.28) (1.23) (1.23)

(treat=4)*bal 0.227∗∗ 0.227∗∗ 0.0654∗∗ 0.0654∗∗
(2.88) (2.88) (2.80) (2.80)

constant 2.582∗∗∗ 2.671∗∗∗ 2.638∗∗∗ 1.265∗∗∗ 1.292∗∗∗ 1.282∗∗∗
(35.76) (71.56) (41.12) (59.79) (119.92) (68.81)

observations 1,288 1,288 1,288 1,288 1,288 1,288
clusters 46 46 46 46 46 46
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001
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(b) Determinants of number of matched pairs, all markets: wave 2

(1) (2) (3) (4) (5) (6)
y y y log(y+1) log(y+1) log(y+1)

ESIC 0.270∗∗ 0.260∗∗ 0.270∗∗ 0.0803∗∗ 0.0772∗∗ 0.0803∗∗
(3.63) (3.58) (3.60) (3.50) (3.48) (3.47)

assortative 0.000115 6.48e-16 8.05e-16 0.0000332 7.06e-17 1.21e-16
(0.01) (0.00) (0.00) (0.01) (0.00) (0.00)

bal(anced) -0.504∗∗∗ -0.345∗∗ -0.474∗∗ -0.150∗∗∗ -0.103∗∗ -0.143∗∗
(-4.77) (-3.61) (-3.68) (-4.64) (-3.51) (-3.49)

ESIC*assortative -0.201∗ -0.180∗∗ -0.201∗ -0.0629∗ -0.0565∗∗ -0.0629∗
(-2.66) (-2.89) (-2.64) (-2.69) (-2.95) (-2.67)

assortative*bal 0.160∗ 0.160 0.160∗ 0.0484∗ 0.0484 0.0484∗
(2.65) (2.04) (2.63) (2.70) (2.07) (2.69)

round -0.00250 -0.00250 -0.00250 -0.000719 -0.000719 -0.000719
(-0.44) (-0.43) (-0.43) (-0.44) (-0.43) (-0.43)

round*bal 0.0350 0.0350 0.0350 0.0101 0.0101 0.0101
(1.85) (1.84) (1.84) (1.71) (1.70) (1.69)

order 0.0000659 -3.60e-16 0.0000189 -1.08e-16
(0.03) (-0.00) (0.03) (-0.00)

order*bal 0.0516∗ 0.0516∗ 0.0159∗ 0.0159∗
(2.40) (2.38) (2.33) (2.31)

treat=2 -0.0167 -0.0167 -0.00479 -0.00479
(-1.17) (-1.17) (-1.17) (-1.17)

treat=3 -1.44e-16 1.08e-16 3.58e-16 4.32e-16
(-0.00) (0.00) (0.00) (0.00)

treat=4 -0.0250 -0.0250 -0.00719 -0.00719
(-1.36) (-1.35) (-1.36) (-1.35)

(treat=2)*bal 0.00833 0.00833 0.00534 0.00534
(0.12) (0.12) (0.25) (0.25)

(treat=3)*bal -0.0917 -0.0917 -0.0254 -0.0254
(-1.60) (-1.60) (-1.34) (-1.33)

(treat=4)*bal -0.0250 -0.0250 -0.00425 -0.00425
(-0.41) (-0.41) (-0.22) (-0.22)

constant 2.997∗∗∗ 3.007∗∗∗ 3.007∗∗∗ 1.385∗∗∗ 1.388∗∗∗ 1.388∗∗∗
(167.62) (122.68) (161.80) (269.34) (196.87) (259.65)

observations 399 399 399 399 399 399
clusters 20 20 20 20 20 20
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001
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(c) Determinants of number of e�ciently matched pairs, all markets: wave 1

(1) (2) (3) (4) (5) (6)
y y y log(y+1) log(y+1) log(y+1)

ESIC 1.078∗∗∗ 1.071∗∗∗ 1.078∗∗∗ 0.426∗∗∗ 0.424∗∗∗ 0.426∗∗∗
(10.36) (10.19) (10.34) (10.44) (10.39) (10.41)

assortative 0.139 0.139 0.139 0.0645∗ 0.0645∗ 0.0645∗
(1.75) (1.68) (1.74) (2.16) (2.07) (2.16)

bal(anced) -0.736∗∗∗ -0.897∗∗∗ -0.986∗∗∗ -0.274∗∗ -0.350∗∗∗ -0.372∗∗∗
(-3.59) (-6.45) (-4.87) (-3.36) (-6.57) (-4.77)

ESIC*assortative -0.261 -0.247 -0.261 -0.115∗ -0.110 -0.115∗
(-1.83) (-1.59) (-1.83) (-2.06) (-1.86) (-2.06)

assortative*bal 0.248 0.234 0.248 0.0888 0.0843 0.0888
(1.65) (1.50) (1.65) (1.48) (1.36) (1.48)

round 0.0786∗∗∗ 0.0786∗∗∗ 0.0786∗∗∗ 0.0296∗∗∗ 0.0296∗∗∗ 0.0296∗∗∗
(5.10) (5.09) (5.09) (5.05) (5.04) (5.03)

round*bal -0.0233 -0.0233 -0.0233 -0.00892 -0.00892 -0.00892
(-1.13) (-1.13) (-1.12) (-1.08) (-1.08) (-1.08)

order 0.0550 0.0550 0.0217 0.0217
(1.67) (1.67) (1.70) (1.70)

order*bal 0.0328 0.0328 0.00772 0.00772
(0.73) (0.73) (0.45) (0.45)

treat=2 -0.114 -0.114 -0.0462 -0.0462
(-1.29) (-1.29) (-1.44) (-1.44)

treat=3 -0.143 -0.143 -0.0540 -0.0540
(-1.33) (-1.33) (-1.36) (-1.35)

treat=4 -0.379∗∗ -0.379∗∗ -0.141∗ -0.141∗
(-2.77) (-2.77) (-2.69) (-2.68)

(treat=2)*bal 0.170 0.170 0.0740 0.0740
(1.58) (1.58) (1.91) (1.91)

(treat=3)*bal 0.259 0.259 0.0981 0.0981
(1.66) (1.66) (1.66) (1.66)

(treat=4)*bal 0.589∗∗∗ 0.589∗∗∗ 0.226∗∗∗ 0.226∗∗∗
(3.79) (3.79) (3.76) (3.75)

constant 1.805∗∗∗ 2.102∗∗∗ 1.964∗∗∗ 0.941∗∗∗ 1.055∗∗∗ 1.001∗∗∗
(11.73) (21.43) (14.25) (15.53) (29.80) (19.16)

observations 1,288 1,288 1,288 1,288 1,288 1,288
clusters 46 46 46 46 46 46
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001
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(d) Determinants of number of e�ciently matched pairs, all markets: wave 2

(1) (2) (3) (4) (5) (6)
y y y log(y+1) log(y+1) log(y+1)

ESIC 1.162∗∗∗ 1.140∗∗∗ 1.162∗∗∗ 0.451∗∗∗ 0.441∗∗∗ 0.451∗∗∗
(7.39) (6.11) (7.33) (6.64) (5.38) (6.59)

assortative -0.255∗ -0.266∗∗ -0.254∗ -0.0917∗ -0.0962∗∗ -0.0912∗
(-2.75) (-2.97) (-2.70) (-2.68) (-2.92) (-2.64)

bal(anced) -1.264∗∗∗ -1.337∗∗∗ -1.470∗∗∗ -0.512∗∗∗ -0.523∗∗∗ -0.590∗∗∗
(-4.45) (-8.57) (-5.23) (-4.55) (-8.10) (-5.47)

ESIC*assortative -0.124 -0.0800 -0.124 -0.0455 -0.0254 -0.0455
(-0.52) (-0.36) (-0.51) (-0.45) (-0.26) (-0.45)

assortative*bal 0.315 0.326 0.314 0.109 0.113 0.108
(1.36) (1.32) (1.34) (1.13) (1.06) (1.11)

round 0.0275 0.0275 0.0275 0.0103 0.0103 0.0103
(1.04) (1.04) (1.04) (0.98) (0.98) (0.97)

round*bal 0.0775 0.0775 0.0775 0.0286 0.0286 0.0286
(1.85) (1.84) (1.84) (1.73) (1.72) (1.71)

order 0.0541 0.0550 0.0225 0.0227
(1.20) (1.21) (1.46) (1.47)

order*bal 0.0564 0.0556 0.0279 0.0276
(0.75) (0.74) (0.97) (0.95)

treat=2 -0.133 -0.133 -0.0510 -0.0510
(-0.96) (-0.96) (-1.07) (-1.07)

treat=3 -0.277 -0.280 -0.0949 -0.0959
(-1.88) (-1.92) (-1.75) (-1.79)

treat=4 -0.292∗ -0.292∗ -0.112∗∗ -0.112∗∗
(-2.51) (-2.50) (-2.99) (-2.99)

(treat=2)*bal 0.275 0.275 0.110 0.110
(1.24) (1.24) (1.30) (1.30)

(treat=3)*bal 0.436∗ 0.438∗∗ 0.160∗ 0.161∗
(2.85) (2.89) (2.68) (2.72)

(treat=4)*bal 0.117 0.117 0.0352 0.0352
(0.95) (0.94) (0.88) (0.87)

constant 2.473∗∗∗ 2.767∗∗∗ 2.624∗∗∗ 1.195∗∗∗ 1.310∗∗∗ 1.251∗∗∗
(13.80) (22.22) (12.73) (17.97) (27.97) (16.51)

observations 399 399 399 399 399 399
clusters 20 20 20 20 20 20
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001
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(e) Determinants of surplus, all markets: wave 1

(1) (2) (3) (4) (5) (6)
s s s log(s) log(s) log(s)

ESIC 17.02∗∗∗ 16.76∗∗∗ 17.02∗∗∗ 0.0948∗∗∗ 0.0932∗∗∗ 0.0948∗∗∗
(5.10) (5.08) (5.09) (4.52) (4.47) (4.51)

assortative 6.786∗ 6.786∗ 6.786∗ 0.0432∗ 0.0432∗ 0.0432∗
(2.60) (2.57) (2.59) (2.60) (2.57) (2.59)

bal(anced) -14.28∗ -13.09∗∗ -19.31∗∗ -0.0831∗ -0.0749∗∗ -0.114∗∗
(-2.54) (-3.22) (-3.35) (-2.16) (-2.87) (-3.00)

ESIC*assortative 0.198 0.714 0.198 0.00265 0.00600 0.00265
(0.05) (0.18) (0.05) (0.12) (0.25) (0.12)

assortative*bal -0.500 -1.016 -0.500 -0.00662 -0.00997 -0.00662
(-0.14) (-0.26) (-0.14) (-0.29) (-0.41) (-0.29)

round 2.121∗∗∗ 2.121∗∗∗ 2.121∗∗∗ 0.0130∗∗∗ 0.0130∗∗∗ 0.0130∗∗∗
(4.82) (4.81) (4.81) (4.72) (4.71) (4.71)

round*bal -0.805 -0.805 -0.805 -0.00455 -0.00455 -0.00455
(-1.43) (-1.43) (-1.43) (-1.28) (-1.28) (-1.28)

order 0.971 0.971 0.00694 0.00694
(0.89) (0.89) (1.02) (1.02)

order*bal 2.384 2.384 0.0148 0.0148
(1.69) (1.69) (1.65) (1.64)

treat=2 -2.786 -2.786 -0.0208 -0.0208
(-0.87) (-0.87) (-0.98) (-0.98)

treat=3 -2.929 -2.929 -0.0166 -0.0166
(-0.92) (-0.92) (-0.85) (-0.85)

treat=4 -10.29∗ -10.29∗ -0.0633 -0.0633
(-2.03) (-2.03) (-1.95) (-1.95)

(treat=2)*bal 1.714 1.714 0.0155 0.0155
(0.39) (0.39) (0.55) (0.54)

(treat=3)*bal 3.694 3.694 0.0187 0.0187
(0.71) (0.71) (0.55) (0.55)

(treat=4)*bal 15.22∗∗ 15.22∗∗ 0.0908∗ 0.0908∗
(2.71) (2.71) (2.51) (2.51)

constant 168.8∗∗∗ 175.3∗∗∗ 172.8∗∗∗ 5.106∗∗∗ 5.149∗∗∗ 5.132∗∗∗
(36.80) (50.05) (37.31) (170.27) (234.75) (175.36)

observations 1,288 1,288 1,288 1,288 1,288 1,288
clusters 46 46 46 46 46 46
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001
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(f) Determinants of surplus, all markets: wave 2

(1) (2) (3) (4) (5) (6)
s s s log(s) log(s) log(s)

