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1 Introduction
Many negotiations share the common features that involved parties (i) can seek external resolution (e.g.,
court, arbitration, or war) if internal resolution fails and (ii) hold private information that determines
the outcome of external resolution. For example, two parties involved in a patent infringement dispute
can proceed to an intellectual property court if settlement fails, and the court can determine whether
the plaintiff is a victim or a patent troll. Teams and players in Major League Baseball and the National
Hockey League have for decades used league-provided arbitration if they fail to reach contract agreement:
A panel of judges picks one of the two sides’ publicly announced demands based on their privately prepared
arguments. A country can threaten to invade another country if peaceful negotiation fails, and the outcome
of the invasion depends on the countries’ private military strength and devotion to the dispute.1

Threatening external resolution is frequently leveraged as a strategic posture in the form of an ulti-
matum for internal resolution.2 The ability to make such a threat may vary by situation and location. For
example, several large jurisdictions (e.g., California, Illinois, and Texas) have rules that explicitly bar at-
torneys from threatening disciplinary or criminal action to gain the upper hand in settlement talks. Some
states (e.g., New York) only prohibit threatening criminal action, and other states (e.g., Michigan) have not
enacted any rules in this area. A stated main motivation for prohibiting such a threat is its perceived unfair
benefit to the aggressor when it is used (Shavell, 2019; Hunter, 2020). However, what is not considered
is that not invoking external resolution may be a sign of weakness for the aggressor, and this may affect
the frequency of internal resolution and the division of surplus. Hence, it is unclear who benefits from
external resolution opportunities when we take equilibrium effects into account.

The prevalence, importance, and complexity of negotiationwith external resolution opportunities war-
rant detailed investigation in a unified equilibrium framework. We focus on two questions. First, what are
the effects of the presence of external resolution opportunities on involved parties’ strategic behavior and
bargaining power? Second, which features of the negotiation process (e.g., frequency of external resolution
opportunities, external resolution outcome, resolution costs, discount rates) are essential determinants of
the outcome as private information vanishes?

To address these questions, we incorporate external resolution opportunities in the continuous-time
war-of-attrition bargaining model of Abreu and Gul (2000) (AG henceforth), which only involves internal
resolution. In our model, players 1 (“he”) and 2 (“she”) negotiate to divide a unit pie. Privately, each
player is either justified or unjustified in their demand. A justified player demands a fixed share of the
pie and never gives in to an offer smaller than their demand (which corresponds to the behavioral type
in AG), and an unjustified player can demand any share and give in to any demand (which corresponds
to the rational type in AG). Players announce their demands sequentially at the beginning of the game.
Afterward, each player can (i) continue the negotiation by holding on to the announced demand or (ii)

1Online Appendix A describes in more detail more applications in the realm we consider.
2The threat of external resolution mainly serves as a strategic posture, because many disputes are resolved before external

resolution is invoked. For example, 98% of criminal cases and 97% of civil lawsuits are resolved before trial, and 80% of financial
arbitration cases and 95% of NHL salary arbitration cases are settled before their scheduled hearings (Gramlich, 2019; Financial
Industry Regulatory Authority, 2020; National Hockey League Players’ Association, 2020). War is also arguably infrequent and
often actively avoided.
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end the negotiation by either giving in to the opposing demand (internal resolution) or challenging the
opponent before external resolution with an ultimatum for internal resolution. Challenge opportunities
arrive randomly for justified players, and unjustified players can always bluff.3 Upon being challenged,
the opponent must respond by either giving in to the challenger’s demand (internal resolution) or seeing
the challenge (external resolution).

The outcome of the external resolution depends on the justifiability of players’ claims, which renders
our model one of the first to study reputational bargaining with interdependent values. In court, the out-
come can be determined by a judge who observes the justifiability of players’ claims. In war, the outcome
depends on countries’ devotion and strength. If an auditor or mediator who reveals information is in-
voked, the outcome is the equilibrium payoff in the continuation game after players’ claims are verified
(as in Fanning (2021a)).

In the model in which neither player has external resolution opportunities (the AG model), the unique
equilibrium bargaining and reputation dynamics are parsimoniously characterized as follows. After play-
ers announce their demands, at most one player concedes with a positive probability at time zero. After-
ward, both players concede at overall constant hazard rates, and their reputations———the opponent’s beliefs
about a player’s being justified———increase exponentially at the respective constant concession rates until
both reputations reach one at the same time, at which point no unjustified player is left in the game and
justified players continue to hold on to their demands.