ESIC 17.05∗∗∗ 16.40∗∗∗ 17.05∗∗∗ 0.104∗∗ 0.0999∗∗ 0.104∗∗
(4.75) (4.38) (4.71) (3.76) (3.62) (3.73)

assortative -0.791 -0.853 -0.788 -0.00339 -0.00378 -0.00339
(-0.76) (-0.84) (-0.75) (-0.60) (-0.68) (-0.59)

bal(anced) -25.39∗∗∗ -19.23∗∗∗ -26.54∗∗∗ -0.150∗∗∗ -0.111∗∗∗ -0.156∗∗∗
(-5.73) (-5.63) (-5.70) (-5.35) (-5.31) (-5.26)

ESIC*assortative -7.694 -6.400 -7.694 -0.0549 -0.0470 -0.0549
(-1.64) (-1.48) (-1.63) (-1.72) (-1.58) (-1.71)

assortative*bal 6.591 6.653 6.588 0.0455 0.0459 0.0455
(1.75) (1.34) (1.73) (1.78) (1.40) (1.76)

round 1.89e-15 2.05e-14 7.17e-15 0.000223 0.000223 0.000223
(0.00) (0.00) (0.00) (0.07) (0.07) (0.07)

round*bal 1.575 1.575 1.575 0.00721 0.00721 0.00721
(1.46) (1.46) (1.45) (0.95) (0.94) (0.94)

order 0.298 0.300 0.00182 0.00182
(0.76) (0.76) (0.84) (0.84)

order*bal 2.938∗ 2.936∗ 0.0181∗ 0.0181∗
(2.65) (2.63) (2.63) (2.61)

treat=2 -2.333 -2.333 -0.0141 -0.0141
(-0.73) (-0.73) (-0.75) (-0.75)

treat=3 -1.451 -1.463 -0.00731 -0.00739
(-1.20) (-1.20) (-1.10) (-1.10)

treat=4 -1.083 -1.083 -0.00564 -0.00564
(-1.23) (-1.22) (-1.21) (-1.20)

(treat=2)*bal 3.917 3.917 0.0244 0.0244
(1.09) (1.09) (1.13) (1.12)

(treat=3)*bal 0.367 0.380 -0.00441 -0.00434
(0.16) (0.17) (-0.25) (-0.24)

(treat=4)*bal 0.0833 0.0833 0.00191 0.00191
(0.04) (0.04) (0.15) (0.14)

constant 194.8∗∗∗ 196.8∗∗∗ 196.0∗∗∗ 5.268∗∗∗ 5.280∗∗∗ 5.275∗∗∗
(81.70) (113.94) (100.18) (356.45) (528.62) (459.99)

observations 399 399 399 399 399 399
clusters 20 20 20 20 20 20
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001
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B.4 Learning e�ects in balanced and imbalanced markets

B.4.1 Learning e�ects in balanced markets

The following regression directly tests whether previous experience of a particular market a�ects current
outcome of a di�erent market:

~8 = V1 · round8 + V2 · playedEA68 + V3 · playedNA68 + V4 · playedEM68 + V5 · playedNM68 + 2 + Y6,

where~8 is the variable of interest restricted to each of the four types of markets (in columns (1)-(4)), and its
log (in columns (5)–(8)). Table B9 shows the results for the number of matched pairs, number of e�ciently
matched pairs, and surplus.

There are minimal experience e�ects. The only signi�cant e�ects of experience are that having played
EM reduces the number of matched pairs in NM (by 0.233 and 7.5%) in wave 2, and having played NA
increases the number of matched pairs in NM (by 0.333 and 10.4%) in wave 2. A few coe�cients are shown
to be statistically signi�cant but are negligible in magnitude (on the scale of 10−18 to 10−15).

B.4.2 Learning e�ects in imbalanced markets

The following regression directly tests whether previous experience of a particular market a�ects the
outcome of a di�erent market:

~8 = V1 · round8 + V2 · playedEA78 + V3 · playedNA78 + V4 · playedEM78 + V5 · playedNM78 + 2 + Y6,

where ~8 is the variable of interest restricted to each of the four types of markets (in columns (1)-(4)),
and its log (in columns (5)–(8)). Table B10 shows the results for the number of matched pairs, number of
e�ciently matched pairs, and surplus.

There are mild experience e�ects in imbalanced markets. The only statistically signi�cant e�ects of
experience are (i) having played EA7 increases the number of matched pairs in EM7 in wave 1 (by 0.200,
or 5.75%), (ii) having played NM7 reduces the number of matched pairs in EM7 in wave 1 (by 0.143, or
4.11%) and reduces the number of e�ciently matched pairs in EM7 in wave 1 (by 0.657, or 23.6%), and (iii)
having played NM7 decreases the number of e�ciently matched pairs (by 0.600 or 23.7%) and the surplus
(by 3.80%) in EA7 in wave 2. These e�ects are signi�cant at the 95% signi�cance level, but not at the 99%
or the 99.9% level.
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Table B9: Learning e�ects in balanced markets

(a) Learning e�ects on number of matched pairs in balanced markets: wave 1

(1) (2) (3) (4) (5) (6) (7) (8)
y

EA6
y

EM6
y

NA6
y

NM6
log(y+1)

EA6
log(y+1)

EM6
log(y+1)

NA6
log(y+1)

NM6
playedEA 0 0.0408 0.122 0.0408 0 0.0352 0.0117 0.0117

(.) (0.60) (1.13) (0.64) (.) (1.13) (0.60) (0.64)
playedEM 0.0476 0 -0.0238 -0.0476 0.0137 -0.00685 0 -0.0137

(0.77) (.) (-0.19) (-0.53) (0.77) (-0.19) (.) (-0.49)
playedNA 0.0102 0.177 0 -0.102 0.00294 0 0.0509 -0.0266

(0.17) (1.55) (.) (-1.47) (0.17) (.) (1.55) (-1.32)
playedNM 0.0850 0.0442 0.184 0 0.0245 0.0528 0.0127 0

(1.02) (0.56) (1.58) (.) (1.02) (1.58) (0.56) (.)
round 0.0220 0.0206 0.00412 0.0192 0.00632 0.00119 0.00593 0.00618

(1.94) (1.38) (0.30) (0.88) (1.94) (0.30) (1.38) (0.94)
constant 2.730∗∗∗ 2.557∗∗∗ 2.396∗∗∗ 2.418∗∗∗ 1.309∗∗∗ 1.212∗∗∗ 1.259∗∗∗ 1.214∗∗∗

(31.37) (22.02) (24.30) (22.97) (52.27) (42.75) (37.68) (36.82)
observations 182 182 182 182 182 182 182 182
clusters 26 26 26 26 26 26 26 26
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001

(b) Learning e�ects on number of matched pairs in balanced markets: wave 2

(1) (2) (3) (4) (5) (6) (7) (8)
y

EA6
y

EM6
y

NA6
y

NM6
log(y+1)

EA6
log(y+1)

EM6
log(y+1)

NA6
log(y+1)

NM6
playedEA 0 -5.67e-18 0.0333 0.200 0 0.00959 9.50e-18 0.0575

(.) (-2.19) (0.34) (1.93) (.) (0.34) (0.05) (1.93)
playedEM -5.70e-17∗ 0 0.133 -0.233∗ -6.48e-19 0.0384 0 -0.0750∗

(-3.12) (.) (2.23) (-2.38) (-0.00) (2.23) (.) (-2.41)
playedNA 5.22e-17 0.0667 0 0.333∗ 1.81e-17 0 0.0192 0.104∗

(1.35) (1.11) (.) (2.78) (0.11) (.) (1.11) (2.82)
playedNM 0.200 2.22e-18 -0.100 0 0.0693 -0.0288 -3.29e-18 0

(1.29) (1.77) (-1.29) (.) (1.29) (-1.29) (-0.02) (.)
round 0.0400 0.0200 0.0200 0.0500 0.0139 0.00575 0.00575 0.0120

(0.96) (0.96) (0.66) (1.12) (0.96) (0.66) (0.96) (0.83)
constant 2.720∗∗∗ 2.893∗∗∗ 2.827∗∗∗ 2.600∗∗∗ 1.289∗∗∗ 1.336∗∗∗ 1.356∗∗∗ 1.276∗∗∗

(12.10) (29.49) (30.96) (24.12) (16.55) (50.87) (48.02) (37.63)
observations 50 50 50 50 50 50 50 50
clusters 10 10 10 10 10 10 10 10
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001
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(c) Learning e�ects on number of e�ciently matched pairs in balanced markets: wave 1

(1) (2) (3) (4) (5) (6) (7) (8)
y

EA6
y

EM6
y

NA6
y

NM6
log(y+1)

EA6
log(y+1)

EM6
log(y+1)

NA6
log(y+1)

NM6
playedEA 0 -0.122 0.204 -0.102 0 -0.0555 0.0518 -0.0355

(.) (-0.98) (1.38) (-0.75) (.) (-1.25) (0.73) (-0.52)
playedEM 0.190 0 -0.190 0.0238 0.0592 0 -0.0729 -0.0137

(1.72) (.) (-0.59) (0.09) (1.41) (.) (-0.58) (-0.13)
playedNA -0.0374 0.272 0 0.00340 -0.00512 0.0967 0 0.00814

(-0.24) (1.43) (.) (0.02) (-0.09) (1.50) (.) (0.09)
playedNM 0.0510 0.255 0.463 0 0.0177 0.0949 0.186 0

(0.36) (1.78) (1.55) (.) (0.36) (1.89) (1.56) (.)
round 0.0179 0.0536∗ 0.0563 0.0934∗∗ 0.00379 0.0184∗ 0.0216 0.0388∗

(0.65) (2.13) (1.32) (3.28) (0.37) (2.16) (1.11) (2.73)
constant 2.538∗∗∗ 2.220∗∗∗ 1.402∗∗∗ 1.244∗∗∗ 1.235∗∗∗ 1.125∗∗∗ 0.802∗∗∗ 0.724∗∗∗

(17.45) (10.98) (9.10) (5.61) (24.13) (16.33) (11.19) (8.32)
observations 182 182 182 182 182 182 182 182
clusters 26 26 26 26 26 26 26 26
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001

(d) Learning e�ects on number of e�ciently matched pairs in balanced markets: wave 2

(1) (2) (3) (4) (5) (6) (7) (8)
y

EA6
y

EM6
y

NA6
y

NM6
log(y+1)

EA6
log(y+1)

EM6
log(y+1)

NA6
log(y+1)

NM6
playedEA 0 1.77e-17∗ -0.433 0.0667 0 -7.10e-17∗∗∗ -0.208 0.0423

(.) (2.93) (-1.16) (0.17) (.) (-35.18) (-1.35) (0.27)
playedEM -0.133 0 0.767 0.900∗ -0.0462 0 0.277 0.402

(-1.11) (.) (1.17) (2.31) (-1.11) (.) (1.07) (2.17)
playedNA 0.133 0.200 0 -0.0667 0.0462 0.0654 0 1.58e-16

(1.11) (1.93) (.) (-0.18) (1.11) (1.81) (.) (0.00)
playedNM 0.200 -2.22e-18 5.81e-17 0 0.0693 4.62e-17∗∗∗ 0.0693 0

(1.29) (-0.25) (0.00) (.) (1.29) (15.19) (0.31) (.)
round 0.0800 -0.0200 0.0700 0.290 0.0277 -0.00811 0.0277 0.108

(1.44) (-0.41) (0.71) (1.99) (1.44) (-0.50) (0.77) (1.73)
constant 2.640∗∗∗ 2.840∗∗∗ 1.793∗∗ 0.520 1.262∗∗∗ 1.337∗∗∗ 0.915∗∗∗ 0.379∗

(11.16) (33.16) (4.44) (1.62) (15.39) (52.37) (5.69) (2.62)
observations 50 50 50 50 50 50 50 50
clusters 10 10 10 10 10 10 10 10
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001
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(e) Learning e�ects on surplus in balanced markets: wave 1

(1) (2) (3) (4) (5) (6) (7) (8)
s

EA6
s

EM6
s

NA6
s

NM6
log(s)
EA6

log(s)
EM6

log(s)
NA6

log(s)
NM6

playedEA 0 -0.408 7.347 4.286 0 -0.00468 0.0412 0.0272
(.) (-0.09) (1.25) (1.53) (.) (-0.17) (1.16) (1.64)

playedEM 5.476 0 -1.667 -1.667 0.0357 0 -0.00792 -0.00985
(1.27) (.) (-0.24) (-0.26) (1.27) (.) (-0.19) (-0.20)

playedNA -1.633 15.10 0 -3.946 -0.0131 0.0988 0 -0.0147
(-0.37) (1.96) (.) (-0.87) (-0.47) (2.02) (.) (-0.45)

playedNM 3.095 4.116 11.19 0 0.0198 0.0247 0.0674 0
(0.56) (0.67) (1.68) (.) (0.55) (0.63) (1.68) (.)

round 1.442 1.223 0.975 1.621 0.00913 0.00719 0.00602 0.0113
(1.77) (1.11) (1.38) (1.43) (1.73) (1.02) (1.44) (1.44)

constant 182.8∗∗∗ 169.2∗∗∗ 161.2∗∗∗ 165.9∗∗∗ 5.195∗∗∗ 5.111∗∗∗ 5.075∗∗∗ 5.094∗∗∗
(36.60) (20.29) (33.30) (25.62) (164.22) (95.14) (177.98) (106.75)

observations 182 182 182 182 182 182 182 182
clusters 26 26 26 26 26 26 26 26
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001

(f) Learning e�ects on surplus in balanced markets: wave 2

(1) (2) (3) (4) (5) (6) (7) (8)
s

EA6
s

EM6
s

NA6
s

NM6
log(s)
EA6

log(s)
EM6

log(s)
NA6

log(s)
NM6

playedEA 0 2.462 -2.093 10.16 0 0.0142 -0.0121 0.0551
(.) (1.31) (-0.25) (1.81) (.) (1.27) (-0.26) (1.57)

playedEM 3.930 0 8.248 5.804 0.0269 0 0.0455 0.00948
(0.92) (.) (2.15) (0.52) (0.96) (.) (2.22) (0.12)

playedNA 0.860 1.288 0 12.13 0.00470 0.00689 0 0.0800
(1.27) (1.54) (.) (1.93) (1.26) (1.53) (.) (1.84)

playedNM 0.969 0.258 1.116 0 0.00651 0.00138 0.00675 0
(0.57) (1.54) (0.43) (.) (0.58) (1.53) (0.52) (.)

round 1.884 0.833 1.209 1.429 0.0121 0.00518 0.00680 0.00366
(1.00) (0.62) (0.66) (0.55) (0.97) (0.66) (0.65) (0.19)

constant 191.4∗∗∗ 195.6∗∗∗ 182.9∗∗∗ 169.9∗∗∗ 5.247∗∗∗ 5.277∗∗∗ 5.209∗∗∗ 5.135∗∗∗
(24.53) (44.14) (51.77) (44.30) (101.91) (201.34) (262.99) (216.29)

observations 50 50 50 50 50 50 50 50
clusters 10 10 10 10 10 10 10 10
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001
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Table B10: Learning e�ects in imbalanced markets

(a) Learning e�ects on number of matched pairs in imbalanced markets: wave 1

(1) (2) (3) (4) (5) (6) (7) (8)
y

EA7
y

EM7
y

NA7
y

NM7
log(y+1)

EA7
log(y+1)

EM7
log(y+1)

NA7
log(y+1)

NM7
playedEA 0 0.200∗ 0.0286 9.21e-17 0 0.0575∗ 0.00822 -4.60e-17

(.) (2.75) (0.23) (0.00) (.) (2.75) (0.23) (-0.00)
playedEM 0.114 0 1.15e-17 0.0857 0.0362 0 5.75e-18 0.0247

(1.36) (.) (0.00) (0.53) (1.37) (.) (0.00) (0.53)
playedNA 0.0571 -0.114 0 0.0571 0.0164 -0.0329 0 0.0164

(1.75) (-1.36) (.) (0.43) (1.75) (-1.36) (.) (0.43)
playedNM -0.114 -0.143∗∗ -0.0857 0 -0.0362 -0.0411∗∗ -0.0247 0

(-1.22) (-3.80) (-0.57) (.) (-1.24) (-3.80) (-0.57) (.)
round 0.0321∗ 0.00714 0.0250 0.0696∗∗∗ 0.00967 0.00205 0.00719 0.0200∗∗∗

(2.10) (0.57) (1.25) (4.16) (2.09) (0.57) (1.25) (4.16)
constant 2.814∗∗∗ 2.857∗∗∗ 2.700∗∗∗ 2.264∗∗∗ 1.331∗∗∗ 1.345∗∗∗ 1.300∗∗∗ 1.175∗∗∗

(27.98) (40.87) (18.74) (19.24) (45.10) (66.88) (31.36) (34.69)
observations 140 140 140 140 140 140 140 140
clusters 20 20 20 20 20 20 20 20
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001

(b) Learning e�ects on number of matched pairs in imbalanced markets: wave 2

(1) (2) (3) (4) (5) (6) (7) (8)
y

EA7
y

EM7
y

NA7
y

NM7
log(y+1)

EA7
log(y+1)

EM7
log(y+1)

NA7
log(y+1)

NM7
playedEA 0 0 0 0.0667 0 0 0 0.0192

(.) (.) (.) (1.11) (.) (.) (.) (1.11)
playedEM 0.100 0 0 -1.09e-17 0.0288 0 0 -1.53e-19

(1.29) (.) (.) (-0.56) (1.29) (.) (.) (-0.02)
playedNA -4.08e-17∗∗∗ 0 0 -0.0667 -1.46e-17 0 0 -0.0192

(-8.87) (.) (.) (-1.11) (-0.08) (.) (.) (-1.11)
playedNM -0.100 0 0 0 -0.0288 0 0 0

(-1.29) (.) (.) (.) (-1.29) (.) (.) (.)
round -0.0200 0 0 0.0100 -0.00575 0 0 0.00288

(-0.96) (.) (.) (0.96) (-0.96) (.) (.) (0.96)
constant 3.060∗∗∗ 3 3 2.970∗∗∗ 1.404∗∗∗ 1.386 1.386 1.378∗∗∗

(48.87) (.) (.) (94.87) (77.92) (.) (.) (152.97)
observations 50 49 50 50 50 49 50 50
clusters 10 10 10 10 10 10 10 10
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001
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(c) Learning e�ects on number of e�ciently matched pairs in imbalanced markets: wave 1

(1) (2) (3) (4) (5) (6) (7) (8)
y

EA7
y

EM7
y

NA7
y

NM7
log(y+1)

EA7
log(y+1)

EM7
log(y+1)

NA7
log(y+1)

NM7
playedEA 0 0.314 0.0286 0.286∗ 0 0.107 0.0183 0.122∗

(.) (1.87) (0.11) (2.26) (.) (1.88) (0.19) (2.37)
playedEM 0.314 0 -0.0286 0.229 0.0990 0 0.0149 0.0807

(1.71) (.) (-0.10) (0.89) (1.49) (.) (0.14) (0.77)
playedNA 0.286∗ -0.0857 0 0.0571 0.112∗ -0.0247 0 0.0164

(2.60) (-0.48) (.) (0.23) (2.65) (-0.39) (.) (0.17)
playedNM -0.429 -0.657∗∗ 0.143 0 -0.148 -0.236∗∗ 0.0396 0

(-1.82) (-3.51) (0.40) (.) (-1.85) (-3.29) (0.29) (.)
round 0.0482 0.0161 0.100∗ 0.150∗∗ 0.0200 0.00257 0.0356∗ 0.0601∗∗

(1.40) (0.45) (2.73) (3.47) (1.49) (0.20) (2.49) (3.16)
constant 2.464∗∗∗ 2.536∗∗∗ 1.743∗∗∗ 1.114∗∗∗ 1.191∗∗∗ 1.241∗∗∗ 0.939∗∗∗ 0.659∗∗∗

(10.25) (11.74) (8.53) (6.22) (14.00) (16.12) (11.38) (7.67)
observations 140 140 140 140 140 140 140 140
clusters 20 20 20 20 20 20 20 20
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001

(d) Learning e�ects on number of e�ciently matched pairs in imbalanced markets: wave 2

(1) (2) (3) (4) (5) (6) (7) (8)
y

EA7
y

EM7
y

NA7
y

NM7
log(y+1)

EA7
log(y+1)

EM7
log(y+1)

NA7
log(y+1)

NM7
playedEA 0 0.133 0.200 0.267 0 0.0541 0.0924 0.0924

(.) (0.79) (0.61) (2.23) (.) (0.88) (0.80) (2.23)
playedEM 0.300 0 0.200 8.51e-17 0.139∗ 0 0.0811 -1.41e-17

(1.72) (.) (1.29) (0.00) (3.11) (.) (1.29) (-0.00)
playedNA 0.367 0.311 0 -0.0667 0.133∗ 0.105 0 -0.0231

(2.08) (1.95) (.) (-0.34) (2.34) (1.78) (.) (-0.34)
playedNM -0.600∗ 0.0333 -0.400 0 -0.237∗ 0.00566 -0.146∗ 0

(-2.31) (0.34) (-2.23) (.) (-3.02) (0.15) (-2.49) (.)
round 0.0200 -0.0500 0.0800 0.0600 -1.49e-18 -0.0144 0.0347 0.0208

(0.18) (-0.62) (0.90) (1.10) (-0.00) (-0.54) (0.95) (1.10)
constant 2.540∗∗∗ 2.372∗∗∗ 2.160∗∗∗ 2.620∗∗∗ 1.248∗∗∗ 1.166∗∗∗ 1.059∗∗∗ 1.255∗∗∗

(6.11) (9.56) (5.30) (13.76) (8.01) (14.09) (6.26) (19.01)
observations 50 49 50 50 50 49 50 50
clusters 10 10 10 10 10 10 10 10
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001
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(e) Learning e�ects on surplus in imbalanced markets: wave 1

(1) (2) (3) (4) (5) (6) (7) (8)
s

EA7
s

EM7
s

NA7
s

NM7
log(s)
EA7

log(s)
EM7

log(s)
NA7

log(s)
NM7

playedEA 0 13.43 -1.429 4.857 0 0.0888 -0.00823 0.0390
(.) (1.77) (-0.17) (0.99) (.) (1.72) (-0.16) (1.14)

playedEM 9.429 0 -0.857 7.429 0.0697 0 -0.00342 0.0445
(1.47) (.) (-0.10) (0.75) (1.60) (.) (-0.07) (0.71)

playedNA 6.571∗ -9.429 0 1.714 0.0370∗ -0.0644 0 0.00233
(2.64) (-1.30) (.) (0.22) (2.64) (-1.29) (.) (0.05)

playedNM -10.29 -17.43∗∗ 0.571 0 -0.0705 -0.100∗ 0.00347 0
(-1.28) (-2.92) (0.06) (.) (-1.33) (-2.84) (0.06) (.)

round 2.464∗ 0.161 1.964 3.893∗∗ 0.0167∗ -0.000165 0.0113 0.0242∗∗
(2.29) (0.16) (2.01) (3.64) (2.25) (-0.03) (1.95) (3.24)

constant 181.9∗∗∗ 188.8∗∗∗ 175.9∗∗∗ 151.6∗∗∗ 5.182∗∗∗ 5.234∗∗∗ 5.158∗∗∗ 5.006∗∗∗
(22.16) (39.56) (24.49) (23.25) (97.90) (172.95) (117.09) (111.87)

observations 140 140 140 140 140 140 140 140
clusters 20 20 20 20 20 20 20 20
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001

(f) Learning e�ects on surplus in imbalanced markets: wave 2

(1) (2) (3) (4) (5) (6) (7) (8)
s

EA7
s

EM7
s

NA7
s

NM7
log(s)
EA7

log(s)
EM7

log(s)
NA7

log(s)
NM7

playedEA 0 -3.333 4.667 5.333 0 -0.0189 0.0287 0.0321
(.) (-1.09) (0.93) (1.36) (.) (-1.10) (0.97) (1.32)

playedEM 4.000 0 -2.000 -1.38e-15 0.0223 0 -0.0108 -2.84e-19
(1.63) (.) (-1.29) (-0.00) (1.57) (.) (-1.29) (-0.00)

playedNA 0.333 3.556 0 -4.333 0.00143 0.0192 0 -0.0270
(0.10) (1.20) (.) (-1.08) (0.08) (1.13) (.) (-1.09)

playedNM -7.000∗ 3.667 3.45e-15 0 -0.0380∗ 0.0202 0.000370 0
(-2.74) (1.05) (0.00) (.) (-2.60) (1.02) (0.04) (.)

round -0.400 -2 1.500 0.900 -0.00241 -0.0112 0.00913 0.00533
(-0.38) (-1.10) (0.99) (1.19) (-0.42) (-1.11) (0.99) (1.17)

constant 199.2∗∗∗ 197.1∗∗∗ 186.8∗∗∗ 196.3∗∗∗ 5.295∗∗∗ 5.284∗∗∗ 5.221∗∗∗ 5.277∗∗∗
(58.43) (37.27) (21.67) (84.88) (287.43) (180.30) (99.21) (378.25)

observations 50 49 50 50 50 49 50 50
clusters 10 10 10 10 10 10 10 10
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001
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B.5 Determinants of aggregate outcomes: First rounds

We repeat the regression analysis for the determinants of aggregate outcomes with only the �rst rounds,
with results for balanced markets in Table B11 and imbalanced markets in Table B12. These results are
consistent with those of all rounds in Tables 4 and 5.