We start our analysis with the case in which only one player———player 1———has challenge opportunities.4

This case is a building block for the setting in which both players have challenge opportunities, and most
of the new economic forces from challenge opportunities on behavior, reputation, and outcome are present
and transparent in this case. We start with the setting in which each player has a single justified demand.
In the unique equilibrium, as in the AG equilibrium, at most one player concedes with a positive probability
at time zero, both players’ overall concession rates are the same constant rates as in AG, and both players’
reputations increase to one at the same time. In addition, an unjustified player 1 challenges with a positive
and increasing hazard rate as long as player 2’s reputation is not too high, and does not challenge at all after
player 2’s reputation increases past a threshold (Theorem 1). Hence, in equilibrium, there is a challenge
phase followed by a no-challenge phase.

The main methodological hurdle is the non-applicability of AG’s solution method to our setting. Our
setting involves interdependence of players’ payoffs and of their reputation-building processes: Player 1’s
strategy and reputation evolution depend on player 2’s reputation in each instance. To overcome this chal-
lenge, we introduce a new solution method based on a reputation coevolution diagram, which is generally
applicable in settings of interdependent payoffs. It encompasses AG in a unified way, and is a central tool
for our subsequent analysis of the baseline model and its extensions. We elaborate on our method in the
subsection on related literature.

3We also consider the case in which bluffing is available randomly for unjustified players and demonstrate that our main
results continue to hold (Online Appendix C.1).

4For example, in MLB and the NHL, essentially only players can elect to have salary arbitration hearings; in civil lawsuits,
usually only one side has the incentive to sue the other side; in price negotiations, typically either the buyer or seller———but not
both———waits for outside options; and in international conflicts, one side may consider aggression.

2



With the unique equilibrium characterized by the reputation coevolution diagram, we answer the two
main questions stated above. First, we study the equilibrium impacts of the introduction of challenge op-
portunities. Conceptually, the ability to challenge creates more possibilities for a player. However, not
challenging frequently enough in equilibrium when the opportunity is available reveals one’s weakness,
and that information could influence their bargaining power negatively. Namely, two forces in our model
determine the speed and dynamics of reputation building. The first is reputation building by not conceding
(not invoking internal resolution, as in AG): Persisting longer in the negotiation increases a player’s repu-
tation. The second, which is new in our model, is reputation gain or loss by not challenging (not invoking
external resolution). On one hand, the presence of challenge opportunities can hurt player 1 by slowing
reputation building, when an unjustified player 1 is expected to challenge at a lower rate than a justified
player 1. This is because not challenging is evidence against his being justified (bad news). On the other
hand, the presence of challenge opportunities can benefit player 1 by speeding up reputation building and
resulting in player 2’s conceding with a higher probability at the beginning of the game, when an unjusti-
fied player 1 is expected to challenge at a higher rate than a justified player 1 (good news). What is the net
equilibrium impact of challenge opportunities? Player 1’s equilibrium payoff may be higher or lower with
the presence of challenge opportunities. In particular, the presence of challenge opportunities may benefit
an unjustified challenger only when he has an intermediate level of prior reputation; this holds even if the
challenge opportunities arrive very frequently. Moreover, the challenger may never benefit from challenge
opportunities if the cost of challenge is high and/or the cost of response is low. Uncertainty about the ben-
eficiary of the presence of challenge opportunities helps rationalize aforementioned disparate approaches
to allowing legal threats (Shavell, 2019; Hunter, 2020).

Second, when initial reputations approach zero, the equilibrium outcome depends on a minimal set of
details of the setting. In this so-called limit case of rationality, the equilibrium outcome is efficient with one
of the players yielding to the opponent’s demand at time zero with a probability approaching one (Propo-
sition 1). The identity of the loser———the player who concedes with probability one at time zero———and the
surplus division are determined by the discount rates, demands, and ultimatum opportunity arrival rate via
a simple formula. The set of parameters for which player 1 loses expands with the ultimatum opportunity
arrival rate; hence, ultimatum opportunities always hurt player 1 in the limit case of rationality. In the
context of the court, being able to threaten with an ultimatum opportunity does not necessarily benefit
player 1, and, in fact, always hurts player 1 in the limit. In the context of war, this result suggests that
starting a war as external resolution may hinder a country’s ability to receive concessions from its rival.