Table B11: Determinants of aggregate outcomes in balanced markets round 1

(a) Determinants of outcomes in balanced markets round 1: wave 1

(1) (2) (3) (4) (5) (6)

log (#
matched
pairs+1)

log (#
e�ciently
matched
pairs+1)

log
surplus

whether
full

matching

whether
e�cient

matching

whether
stable

outcome

ESIC 0.148∗∗∗ 0.532∗∗∗ 0.128∗ 0.399∗∗∗ 0.527∗∗∗ 0
(4.27) (4.61) (2.71) (4.26) (6.47) (.)

assortative 0.0817 0.262∗ 0.0620 0.193 0.265∗ 0.115
(1.82) (2.28) (1.05) (1.80) (2.35) (0.87)

ESIC*assortative -0.0596 -0.182 -0.0184 -0.101 -0.162 0
(-1.18) (-1.15) (-0.28) (-0.61) (-1.27) (.)

order -0.00161 0.0416 0.0109 -0.00948 0.0402 0.112∗
(-0.12) (1.65) (0.62) (-0.24) (1.23) (2.00)

constant 1.176∗∗∗ 0.542∗∗∗ 5.029∗∗∗
(19.88) (5.57) (61.16)

observations 104 104 104 104 104 52
clusters 26 26 26 26 26 26
t statistics in parentheses; standard errors clustered at group level
reported coe�cients in columns (4)–(6) are marginal e�ects from probit
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001

(b) Determinants of outcomes in balanced markets round 1: wave 2

(1) (2) (3) (4) (5) (6)

log (#
matched
pairs+1)

log (#
e�ciently
matched
pairs+1)

log
surplus

whether
full

matching

whether
e�cient

matching

whether
stable

outcome

ESIC 0.126 0.714∗∗ 0.133∗ 0.325∗ 0.664∗∗∗ 1.489∗∗∗
(2.23) (4.75) (2.79) (2.43) (6.33) (9.56)

assortative 0.115∗∗ 0.306 0.0857∗ 0.316∗∗ 0.239 1.180∗∗∗
(4.01) (1.67) (2.92) (2.95) (1.46) (6.02)

ESIC*assortative -0.178 -0.459 -0.138 -0.362∗ -0.417 -1.207∗∗∗
(-1.98) (-1.77) (-1.53) (-1.99) (-1.60) (-4.30)

order 0.0549 0.107∗ 0.0585∗ 0.155∗∗ 0.140∗∗∗ 0.0940
(2.05) (2.53) (2.74) (2.90) (3.36) (1.65)

constant 1.105∗∗∗ 0.398 4.995∗∗∗
(12.38) (1.99) (72.08)

observations 40 40 40 40 40 40
clusters 10 10 10 10 10 10
t statistics in parentheses; standard errors clustered at group level
reported coe�cients in columns (4)–(6) are marginal e�ects from probit
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001
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Table B12: Determinants of aggregate outcomes in balanced and imbalanced markets round 1

(a) Determinants of outcomes in all markets round 1: wave 1

(1) (2) (3) (4) (5) (6)

log (#
matched
pairs+1)

log (#
e�ciently
matched
pairs+1)

log
surplus

whether
full

matching

whether
e�cient

matching

whether
stable

outcome

ESIC 0.148∗∗∗ 0.532∗∗∗ 0.128∗∗ 0.406∗∗∗ 0.610∗∗∗ 0
(4.30) (4.65) (2.74) (3.95) (5.26) (.)

assortative 0.0360 0.0448 0.0425 0.121 0.0213 0.115
(1.72) (0.54) (1.04) (1.78) (0.26) (0.87)

balanced -0.121 -0.440∗∗ -0.128 -0.302 -0.517∗∗ 0
(-1.85) (-3.18) (-1.46) (-1.73) (-2.70) (.)

ESIC*assortative -0.0596 -0.182 -0.0184 -0.103 -0.188 0
(-1.19) (-1.16) (-0.28) (-0.61) (-1.27) (.)

assortative*balanced 0.0458 0.217 0.0195 0.0749 0.286 0
(0.93) (1.54) (0.27) (0.58) (1.77) (.)

order -0.00432 0.0211 -0.00591 -0.0137 0.0128 0.112∗
(-0.41) (0.72) (-0.43) (-0.40) (0.36) (2.00)

order*balanced 0.00271 0.0205 0.0168 0.00410 0.0338 0
(0.16) (0.53) (0.76) (0.08) (0.65) (.)

constant 1.296∗∗∗ 0.981∗∗∗ 5.157∗∗∗
(45.60) (9.90) (160.14)

observations 184 184 184 184 184 52
clusters 46 46 46 46 46 26
t statistics in parentheses; standard errors clustered at group level
reported coe�cients in columns (4)–(6) are marginal e�ects from probit
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001

(b) Determinants of outcomes in all markets round 1: wave 2

(1) (2) (3) (4) (5) (6)

log (#
matched

pairs)

log (#
e�ciently
matched
pairs+1)

log
surplus

whether
full

matching

whether
e�cient

matching

whether
stable

outcome

ESIC 0.126∗ 0.714∗∗∗ 0.133∗∗ 0.325∗ 0.839∗∗∗ 0.918∗∗∗
(2.30) (4.91) (2.89) (2.43) (5.08) (6.08)

assortative -5.28e-17 -0.208 -0.0231 0.316∗∗ -0.210∗ -0.598∗∗∗
(.) (-1.96) (-0.85) (2.95) (-2.21) (-3.43)

balanced -0.281∗∗ -0.899∗∗ -0.283∗∗∗ 0 -1.225∗∗∗ -0.694∗∗∗
(-3.26) (-3.81) (-3.94) (.) (-6.16) (-3.89)

ESIC*assortative -0.178 -0.459 -0.138 -0.362∗ -0.526 -0.747∗∗∗
(-2.05) (-1.83) (-1.58) (-1.99) (-1.67) (-3.91)

assortative*balanced 0.115∗∗∗ 0.514∗ 0.109∗ 0 0.512∗ 1.329∗∗∗
(4.15) (2.49) (2.77) (.) (2.30) (4.39)

order -5.58e-17∗∗∗ 0.00216 0.000578 0.155∗∗ -0.0500 0.0302
(-5.69) (0.04) (0.05) (2.90) (-1.07) (1.36)

order*balanced 0.0549∗ 0.104 0.0579∗ 0 0.227∗∗∗ 0.0268
(2.12) (1.59) (2.41) (.) (3.37) (0.66)

constant 1.386∗∗∗ 1.297∗∗∗ 5.278∗∗∗
(3.53e+16) (9.60) (202.53)

observations 80 80 80 40 80 80
clusters 20 20 20 10 20 20
t statistics in parentheses; standard errors clustered at group level
reported coe�cients in columns (4)–(6) are marginal e�ects from probit
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001
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B.6 Individual payo�s

Figure B1 shows the regions of core payo�s in balanced and imbalanced markets. Figure B2 shows the
histograms of payo�s for all matched subjects in e�cient matching. Figure B3 shows the histograms of
payo�s of all matched subjects———rather than matched subjects in e�cient matching only, as in the main
text———in balanced and imbalanced markets. Figure B4 shows the average payo�s of men and women in
balanced versus imbalanced markets, by time. Figure B5 shows the percentage of surplus achieved by time
for balanced and imbalanced markets.

Figure B1: Core, fair core, and noncooperative payo�s

EA NA

EM NM

Note. In each illustration, the gray area illustrates the polyhedron of women’s core payo�s in the balanced market; the blue area
illustrates the polyhedron of women’s fair core payo�s in the balanced market when U = 0.290 and V = 0.426 (Nunnari and
Pozzi, 2022); and the red dot represents the noncooperative payo�s. The red shaded area represents the reduced dimension of
women’s core payo�s in the imbalanced market and the green shaded area represents the reduced dimension of women’s fair
core payo�s in the imbalanced market. The sets of men’s core and fair core payo�s are isomorphic to those of women’s core and
fair core payo�s, respectively.
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Figure B2: Histogram of payo�s of matched subjects in e�cient matching

(a) Histogram of payo�s of matched subjects in e�cient matching in balanced markets: wave 1
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(b) Histogram of payo�s of matched subjects in e�cient matching in imbalanced markets: wave 1

0
.1
.2
.3
.4

de
ns
ity

0 20 40 60
m1

0 20 40 60
m2

0 20 40 60
m3

0 20 40 60
w1

0 20 40 60
w2

0 20 40 60
w3

0 20 40 60
w4

EA7

0
.1
.2
.3
.4

de
ns
ity

0 20 40 60
m1

0 20 40 60
m2

0 20 40 60
m3

0 20 40 60
w1

0 20 40 60
w2

0 20 40 60
w3

0 20 40 60
w4

EM7

0
.1
.2
.3
.4

de
ns
ity

0 20 40 60
m1

0 20 40 60
m2

0 20 40 60
m3

0 20 40 60
w1

0 20 40 60
w2

0 20 40 60
w3

0 20 40 60
w4

NA7

0
.1
.2
.3
.4

de
ns
ity

0 20 40 60
m1

0 20 40 60
m2

0 20 40 60
m3

0 20 40 60
w1

0 20 40 60
w2

0 20 40 60
w3

0 20 40 60
w4

NM7

Note. Blue horizontal lines represent the range of core payo�s in the cooperative model. Red shaded areas represent the range
of equilibrium payo�s in the noncooperative model, and red vertical lines represent the noncompetitive limit payo�s in the
noncooperative model. The histogram is in black.
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(c) Histogram of payo�s of matched subjects in e�cient matching in balanced markets: wave 2
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(d) Histogram of payo�s of matched subjects in e�cient matching in imbalanced markets: wave 2
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Note. Blue horizontal lines represent the range of core payo�s in the cooperative model. Red shaded areas represent the range
of equilibrium payo�s in the noncooperative model, and red vertical lines represent the noncompetitive limit payo�s in the
noncooperative model. The histogram is in black.
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Figure B3: Histogram of payo�s of matched subjects

(a) Histogram of payo�s of matched subjects in balanced markets: wave 1
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(b) Histogram of payo�s of matched subjects in imbalanced markets: wave 1
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Note. Blue horizontal lines represent the range of core payo�s in the cooperative model. Red shaded areas represent the range
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noncooperative model. The histogram is in black.
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(c) Histogram of payo�s of matched subjects in balanced markets: wave 2
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(d) Histogram of payo�s of matched subjects in imbalanced markets: wave 2
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Note. Blue horizontal lines represent the range of core payo�s in the cooperative model. Red shaded areas represent the range
of equilibrium payo�s in the noncooperative model, and red vertical lines represent the noncompetitive limit payo�s in the
noncooperative model. The histogram is in black.
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Figure B4: Men’s and women’s payo�s in balanced versus imbalanced markets
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Figure B5: Percent of surplus achieved by time

(a) Percent of surplus achieved by time in balanced markets: wave 1
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(b) Percent of surplus achieved by time in imbalanced markets: wave 1
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(c) Percent of surplus achieved by time in balanced markets: wave 2
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(d) Percent of surplus achieved by time in imbalanced markets: wave 2
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C Omitted proofs

For Theorem 1, it su�ces to show the following Lemmas 1, 2, and 3.

Lemma 1. (1) There is at most one solution to the system of equations given a matching ` and a discount

factor X < 1. (2) If there exists a solution given ` and X , then there exists a solution given ` and any X ′ < X .

Proof of Lemma 1. Fix a matching `. Consider the system of equations for the cases in which men are
the proposers at time zero:

*
?
< = B<` (<) −max

{
X ·+ A

` (<) , max
<′∈"\<

{
B<′` (<) −* ?

<′
}}
,

where
+ A
` (<) = B<` (<) −max

{
X ·* ?

<, max
F′∈, \` (<)

{
B<F′ −

[
B` (F′)F′ −* ?

` (F′)

]}}
;

For notational convenience, we follow the notations from max algebra to de�ne 0 ⊕ 1 ≡ max{0, 1} and∑⊕
8∈{1, · · · ,� } 08 ≡ 01 ⊕ · · · ⊕0� . Consider the following system of =" +=, equations with =" +=, unknowns

*
?
<1
, · · · ,* ?

<"
,+ AF1

, · · · ,+ AF, .



*
?
<1

= B<1` (<1) − X+ A` (<1) ⊕
∑⊕
<′≠<1

[
B<′` (<1) −*

?

<′
]
,

. . .

*
?
<="

= B<="
` (<="

) − X+ A` (<="
) ⊕

∑⊕
<′≠<="

[
B<′` (<="

) −* ?

<′

]
,

+ AF1
= B` (F1)F1 − X*

?

` (F1) ⊕
∑⊕
F′≠F1

[
B` (F1)F′ −

[
B` (F′)F −* ?

` (F′)

] ]
,

. . .

+ AF=,
= B` (F=,

)F=,
− X* ?

` (F=,
) ⊕

∑⊕
F′≠F=,

[
B` (F=,

)F′ −
[
B` (F′)F −* ?

` (F′)

] ]
.

Consider and rearrange the equation for* ?
< , for any< ∈ " :

*
?
< + X+ A` (<) ⊕

∑⊕
<′≠<

[
B<′` (<) −* ?

<′
]
= B<` (<) .

Then, by using the slack variable methods, we can rewrite this nonlinear equation as a set of =" linear
equations and one nonlinear condition with =" additional unknowns G<<1, · · · , G<<="

:

*
?
< + X+ A` (<) + G<< = B<` (<) ,

*
?
< +

[
B<′` (<) −* ?

<′
]
+ G<<′ = B<` (<) for any<′ ≠<,

G<< ·
∏
<′≠< G<<′ = 0.

We can rearrange the equation for+ AF and apply the slack variable method to it for anyF ∈, in a similar
fashion, Then we can rewrite the entire problem as a linear programming problem with =2

"
+=2

,
+=" +=,

variables
min

∑
<′∈"

∑
<∈"

G<<′ +
∑
F′∈,

∑
F∈,

GFF′,

subject to the following =2
"
+ =2

,
main constraints:
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*
?
< +

[
B<′` (<) −* ?

<′
]
+ G<<′ − B<` (<) > 0, ∀<′ ∈ "\<,∀< ∈ " ,

*
?
< + X+ A` (<) + G<< − B<` (<) > 0, ∀< ∈ " ,

+ AF +
[
B` (F)F′ −

[
B` (F′)F −* ?

` (F′)

] ]
+ GFF′ − B` (F)F > 0, ∀F ′ ∈, \F,∀F ∈, ,

+ AF + X*
?

` (<) + GFF − B` (F)F > 0, ∀F ∈, ;

and =2
"
+ =2

,
+ =" + =, nonnegative constraints:

*
?
< > 0 ∀< ∈ ", + AF > 0 ∀F ∈, ,

G<<′ > 0 ∀<,<′ ∈ ", GFF′ > 0 ∀F,F ′ ∈, .

First, we argue that there is at most one solution to the minimization problem. Note that the constraints
are noncolinear, because each of the main constraints contains a di�erent G<<′ , G<< , GFF′ or GFF . If the
constraints are satis�ed, then there exists a solution. If there exists a solution, there is a unique solution,
because of the following argument. All the main constraints will be binding and not all G<<′’s and GFF′’s
will be zero, so the optimal value———if it exists———is not zero. By Dantzig’s su�cient uniqueness condition
that for a linear program in canonical form the optimal value is positive, the solution is unique.

The proof for the system of equations when women are the proposers in period zero is identical. This
establishes part (1) of the lemma.

Second, let �X be the constrained set for the minimization problem when the discount factor is X .
Then for X ′ < X , �X′ is a closed subset of �X because the parts containing X in the main constraints are
nonnegative, which makes the constraints tightened as X decreases. Since the objective function of the
minimization problem is linear, we have that when there is a solution with X , there will be a solution with
X ′ < X .20 This establishes part (2) of the lemma.

Lemma 1 shows that �xing a matching ` and a discount factor X , if a solution exists, it is unique and
for any discount factor smaller than X , there exists a unique solution given `. Lemma 1 leads to the main
result on surplus division:

Lemma 2. For any X ∈ (0, 1), there exists a solution to the system of equations with `∗.

Since we already know that there exists a solution with e�cient matching when X = 1, by Lemma 1
part (2), we must have a solution with e�cient matching for any X < 1. This directly gives us Lemma 2.

Lemma 3. Any ine�cient matching ` cannot be supported by the system of equations.

20When the objective function is linear, then every indi�erence surface is a hyperplane with the normal vector being the gradient
of the objective function. Now we use this gradient vector as an axis going through the origin. That is, moving in one direction
on the axis is going in the same direction as the gradient, and the other going in the opposite direction. Then every point in
the entire space lies on some indi�erence surface of the objective function and all points on the same indi�erence surface can
be projected to a single point where this surface intersects the gradient axis. Hence, if a minimum occurs in the set �X , then it
is necessarily the case that a lower bound is realized on the projection of �X on the gradient axis (with the lower bound being
oriented according to the direction of lower objective values). Since �X′ is a closed subset of �X , its projection on the gradient
axis is a closed subset of the projection of �X on the gradient axis, which continues to have a lower bound. This immediately
implies that a minimum continues to exist when restricted to �X′ . We thank Van Kolpin for the suggestion.
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Proof of Lemma 3. Suppose ` is an ine�cient matching: The total surplus B` from this ine�cient match-
ing is less than the total surplus B`∗ from the unique e�cient matching `∗. Suppose there is a solution to
the system of equations for `. Then since for any man< ∈ " ,

*
?
< = B<` (<) −max

{
X+ A

` (<) , max
<′∈"\<

{B<′` (<) −* ?

<′}
}
,

we must have that and for any<′ ∈ "\<,

*
?
< ≤ B<` (<) − (B<′` (<) −*

?

<′).

In particular, the inequality holds for the man `∗(` (<)) that woman ` (<) would have matched with in
the e�cient matching `∗:

*
?
< ≤ B<` (<) −

(
B`∗ (` (<))` (<) −* ?

`∗ (` (<))

)
. (Um)

By the same logic, we have the following for each woman in, :

+
?
F ≤ B` (F)F −

(
B` (F)`∗ (` (F)) −+ ?`∗ (` (F))

)
. (Vw)

Sum all (Um) and (Vw) for all< ∈ " andF ∈, , we get∑
<∈"

*
?
< +

∑
F∈,

*
?
F ≤

∑
<∈"

B<` (<) −
∑
<∈"

[
B`∗ (` (<))` (<) −* ?

`∗ (` (<))

]
+

∑
F∈,

B` (F)F −
∑
F∈,

[
B` (F)`∗ (` (F)) −+ ?`∗ (` (F))

]
,

which can be simpli�ed as follows:
2B`

∗ ≤ 2B` .

This is impossible. We conclude that ` cannot be supported by the system of equations.

Next, we consider what the unique solution to the system of equations looks like when equal split is
or is not in the core. We present the following results:

Proof of Proposition 3. Since equal split is the core, for any<′ ∈ " , we must have

B<′`∗ (<) −
1

2
B<′`∗ (<′) ≤

1

2
B<`∗ (<) .

This implies that

B<′`∗ (<) −* ?

<′ = B<′`∗ (<) −
1

1 + X B<
′`∗ (<′) < B<′`∗ (<) −

1

2
B<′`∗ (<′)

≤ 1

2
B<`∗ (<) <

1

1 + X B<`
∗ (<) = +

A
`∗ (<) .

Hence, there exists a uniform lower bound X ∈ (0, 1) such that for any X ∈ (X, 1), B<′`∗ (<) −* ?

<′ < X+
A
`∗ (<)
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for any<′ ∈ "\< and any< ∈ " .21 This implies that for any X ∈ (X, 1), for any< ∈ " ,

*
?
< = B<`∗ (<) −max

{
X+ A

`∗ (<) , max
<′∈"\<

{
B<′`∗ (<) −* A<′

}}
= B<`∗ (<) − X ·+ A`∗ (<) ,

which is automatically satis�ed given * ?
< = + A

`∗ (<) = B<`∗ (<)/(1 + X). Similarly, we obtain the same con-
clusion for the case when women are the proposers.

When ES is not in the core, there exist<,<′ ∈ " , such that B<`∗ (<) +B<′`∗ (<′) < 2B<`∗ (<′) or B<`∗ (<) +
B<′`∗ (<′) < 2B<′`∗ (<) or both. Without loss of generality, assume that B<`∗ (<) + B<′`∗ (<′) < 2B<`∗ (<′) .
Assume that

*
?
< =

B<`∗ (<)

1 + X , for any< ∈ "; + AF =
B`∗ (F)F

1 + X , for anyF ∈, .

Then we must have

X+ A
`∗ (<) > max

<′′∈"\<

{
B<′′`∗ (<) −* ?

<′′
}
> B<′`∗ (<) −* ?

<′

⇒
XB<`∗ (<) + B<′`∗ (<′)

1 + X > B<`∗ (<′) .

Since B<`∗ (<) + B<′`∗ (<′) < 2B<`∗ (<′) , there exists a X ∈ [0, 1), such that for any X ∈ [X, 1), the above
inequality does not hold, implying that it cannot be a solution. Similarly, we obtain the same conclusion
for the case when women are the proposers.

21The existence of such a lower bound for each pair of< and<′ requires B<′`∗ (<′) to be strictly positive. Hence, as long as we
assume that B<F > 0 for any< ∈ " andF ∈, , we ensure the existence of a uniform lower bound.
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D Other experimental results

We have rich information about the process of negotiation: who proposes to whom, the terms of the o�ers,
and their acceptance and rejection. We can explore why agents become unmatched at the end of the game,
and whether demographic characteristics such as gender and major a�ect bargaining outcomes.

D.1 Tests on the noncooperative model

We investigate the factors that a�ect the chance a player will propose to someone on the opposite side.
Table D1 provides two patterns.

Table D1: Frequency distribution of proposals sent to players on the opposite side

(a) balanced markets: wave 1 and wave 2

EA6 NA6
w1 w2 w3 w1 w2 w3

m1 (52%,56%) (28%,6%) (19%,0%) (35%,32%) (31%,61%) (33%,81%)
m2 (4%,26%) (54%,49%) (42%,12%) (63%,34%) (30%,34%) (7%,15%)
m3 (0%,18%) (10%,45%) (90%,88%) (79%,35%) (18%,5%) (3%,4%)

EM6 NM6
w1 w2 w3 w1 w2 w3

m1 (1%,2%) (49%,53%) (50%,17%) (65%,30%) (32%,46%) (3%,29%)
m2 (2%,40%) (12%,43%) (87%,81%) (94%,68%) (4%,7%) (2%,21%)
m3 (62%,58%) (15%,4%) (23%,2%) (37%,2%) (49%,47%) (14%,50%)

(b) imbalanced markets: wave 1 and wave 2

EA7 NA7
w1 w2 w3 w4 w1 w2 w3 w4

m1 (32%,57%) (17%,10%) (17%,3%) (34%,56%) (53%,35%) (12%,50%) (20%,78%) (15%,77%)
m2 (7%,30%) (49%,54%) (37%,23%) (7%,29%) (61%,31%) (31%,42%) (5%,19%) (3%,19%)
m3 (4%,13%) (20%,36%) (75%,74%) (1%,15%) (75%,34%) (20%,8%) (3%,3%) (2%,4%)

EM7 NM7
w1 w2 w3 w4 w1 w2 w3 w4

m1 (2%,5%) (48%,48%) (48%,28%) (2%,5%) (58%,33%) (37%,47%) (3%,14%) (2%,16%)
m2 (7%,34%) (9%,48%) (80%,69%) (4%,35%) (92%,61%) (6%,7%) (2%,13%) (0%,15%)
m3 (36%,61%) (4%,4%) (23%,3%) (37%,60%) (35%,6%) (42%,46%) (13%,73%) (10%,69%)

Notes. In each table, the �rst number in each cell indicates the percentage of proposals sent from the row player to the column
player, the second number in each cell indicates the percentage of proposals sent from the column player to the row player.

First, proposers are more likely to propose to a receiver when their total surplus stands out among all of
the matches the proposer can achieve. For example, in NM6,<2 proposes toF1 much more frequently than
F1 proposes to <2. This is potentially because F1’s alternative matches have relatively better surpluses
than <2’s alternative matches. Similar patterns can be seen in pairs <2F3 in EM7, <2F1 in NM7, and
<1F3 and<3F1 in NA6 and NA7. To account for this factor, we create a variable

�CCA02C8 9 = B8 9

/∑
: B: 9

3
,
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which measures player 8’s attractiveness to player 9 , where s8 9 is the surplus generated when players 8 and
9 are matched, and : denotes the three possible matches for player 9 . (In imbalanced markets, we treat the
two duplicate players as a single player.)

Second, proposers are more likely to propose to a receiver if they appear more attractive to the receiver.
For example, for player <3 in EM7, although the total surplus is identical when they are matched with
either F1 or F2, <3 proposes to F1 much more frequently than they propose to F2, potentially because
they are relatively more attractive to F1 than to F2. Similar patterns can be observed in pair <1 F1 in
both EA6 and EA7. To account for this factor, we create another variable, RelativeAttract8 9 , which measures
player 8’s relative attractiveness to player 9 among all the possible matches player 8 could achieve.

'4;0C8E4�CCA02C8 9 = �CCA02C8 9

/∑
: �CCA02C8:

3
,

where Attract8 9 is the variable de�ned above, representing the attractiveness of player 8 to player 9 , and :
denotes the three possible matches for player 8 .