Moreover, in a rich demand space the equilibrium outcome is unique (Theorem 2), and the presence
of ultimatum opportunities affects players’ bargaining power in a remarkably simple way. As initial rep-
utations approach zero, and as the set of justified demands gets larger and finer, the equilibrium outcome
converges to a unique efficient division that only depends on discount rates and the ultimatum opportunity
arrival rate (Proposition 2). In particular, player 1’s equilibrium payoff is the AG payoff if the ultimatum
opportunity arrival rate is smaller than his discount rate, and is equal to what his AG payoff would be if his
discount rate were replaced by the ultimatum opportunity arrival rate if the rate is larger than his discount
rate. In the former case with slow arrival of ultimatum opportunities, players tend to compromise; in the
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latter case with fast arrival of ultimatum opportunities, player 2 chooses the greediest demand to discipline
player 1.

An application of our model is the formation of a defense alliance between countries, which can be
interpreted as a committed response to an ultimatum in the hope of deterring unjustified aggressors. We
study the implications of joining a defense alliance on payoffs and conflict frequency. We show that player
2 may benefit from the deterrence effect of a defense alliance when her reputation is low but will be hurt
when her reputation is high. Moreover, although commitment deters aggression (from unjustified players
in our model), it may increase conflict (from committing to respond to justified players). The overall
ambiguous effect is consistent with the division in the literature regarding whether a defense alliance
deters or provokes conflict (Kenwick, Vasquez, and Powers, 2015; Leeds and Johnson, 2017; Morrow, 2017).

More generally, our method is useful in many ways. It is useful for studying reputational bargaining
with interdependent values.5 Using our method, we also demonstrate the outcome equivalence of bargain-
ing settings with public and private arrival of ultimatum opportunities. We also study bargaining settings
under different external resolution mechanisms and those with two-sided challenges. We summarize the
results in Section 5 and discuss the details in Online Appendix C.

After the literature review, the rest of the paper proceeds as follows. Section 2 describes the basic model
with one-sided ultimatum opportunities, and Section 3 characterizes its equilibrium. Section 4 discusses
the determinants of bargaining outcome, Section 5 summarizes extensions and concludes, and Section 6
collects omitted proofs. Online Appendices provide omitted details.

1.1 Relation to the literature

Our paper builds on the seminal work of Abreu and Gul (2000), who were the first to study two-sided
reputational bargaining as a concession game.6 They show the convergence of the equilibrium outcomes
of discrete-time bargaining games with incomplete information to the unique equilibrium of a continuous-
time war-of-attrition model.

We build on their war-of-attrition model by adding the opportunity for players to challenge and seek
external resolution. When the exogenous arrival rate of ultimatum opportunities to the justified type is
zero, our model is equivalent to AG’s model. When this arrival rate is strictly positive, a new possibility for
negotiations’ being resolved arises. Compared with AG, our model requires new techniques and allows us
to study a wider range of applications. Specifically, (i) the addition of ultimatum opportunities results in
richer yet tractable strategic behavior and reputation dynamics, solved by new methods and aided by the
introduction of reputation coevolution diagrams; (ii) even though external resolution disfavors unjustified
players, its availability may benefit them in equilibrium through reputation building; and (iii) payoffs in the
limit case of rationality and rich-type spaces depart fromAG’s payoffs in a simple waywhen the ultimatum
opportunity arrival rate exceeds the discount rate.

5Reputational bargaining with interdependent values naturally arises in settings of bargaining under different information
structures, type-dependent outside options, and mediation or arbitration in which the mediator or arbitrator suggests or enforces
an outcome that depends on bargainers’ types.

6Chatterjee and Samuelson (1987) study a discrete-time concession game with two-sided incomplete information (war of
attrition). Myerson (1991) introduces one-sided reputational bargaining. Subsequent contributions to reputational bargaining
include Kambe (1999); Abreu and Pearce (2007); Wolitzky (2011, 2012); Atakan and Ekmekci (2013); Abreu, Pearce, and Stacchetti
(2015); and Sanktjohanser (2022). See Fanning and Wolitzky (2020) for a comprehensive survey.
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Our analysis differs in two main technical respects from AG’s. First, in our model players have a larger
strategy space due to the additional challenge opportunities. A priori, players may have more or less in-
centive to wait to concede due to anticipating challenges. However, we show that in equilibrium, a player’s
payoff when challenged is equal to the payoff from conceding. Moreover, the equilibrium distribution of
challenges is continuously strictly increasing up to a finite time, and halts afterward. These findings show
that the equilibrium structure of our model is a tractable enrichment of AG’s.