Table D2 presents regression results of the determinants of whom to propose to and the frequency of
equal-spilt proposals. In the regressions, AttractA? captures the receivers’ attractiveness to the proposer,
and RelativeAttract?A captures the proposer’s relative attractiveness to the receiver. C? and CA are dummy
variables, which equal 1 if the proposer or the receiver has a duplicate player in imbalanced markets. The
variable 3806_1>Cℎ is also a dummy, which equals 1 if the proposer and the receiver are at main diagonal
or anti-diagonal positions to each other. Finally, the dummy variable assortative equals 1 if the markets
are assortative, including both positive and negative assortativity.

We �rst look at the determinants of whom to propose to. In columns (1) and (2) of Table D2, the depen-
dent variable is the rate of each player’s proposal to a certain receiver. OLS regression results show that
in the �rst round of each game, the attractiveness of receivers to proposers (AttractA? ) plays a signi�cant
role in proposers’ proposing choices. When it comes to the �fth round of each game, AttractA? still has a
signi�cant e�ect, but the e�ect is much smaller. In contrast, the relative attractiveness of the proposer to
the receiver (RelativeAttract?A ) becomes more important over time. In imbalanced markets, we �nd that
proposers with a duplicate competitor are less likely to propose to a more attractive receiver, and they are
more likely to propose to someone when they �nd themselves more attractive to them, even in the �rst
round. Finally, proposers are more likely to propose to someone who is at their diagonal positions only
when the markets are assortative, and such a tendency disappears when the markets are nonassortative.
This result suggests that subjects do not make proposing decisions based on the heuristic of matching with
diagonal partners.

We consider now the numbers and types of proposals. The aggregate surplus gradually increases from
time zero (Figures B5) through a series of proposals, so subjects in general make e�ciency-enhancing
proposals. In balanced markets, the number of proposals is 12.4% (resp., 26.6%) fewer in assortative settings
and 30.5% (resp., 94.1%) fewer in settings with pairwise equal splits in the core, in wave 1 as shown in
Column (2) in Table D3a (resp., wave 2 as shown in Column (2) in Table D3b). The number of proposals
also decreases by round: An additional round decreases the number of proposals by 2.93% (resp. 8.91 %),
and having played 7 (resp. 5) rounds of other market games ahead of the current market decreases the
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Table D2: Determinants of whom to propose to and equal-spilts proposals: waves 1 and 2

Rate of proposing to someone Rate of proposing equally to someone
Round=1 Round=5 Round=1 Round=5

total surplus 0.00158 0.00158 -0.00313∗∗∗ -0.00246∗
(1.89) (1.68) (-3.94) (-2.61)

AttractA? 0.519∗∗∗ 0.250∗∗∗ 0.174∗ 0.0882
(7.34) (3.68) (2.38) (1.22)

RelativeAttract?A 0.146 0.598∗∗∗ -0.163 -0.200∗
(1.71) (6.96) (-1.60) (-2.46)

AttractA?*C? -0.646∗∗∗ -0.559∗∗∗ -0.140 -0.0687
(-4.87) (-5.65) (-1.01) (-0.80)

AttractA?*CA 0.625 0.614 -0.772 0.520
(0.75) (0.85) (-1.69) (1.46)

RelativeAttract?A*C? 0.675∗∗∗ 0.573∗∗∗ 0.00260 -0.0444
(5.14) (5.38) (0.02) (-0.58)

RelativeAttract?A*CA -0.322 -0.239 0.427 -0.452
(-0.64) (-0.51) (1.29) (-1.92)

diag_both -0.0211 -0.0411 0.0180 0.0580
(-0.80) (-1.03) (0.35) (1.07)

diag_both*assortative 0.0771∗ 0.173∗∗ 0.165∗ 0.216∗∗
(2.10) (2.67) (2.36) (2.93)

wave=2 0.0184 0.0236 0.0340 -0.00108
(0.79) (0.80) (1.20) (-0.04)

EA=1 -0.0314 0.00584
(-0.94) (0.19)

EM=1 -0.0288 0.0242
(-0.79) (0.53)

NA=1 -0.0524 -0.0925∗
(-1.40) (-2.62)

constant -0.424∗∗∗ -0.608∗∗∗ 0.431∗∗∗ 0.447∗∗∗
(-6.38) (-7.39) (4.55) (4.61)

observations 264 254 264 254
clusters 63 64 63 64
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001

number of proposals by 9.96% (resp. 8.91%), which averages to 1.42% (resp., 1.78%) per round, in wave 1
as shown in Column (2) of Table D3a (resp., wave 2 as shown in Column (2) of Table D3b). In both waves,
1 and 2, the e�ect of assortativity disappears in the analysis regarding balanced and imbalanced markets,
but the e�ect of having pairwise equal splits in the core persists (Columns (3)-(4) of Table D3a and Table
D3b).

Recall that in Section 5.1.1, we show that if players engage in bargaining in balanced markets, out-
side options should only a�ect the equilibrium outcomes of the ESNIC markets but not the ESIC markets.
Therefore, if we observe that the higher number of proposals in the ESNIC markets is entirely driven by
outside options, which are re�ected by the ine�cient proposals, it shall provide support for our nonco-
operative model. In the �nal two columns of both Table D3a and Table D3b, we introduce the count of
ine�cient proposals as an extra control factor, in contrast to the regression analyses conducted in the
initial two columns. We �nd that, when controlling for the number of ine�cient proposals, the e�ect of
“whether the market is ESIC” on the number of proposals is no longer signi�cant. This result suggests that
subjects in balanced markets might indeed engage in bargaining with the consideration of outside options.
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D.2 Tests on the fairness model

Table D4 tests the determinants of individual equal-split outcomes. ESIC markets produce 32%–40% more
equal-split outcomes; assortativity reduces equal-split outcomes by around 10%; and having earned more
cumulative payo�s does not increase the chance of an equal-split outcome: A $1 increase in cumulative
payo�s increases an individual’s chance of an equal-split outcome by less than 1% (-1.43% to 0.858% in
wave 1 and -3.04% to 0.0493% in wave 2) at statistically insigni�cant levels.

Columns (3) and (4) of Table D2 show when proposers propose an equal split. In these two regressions,
we use NM markets as the benchmark, and adopt dummy variables EA, EM, and NA to represent other
market types. We �nd that, while subjects in the �rst round prefer to propose equally to those who are more
attractive, over time, as subjects gain more experience, they become less likely to propose equally when
they are relatively more attractive. Moreover, we �nd that subjects are more likely to propose equally to
someone who is at their diagonal positions, but only when the markets are assortative. Finally, compared
to NM markets, subjects in NA markets are less likely to make equal-split proposals.

Next, we investigate whether individuals use equal-split as a heuristic when making proposals. Table
D5 shows the rate of equal-split proposals for each market type, and for round 1 and 5, respectively. It
shows that, in the �rst round of balanced markets, the rates of equal-split proposals are higher than one
third in all types of markets (53.3% in EA6, 47.9% in EM6, 36.9% in NA6, and 46.2% in NM6), and these
rates are mostly insigni�cantly di�erent between each other. Only the rate of NA6 markets is signi�cantly
lower than that of EA6 and NM6 (two-sided Mann-Whitney tests, ? < 0.01, = = 36). In contrast, by the
�fth round of balanced markets, these rates become signi�cantly di�erent from each other in most cases,
with the rate in NA6 (20.4%) smaller than that of NM6 (37.8%), which is smaller than EM6 (59.2%) and EA6
(68.4%). All di�erences are highly signi�cant (two-sided Mann-Whitney tests, ? < 0.001,= = 36). Similarly,
we �nd that, while the rates in imbalanced markets do not di�er between market types in the �rst round
(26.1% in EA7, 23.0% in EM7, 24.3% in NA7, and 24.8% in NM7), the rate in NA7 becomes signi�cantly
lower than other markets by the �fth round (8.5% in NA7, 19.0% in NM7, 19.8% in EA7, 25.5% in EM7,
signi�cant di�erence with ? < 0.001, = = 30). Moreover, after controlling for other factors, columns (3)
and (4) of Table D2 reveal that the rates of equal-split proposals do not di�er across market types in the
�rst round, but signi�cant di�erences appear in the �fth round. These results indicate that, when subjects
are inexperienced, they likely use equal-split as a heuristic when proposing to others, leading to almost
equally high rates of equal-split proposals in di�erent markets at the beginning. However, once they gain
experience, subjects in the ESNIC markets tend to shy away from equal-split proposals compared to the
ESIC markets, which is consistent with the theory, suggesting that their behavior is not driven by unequal
outcomes being less intuitive.

Finally, Table D6 presents when subjects prefer a proposal over their current matches. We use the �nal
matches of each subject as a benchmark, and compare them with all other relevant proposals. Speci�cally,
we �rst include proposals that subjects reject between the �nal match and the temporary match before
the �nal match, as well as the ones after the �nal match. Given that subjects reject those proposals and
stay in their �nal match, they reveal that these proposals are worse than their �nal matches. Moreover,
we include proposals subjects make to others while they are on their �nal matches, which are revealed
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to be better than the �nal matches. The dependent variable is a dummy, which equals 1 if the proposal
is better than the �nal matches, and equals 0 otherwise. The independent variable Earnings captures the
surplus di�erence between one’s �nal match and the proposals. The independent variables Unfair(adv)

and Unfair(adv) capture the di�erences in unfairness level between the �nal matches and the proposals,
following the de�nitions of Fehr and Schmidt (1999). The former re�ects cases in which one earns more
than their opponents, and the latter re�ects cases where one earns less than their opponents. Speci�cally,
they are de�ned as follows: Unfair (adv)=Unfair (adv) index (�nal match) - Unfair (adv) index (proposal),
where Unfair (adv) index = max {Pro�t (proposal) - Pro�t (�nal match), 0}. Similarly, Unfair (disadv) =
Unfair (disadv) index (�nal match) - Unfair (disadv) index (proposal), where Unfair (disadv) index = max
{Pro�t (�nal match) - Pro�t (proposal), 0}.

Columns (1)–(3) of Table D6 show that in balanced markets, subjects prefer proposals that yield a higher
earning for themselves, and dislike proposals that are more disadvantageously unfair to themselves, which
is mostly driven by the wave 1 sample. However, they do not appear to care if a proposal is more unfair
when they earn more than the others. Columns (4)–(6) of Table D6 show that, in imbalanced markets, the
preference for higher earnings persists. Moreover, subjects are averse to both advantageous and disadvan-
tageous unfairness, but only in wave 1. Additionally, in both waves, the competitive players’ proposals
are more likely to be rejected, and they are more likely to accept others’ proposals. Overall, these results
indicate that subjects exhibit inequality aversion preferences when choosing between proposals, but only
when the markets have a �xed ending time.

D.3 Reasons for being unmatched in balanced markets

In wave 1, 33.8% of balanced markets end up with unmatched agents (12% of EA6, 21% of EM6, 42% of NA6,
and 60% of NM6), and 11.22% of agents end up unmatched (3.83% in EA6, 7.17% in EM6, 13.83% in NA6,
and 20.05% in NM6). It is worthwhile to understand why they end up unmatched, because a signi�cant
amount of potential surplus is left unrealized, and the loss due to being unmatched far exceeds the loss
due to ine�cient mismatches.

To this end, we categorize a few reasons for being unmatched in wave 1. Namely, we de�ne four cate-
gories. A person is unlucky if he/she was matched after 150 seconds of the game but was left unmatched
by the end. A person is unattractive if he/she was unmatched for the last 30 seconds, was never proposed
to, proposed to but was rejected by others. A person is picky if the person was unmatched for the last 30
seconds, did not propose to anyone in the last 30 seconds, and rejected any incoming proposals in the last
30 seconds of the game. A person is trying if the person has both been rejected and rejected others in the
last 30 seconds of the game.

Table D7a lists the reasons for individuals being unmatched. The leading factor is that a person is
suddenly released from a match within 30 seconds of the end of the game. More than half (45.2% in EA6,
57.5% in EM6, 49.4% in NA6, and 50.0% in NM6) are left unmatched for this reason. For the rest of the
unmatched subjects, a little less than half are left unmatched because they are unattractive———i.e., in the
last 30 seconds their o�ers were not accepted and no one proposed to them. For the last quarter of the
unmatched subjects, half were picky———i.e., they did not make any o�er and rejected all incoming proposals
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in the last 30 seconds———half of them were actively participating without success.22

Table D7b shows the e�ects of the environment on being unmatched. There is no strong evidence that
unmatched types show up in di�erent ways in di�erent con�gurations. The “individual e�cient surplus”
is the theoretically predicted total surplus an individual can generate in the match. The “individual random
surplus” is the expected total surplus an individual obtains with their partner. For example, for <1 in AE,
the individual e�cient surplus is 30 and the individual random surplus is (30+40+50)/3 = 40. The larger
these factors, the higher the surplus an individual can provide. Therefore, as row 2 of Table D7b shows, a
higher individual random surplus is associated with a lower chance of being unmatched, and———conditional
on being unmatched———a lower chance that an agent is left single for being unattractive.

In wave 2, when time limits are removed, the proportion of balanced markets with unmatched agents
decreases to 11.4% (3.9% of EA6, 2.0% of EM6, 12.0% of NA6, and 27.5% of NM6) and the proportion of
unmatched agents decreases to 4.41% (2.0% in EA6, 0.7% in EM6, 4.5% in NA6, and 13.5% in NM6). Among
markets with unmatched pairs, in 99.7% of cases in wave 1 and 99.0% of cases in wave 2, one pair remains
unmatched. Because by design players in wave 2 make no proposal in the last 30 seconds of the game,
the reasons for being unmatched in wave 1 no longer apply. Therefore, we explore additional reasons
for being unmatched in both waves. According to the variable Attract8 9 we introduced in Section D.1, we
categorize all pairs (both matched and unmatched) into “mutually unattractive,” “unilaterally unattractive,”
and “mutually attractive.” A pair is “mutually unattractive” if the attractiveness of both sides is lower than
one, “unilaterally unattractive” if the attractiveness is lower than one for exactly one side, and “mutually
attractive” otherwise.23

Table D8 presents the determinants for pairs being unmatched in both waves. We present results from
three probit regressions, in which column (1) contains all pairs, column (2) contains only e�cient pairs,
and column (3) contains only ine�cient pairs.24 First, we �nd that removing the time limits (wave=2)
signi�cantly decreases the rate of being unmatched, both for e�cient and ine�cient pairs. Next, we �nd
that the e�cient pairs and the ine�cient pairs are unmatched for very di�erent reasons. While “mutually
unattractive” and “unilaterally unattractive” have signi�cant positive e�ects on ine�cient pairs to be un-
matched, neither of them could explain the reasons for being unmatched for the e�cient pairs. However,
we �nd that the e�cient pairs are less likely to be unmatched in ESIC markets as well as when subjects
gain experience in later periods. These factors have no e�ects on ine�cient pairs.

22We also check whether some subjects tend to always be unlucky, picky, unattractive, or trying, and this is not the case. The
majority of subjects who have been unlucky, picky, unattractive, or trying experienced this only once or twice.

23In Section D.1 we also create a variable RelativeAttract8 9 to measure player 8’s relative attractiveness to player 9 among all of the
possible matches player 8 could achieve. We do not include this variable as one of the potential reasons for being unmatched.
This is because for markets with unmatched players in both waves, in over 90% of the cases, only two agents remain unmatched,
and hence relative attractiveness should not be a major concern.

24When there are two unmatched agents in a market, we classify them as an e�cient (ine�cient) pair if they form an e�cient
(ine�cient) pair when matched. When there are four unmatched agents in a market, we include each potential pair of these
four agents in the regressions.
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D.4 Demographic characteristics

We investigate whether individual characteristics have any e�ects on the number of matches and payo�s
in each con�guration. Using regressions with group �xed e�ects, Table D10 shows the e�ect of age, gender,
grade, and major on the number of matched pairs a subject reaches and the total payo� a subject obtains
in each of the eight markets. There is hardly any e�ect of these characteristics, except for two instances
listed below that result in statistical signi�cance. In wave 1, economics/business majors in EM6 markets
are 5.36% more likely to be matched. Males are associated with a 7.28% decrease in total payo� in EA7. In
wave 2, a year older is associated with an 11.1% decrease in total payo� in NM6. These results indicate a
modest role of age, gender, and major in the two-sided matching markets.

D.5 Other experimental results

D.5.1 Bargaining activities

Table D9 shows alternative speci�cations for regression on determinants of the number of proposals for
balanced markets. The alternative speci�cations yield conclusions similar to our leading speci�cation (3),
presented in Column (2) of Table D3.

D.5.2 Demographic characteristics

Using regressions with individual �xed e�ects, Tables D10 shows the e�ect of age, gender, grade, and major
on the number of matched pairs a subject reaches in each of the eight markets.
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Table D3: Determinants of number of proposals per player per round
(a) Determinants of number of proposals per player per round in balanced and all markets: wave 1

(1) (2) (3) (4) (5) (6)
#

proposals
log #

proposals
#

proposals
log #

proposals
#

proposals
log #

proposals
ESIC -0.508∗∗∗ -0.310∗∗∗ -0.508∗∗∗ -0.310∗∗∗ 0.122 -0.0350

(-4.59) (-4.98) (-4.63) (-5.02) (1.52) (-0.69)
assortative -0.270∗∗ -0.128∗ -0.0454 -0.0232 -0.0747 -0.0422

(-2.97) (-2.66) (-0.50) (-0.69) (-1.15) (-1.34)
ESIC*assortative 0.324 0.134 0.324 0.134 0.0691 0.0223

(1.98) (1.63) (1.99) (1.65) (0.69) (0.39)
round -0.0388∗∗ -0.0293∗∗ -0.0229 -0.0136∗ 0.0338∗∗ 0.00249

(-3.21) (-3.22) (-1.61) (-2.22) (3.58) (0.46)
order -0.159∗∗ -0.0997∗∗∗ 0.0162 -0.00121 -0.0185 -0.0381∗

(-3.58) (-4.91) (0.34) (-0.06) (-0.71) (-2.63)
balanced 0.430 0.272∗∗

(1.69) (2.74)
assortative*balanced -0.225 -0.104

(-1.76) (-1.79)
round*balanced -0.0159 -0.0156

(-0.85) (-1.44)
order*balanced -0.176∗∗ -0.0985∗∗∗

(-2.70) (-3.57)
#Ine�cient proposals 0.194∗∗∗ 0.0847∗∗∗

(22.07) (7.70)
constant 3.039∗∗∗ 1.204∗∗∗ 2.609∗∗∗ 0.933∗∗∗ 0.952∗∗∗ 0.291∗

(17.07) (16.02) (14.18) (14.23) (6.23) (2.42)
observations 728 728 1,288 1,288 728 728
clusters 26 26 46 46 26 26
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001

(b) Determinants of number of proposals per player per round in balanced and all markets: wave 2

(1) (2) (3) (4) (5) (6)
#

proposals
log #

proposals
#

proposals
log #

proposals
#

proposals
log #

proposals
ESIC -3.380∗∗ -0.939∗∗ -3.380∗∗∗ -0.939∗∗∗ 0.355 -0.207

(-4.76) (-4.03) (-4.89) (-4.14) (1.35) (-1.13)
assortative -1.869∗∗ -0.263 -0.394 0.00387 0.150 0.133

(-3.38) (-1.95) (-0.63) (0.03) (0.60) (1.29)
ESIC*assortative 1.557∗∗ 0.138 1.557∗∗ 0.138 -0.128 -0.192

(3.26) (0.60) (3.35) (0.62) (-0.52) (-1.16)
round -0.268∗ -0.0728∗ -0.209 -0.0328 0.0513 -0.0103

(-2.61) (-2.79) (-0.94) (-0.93) (0.80) (-0.41)
order -0.392 -0.130 -1.462∗ -0.306∗∗ 0.0734 -0.0386

(-1.82) (-1.50) (-2.59) (-3.31) (0.93) (-0.65)
balanced -0.772 -0.00326

(-0.33) (-0.01)
assortative*balanced -1.475 -0.267

(-1.79) (-1.49)
round*balanced -0.0589 -0.0400

(-0.24) (-0.92)
order*balanced 1.069 0.176

(1.78) (1.41)
#Ine�cient proposals 0.325∗∗∗ 0.0637∗∗∗

(18.87) (5.08)
constant 7.007∗∗∗ 1.819∗∗∗ 7.779∗∗ 1.823∗∗∗ 0.0627 0.459∗

(6.03) (8.69) (3.79) (6.88) (0.16) (2.26)
observations 200 200 399 399 200 200
clusters 10 10 20 20 10 10
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001
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Table D4: Determinants of equal-split outcome

(a) Determinants of equal-split outcome: wave 1

(1) (2) (3)
equal-split
outcome

equal-split
outcome

equal-split
outcome

ESIC 0.323∗∗∗ 0.323∗∗∗ 0.326∗∗∗
(4.89) (4.86) (4.95)

assortative -0.0981∗∗ -0.0984∗∗ -0.0950∗∗
(-2.95) (-3.05) (-2.88)

ESIC*assortative 0.200∗∗∗ 0.200∗∗∗ 0.194∗∗∗
(3.94) (3.95) (3.84)

cumulative payo� 0.00858 0.00637 -0.0143
(1.60) (1.13) (-1.63)

round 0.0135∗∗ 0.0213∗∗∗
(2.81) (4.85)

order 0.0581∗
(2.18)

constant 0.306∗∗∗ 0.263∗∗∗ 0.188∗∗
(6.69) (5.50) (3.18)

observations 3,874 3,874 3,874
clusters 26 26 26
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001

(b) Determinants of equal-split outcome: wave 2

(1) (2) (3)
equal-split
outcome

equal-split
outcome

equal-split
outcome

ESIC 0.401∗∗∗ 0.401∗∗∗ 0.402∗∗∗
(5.16) (5.15) (5.12)

assortative -0.113 -0.113 -0.113
(-1.77) (-1.78) (-1.78)

ESIC*assortative 0.213∗ 0.212∗ 0.209∗
(3.10) (3.05) (2.92)

cumulative payo� 0.000493 0.00155 -0.0304
(0.06) (0.21) (-1.47)

round -0.00943 0.00610
(-0.85) (0.41)

order 0.0823
(1.53)

constant 0.409∗∗∗ 0.433∗∗∗ 0.326∗
(6.10) (5.69) (2.91)

observations 1,154 1,154 1,154
clusters 10 10 10
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001
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(c) Determinants of equal-split outcome in rounds 1: wave 1

(1) (2) (3)
equal-split
outcome

equal-split
outcome

equal-split
outcome

ESIC 0.149 0.149 0.148
(1.98) (1.98) (1.96)

assortative -0.132 -0.132 -0.134
(-1.46) (-1.46) (-1.50)

ESIC*assortative 0.211∗ 0.211∗ 0.218∗
(2.20) (2.20) (2.26)

cumulative payo� -0.0104 -0.0104 0.0155
(-0.95) (-0.95) (0.53)

order -0.0708
(-0.91)

constant 0.449∗∗∗ 0.449∗∗∗ 0.528∗∗∗
(6.04) (6.04) (4.75)

observations 542 542 542
clusters 26 26 26
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001

(d) Determinants of equal-split outcome in rounds 1: wave 2

(1) (2) (3)
equal-split
outcome

equal-split
outcome

equal-split
outcome

ESIC 0.399∗∗ 0.399∗∗ 0.398∗∗
(4.06) (4.06) (4.11)

assortative 0.0455 0.0455 0.0447
(0.61) (0.61) (0.60)

ESIC*assortative -0.0348 -0.0348 -0.0354
(-0.25) (-0.25) (-0.26)

cumulative payo� 0.0168 0.0168 -0.00220
(1.59) (1.59) (-0.05)

order 0.0477
(0.44)

constant 0.375∗∗∗ 0.375∗∗∗ 0.324
(6.14) (6.14) (1.97)

observations 222 222 222
clusters 10 10 10
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001
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Table D5: Two-sided Mann-Whitney tests on the rate of equal-split proposals

Types of balanced markets (Round 1/5)

EA6 EM6 NA6 NM6
Equal-split proposals (%) 53.3/68.4 47.9/59.2 36.9/20.4 46.2/37.8
EA6 (0.250/0.150) (0.005/< 0.001) (0.338/< 0.001)
EM6 (0.114/< 0.001) (0.710/< 0.001)
NA6 (0.007/< 0.001)

Types of imbalanced markets (Round 1/5)

EA7 EM7 NA7 NM7
Equal-split proposals (%) 26.1/19.8 23.0/25.5 24.3/8.5 24.8/19.0
EA7 (0.408/0.399) (0.663/< 0.001) (0.767/0.923)
EM7 (0.842/< 0.001) (0.695/0.348)
NA7 (0.684/< 0.001)

Notes: ?-values in parentheses. = = 36 for all balanced markets, = = 30 for all imbalanced markets.

Table D6: Proposals compared to the �nal match

Balanced markets Imbalanced markets
all waves wave 1 wave 2 all waves wave 1 wave 2

Earning 0.0323∗∗∗ 0.0354∗∗∗ 0.0211∗∗∗ 0.0232∗∗∗ 0.0266∗∗∗ 0.0150∗∗∗
(13.82) (13.38) (4.01) (16.65) (15.95) (4.84)

unfair(adv) -0.00206 -0.00255 -0.000592 -0.00138 -0.00314∗∗∗ 0.000891
(-1.83) (-1.91) (-0.32) (-1.67) (-3.33) (0.88)

unfair(disadv) -0.00522∗∗∗ -0.00599∗∗∗ -0.00276 -0.00194∗ -0.00347∗∗ 0.000444
(-4.61) (-4.08) (-1.80) (-2.26) (-3.15) (0.49)

wave2=1 -0.251∗∗∗ -0.223∗∗∗
(-6.16) (-11.75)

C? -0.203∗∗∗ -0.248∗∗∗ -0.0833∗∗∗
(-13.14) (-14.66) (-3.32)

CA 0.192∗∗∗ 0.219∗∗∗ 0.114∗∗∗
(7.29) (6.14) (3.99)

observations 6,976 5,430 1,546 5,492 3,907 1,585
clusters 36 26 10 30 20 10
t statistics in parentheses; standard errors clustered at group level
reported coe�cients are marginal e�ects from probit
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001
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Table D7: Reasons and determinants for individuals being unmatched: wave 1

(a) Reasons for individuals being unmatched: wave 1
Single reason EA6 EM6 NA6 NM6 Total

% % % % %
unlucky 45.2 57.5 49.4 50.0 50.6

unattractive 23.8 12.5 20.3 26.6 22.1
picky 11.9 10.0 20.3 11.7 14.1
trying 19.0 20.0 10.1 11.7 13.1
Total 100.0 100.0 100.0 100.0 100.0

(b) Determinants of reasons for individuals being unmatched: wave 1

(1) (2) (3) (4) (5)
unmatched unlucky unattractive picky trying

individual e�cient surplus 0.0238 -0.449 0.655∗∗ 0.151 -0.222
(0.36) (-1.39) (2.67) (0.57) (-0.88)

individual random surplus -0.101∗∗∗ 0.282∗∗∗ -0.314∗∗∗ -0.0499 0.0309
(-7.97) (3.45) (-3.60) (-1.46) (0.53)

ESIC -0.115∗∗∗ 0.0545 -0.169∗∗ -0.0322 0.0895
(-5.53) (0.65) (-2.73) (-0.68) (1.67)

assortative -0.0463∗∗∗ -0.00629 -0.0278 0.0686∗ -0.00425
(-3.84) (-0.11) (-0.65) (2.35) (-0.08)

ESIC*assortative -0.0116 -0.122 0.136 -0.0440 -0.00864
(-0.39) (-0.95) (1.06) (-0.57) (-0.11)

round -0.00257 0.0208 -0.0195∗ -0.00424 -0.00280
(-1.12) (1.73) (-2.01) (-0.64) (-0.39)

period -0.00268∗∗∗ 0.000929 -0.00367 -0.00332 0.00386
(-3.62) (0.28) (-1.44) (-1.74) (1.57)

observations 4,368 502 502 502 502
clusters 26 26 26 26 26
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Table D8: Determinants of outcomes in balanced markets: waves 1 and 2

(1) (2) (3)
unmatched
(All pairs)

unmatched
(E�cient pairs)

unmatched
(Ine�cient pairs)

mutually unattractive 0.139∗∗∗ -0.00560 0.496∗∗∗
(10.67) (-0.37) (19.24)

unilaterally unattractive 0.0858∗∗∗ 0.0256 0.258∗∗∗
(4.75) (1.64) (7.72)

wave=2 -0.113∗∗∗ -0.0770∗∗∗ -0.186∗∗∗
(-7.55) (-5.56) (-3.94)

ESIC -0.0928∗∗∗ -0.0366∗∗ 0.123∗∗
(-4.80) (-2.91) (2.97)

assortative -0.0464∗∗ -0.0333∗ 0.0920∗∗
(-3.13) (-2.18) (3.14)

ESIC*assortative 0.0166 0.0191 -0.176∗∗
(0.67) (0.85) (-2.86)

period -0.00228∗∗ -0.00160∗ -0.00216
(-3.22) (-2.32) (-1.41)

round -0.00293 -0.00425∗ 0.00864
(-1.47) (-2.06) (1.43)

observations 2,792 2,170 622
clusters 36 36 36
t statistics in parentheses; standard errors clustered at group level
reported coe�cients are marginal e�ects from probit
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001
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Table D9: Determinants of logged number of proposals in balanced markets

(a) Determinants of logged number of proposals in balanced markets: wave 1

(1) (2) (3) (4)
log proposals log proposals log proposals log proposals

ESIC -0.243∗∗∗ -0.303∗∗∗ -0.310∗∗∗ -0.310∗∗∗
(-5.42) (-4.45) (-4.98) (-4.98)

assortative -0.0530 -0.112∗ -0.128∗ -0.128∗
(-0.93) (-2.28) (-2.66) (-2.66)

ESIC*assortative 0.118 0.134 0.134
(1.27) (1.63) (1.63)

round -0.0293∗∗ -0.0150
(-3.22) (-1.72)

order -0.0997∗∗∗
(-4.91)

period -0.0142∗∗∗
(-4.91)

constant 2.592∗∗∗ 2.622∗∗∗ 2.996∗∗∗ 2.896∗∗∗
(44.79) (42.27) (39.86) (43.47)

observations 728 728 728 728
clusters 26 26 26 26
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001

(b) Determinants of logged number of proposals in balanced markets: wave 2

(1) (2) (3) (4)
log proposals log proposals log proposals log proposals

ESIC -0.870∗∗∗ -0.923∗∗ -0.941∗∗ -0.941∗∗
(-4.83) (-3.86) (-4.04) (-4.04)

assortative -0.212 -0.266 -0.266 -0.266
(-1.57) (-2.26) (-1.98) (-1.98)

ESIC*assortative 0.107 0.143 0.143
(0.45) (0.62) (0.62)

round -0.0891∗∗ -0.0712∗
(-3.33) (-2.76)

order -0.0891
(-1.42)

period -0.0178
(-1.42)

constant 3.114∗∗∗ 3.141∗∗∗ 3.631∗∗∗ 3.542∗∗∗
(18.48) (19.64) (16.42) (19.24)

observations 200 200 200 200
clusters 10 10 10 10
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001
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Table D10: Individual characteristics determinants of outcomes

(a) Individual characteristics determinants of outcomes in balanced markets: wave 1

(1) (2) (3) (4) (5) (6) (7) (8)
log

match
EA6

log
match
EM6

log
match
NA6

log
match
NM6

log
payo�
EA6

log
payo�
EM6

log
payo�
NA6

log
payo�
NM6

Age 0.00474 -0.000388 0.0239 -0.0101 0.0193 0.0206 0.0376 -0.0181
(0.38) (-0.02) (0.98) (-0.69) (0.98) (0.88) (1.24) (-0.96)

Male 0.00724 -0.0482 0.00705 0.0427 0.0132 -0.0574 -0.0563 0.0654
(0.31) (-1.52) (0.22) (1.45) (0.29) (-1.30) (-1.51) (1.88)

Grade of study -0.00250 0.0161 -0.0364 0.0176 -0.00692 0.00896 -0.0345 0.0343
(-0.12) (0.67) (-1.09) (0.76) (-0.26) (0.27) (-0.75) (1.23)

Econ/Business -0.00597 0.0536∗ -0.0323 -0.00180 -0.00143 0.0514 -0.0926 0.00292
(-0.26) (2.06) (-0.79) (-0.08) (-0.04) (1.16) (-1.79) (0.09)

Constant 1.728∗∗∗ 1.733∗∗∗ 1.316∗∗ 1.941∗∗∗ 4.938∗∗∗ 4.842∗∗∗ 4.606∗∗∗ 5.569∗∗∗
(8.86) (6.45) (3.18) (8.39) (15.29) (12.20) (9.14) (17.92)

observations 156 156 156 156 156 156 156 156
clusters 26 26 26 26 26 26 26 26
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001

(b) Individual characteristics determinants of outcomes in imbalanced markets: wave 1

(1) (2) (3) (4) (5) (6) (7) (8)
log

match
EA7

log
match
EM7

log
match
NA7

log
match
NM7

log
payo�
EA7

log
payo�
EM7

log
payo�
NA7

log
payo�
NM7

Age 0.00601 0.00592 0.00209 0.00942 0.00767 0.0147 -0.00505 0.0148
(0.68) (0.44) (0.24) (0.72) (0.51) (0.83) (-0.36) (0.78)

Male -0.0339 -0.0857 0.00414 0.0158 -0.0782∗ -0.124 0.00686 -0.0137
(-1.58) (-1.79) (0.11) (0.40) (-2.16) (-1.99) (0.14) (-0.19)

Grade of study -0.00249 -0.00312 0.00379 -0.00260 -0.00150 0.000535 0.00121 -0.00124
(-0.84) (-0.46) (1.29) (-0.51) (-0.28) (0.06) (0.18) (-0.20)

Econ/Business 0.0294 -0.0187 0.0360 0.0227 -0.0153 -0.00145 0.0509 0.0359
(0.76) (-0.43) (0.77) (0.36) (-0.28) (-0.04) (0.84) (0.41)

Constant 1.620∗∗∗ 1.620∗∗∗ 1.640∗∗∗ 1.423∗∗∗ 5.085∗∗∗ 4.899∗∗∗ 5.245∗∗∗ 4.778∗∗∗
(7.99) (6.49) (9.05) (5.23) (15.97) (14.00) (19.35) (12.14)

observations 140 140 140 140 140 140 140 140
clusters 20 20 20 20 20 20 20 20
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001
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(c) Individual characteristics determinants of outcomes in balanced markets: wave 2

(1) (2) (3) (4) (5) (6) (7) (8)
log

match
EA6

log
match
EM6

log
match
NA6

log
match
NM6

log
payo�
EA6

log
payo�
EM6

log
payo�
NA6

log
payo�
NM6

Age -0.00548 -0.0107 0.0136 -0.00941 0.0689 0.00351 -0.00644 -0.111∗
(-1.14) (-1.02) (0.85) (-0.37) (1.69) (0.06) (-0.12) (-2.91)

Male 0.00759 0.0161 0.0273 -0.0300 -0.0107 0.0170 0.0622 -0.0162
(0.90) (1.05) (1.32) (-1.38) (-0.17) (0.24) (1.32) (-0.29)

Grade of study 0.00270 0.0165 -0.0368 -0.0463 -0.130 -0.0142 -0.0388 0.00704
(0.60) (1.03) (-1.57) (-1.31) (-1.98) (-0.18) (-0.71) (0.15)

Econ/Business 0.00399 0.0177 -0.0160 0.0141 -0.0403 0.0442 0.0353 -0.117
(0.49) (1.27) (-0.73) (0.31) (-0.46) (0.58) (0.61) (-1.43)

Constant 1.692∗∗∗ 1.747∗∗∗ 1.412∗∗∗ 1.847∗∗ 4.135∗∗∗ 5.025∗∗∗ 5.247∗∗∗ 7.332∗∗∗
(24.63) (12.35) (5.21) (4.69) (5.66) (5.26) (5.67) (11.30)

observations 60 60 60 60 60 60 60 60
clusters 10 10 10 10 10 10 10 10
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001

(d) Individual characteristics determinants of outcomes in imbalanced markets: wave 2

(1) (2) (3) (4) (5) (6) (7) (8)
log

match
EA7

log
match
EM7

log
match
NA7

log
match
NM7

log
payo�
EA7

log
payo�
EM7

log
payo�
NA7

log
payo�
NM7

Age 0.0600 0.0134 0.0109 0.00179 0.0104 0.0147 0.00599 -0.0251
(1.82) (0.36) (0.33) (0.04) (0.19) (0.31) (0.10) (-0.43)

Male -0.0591 0.0101 0.0138 -0.0264 -0.138 0.0899 -0.0180 -0.0947
(-1.00) (0.22) (0.33) (-0.33) (-1.79) (1.24) (-0.20) (-0.74)

Grade of study -0.109 -0.0258 0.0194 0.0163 -0.0428 0.00226 0.0703 0.0874
(-2.08) (-0.72) (0.48) (0.48) (-0.64) (0.04) (1.20) (1.13)

Econ/Business -0.0188 0.0594 -0.107 0.0589 -0.0340 -0.0168 -0.131 0.0701
(-0.40) (0.64) (-1.85) (0.48) (-0.30) (-0.25) (-0.95) (0.90)

Constant 0.596 1.175 1.244 1.285 4.886∗∗ 4.534∗∗∗ 4.640∗∗ 5.055∗∗∗
(1.08) (1.83) (2.07) (1.53) (4.45) (5.52) (4.02) (4.86)

observations 70 70 70 70 70 70 70 70
clusters 10 10 10 10 10 10 10 10
t statistics in parentheses; standard errors clustered at group level
∗ ? < 0.05, ∗∗ ? < 0.01, ∗∗∗ ? < 0.001
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