Second, more importantly, in AG’s model players’ equilibrium behavior does not depend on their op-
ponent’s reputation, whereas in our model it inevitably does. AG develops a “forward-looking” method
that first calculates the time it takes for each player’s reputation to reach one in the absence of an initial
concession to determine the winning player and then characterizes the initial concession probability to
ensure that players’ reputations reach one at the same time. This method no longer applies to our model,
because of the interdependence of the evolution of players’ reputations. Instead, we develop a “backward-
looking” method that characterizes players’ reputations jointly on a diagram. The reputation coevolution
curve, which depicts players’ reputations as functions of each other’s reputation, characterizes the locus
of players’ reputations in any equilibrium of all games with all possible initial reputations after the start
of the game. This locus divides the reputation plane into two regions that identify the winning player and
the initial concession probability of the losing player.7

To the best of our knowledge, this is the first paper to study reputational bargaining with interde-
pendent values.8 In addition, our model is related to previous literature on bargaining with deadlines or
outside option and conflict resolution.

The ultimatum in our model can be seen as invoking an immediate deadline. Fanning (2016) studies
reputational bargaining with exogenous deadlines, and obtains a monotonic hazard rate of dispute reso-
lution when the deadline distribution is tightly compressed in a time interval. In our model, we assume
that the arrival rate of ultimatum opportunities for the justified type is constant, yet we obtain a piecewise
monotonic rate of dispute resolution in the middle of the negotiation due to the endogeneity of ultimatum
usage rates by strategic players. In addition, we obtain discontinuity in the hazard rate of resolution due
to the endogeneity of payoffs when an ultimatum is issued. Relatedly, Fanning (2021a,b) studies a repu-
tational bargaining model in which a mediator makes nonbinding recommendations at the beginning of
negotiation. In our model, our third party resembles an arbitrator who imposes a binding resolution when
consulted during the negotiation.

Another interpretation of the ultimatum is an endogenously evolving outside option. A player can use
an ultimatum to let a third party divide the surplus. Compte and Jehiel (2002) study exogenous outside
options that generate a value strictly higher than concession, and show that these high-value outside op-
tions cancel out reputation effects. Atakan and Ekmekci (2014) study reputational bargaining in a market
setting with many buyers and sellers. In their model, the market serves as the endogenous outside option,
and they show that even in the limit case of rationality inefficiency may arise. We obtain a similar inef-

7Kreps and Wilson (1982) and Fudenberg and Kreps (1987) use a similar representation of the state space with two players’
reputations, but they do not use the reputation coevolution curve to derive the probability of initial concession or pin down
additional strategy dynamics.

8See Pei (2020) for reputation effects under interdependent values.
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ficiency result when both players can challenge frequently and when the probability of being justified is
small. In addition, the models of Özyurt (2014, 2015) share the similarity whereby the value of the outside
option depends on players’ evolving reputations, but the papers’ motivations and modeling choices differ
otherwise. There is a further related literature on the exogenous arrival of outside options in bargaining
with one-sided incomplete information. In Hwang and Li (2017) and Hwang (2018), not taking an outside
option opens up the possibility of nonincreasing reputations and equilibrium multiplicity. Lee and Liu
(2013) study the role of incomplete information and outside options in bargaining, but between a long-run
player and a sequence of short-run players.

The paper is also related to conflict bargaining and defense alliances in international relations (Fearon,
1994; Sandroni and Urgun, 2017, 2018). This literature studies situations in which players can end the
bargaining process by confronting each other. However, in thesemodels, not ending the bargaining process
is more efficient, and the equilibrium dynamics are different from the war-of-attrition dynamics in our
paper. Fearon (1994) demonstrates the importance of audience costs (i.e., waiting costs) in the bargaining
outcome; our limit result shows that the bargaining outcome depends on bargaining costs in a simple way,
but does not depend on court costs. Our application also sheds light on the deterrence versus provocation
effect of a defense alliance (Kenwick, Vasquez, and Powers, 2015; Leeds and Johnson, 2017; Morrow, 2017).

2 Model
Players 1 (“he”) and 2 (“she”) decide how to split a unit pie. Each player is either (i) justified and committed

in demanding a fixed share of the pie or (ii) unjustified and strategic in demanding any fixed share.
We start by assuming that each player can be one single justified type: With probability 𝑧1 player 1 is

justified in demanding 𝑎1 ∈ (0, 1), and with probability 𝑧2 player 2 is justified in demanding 𝑎2 > 1 − 𝑎1.
Let 𝐷 := 𝑎1 + 𝑎2 − 1 denote the amount of disagreement between the two players.

Time is continuous and the horizon is infinite. At time zero, player 1 announces his demand first, and
upon observing player 1’s announcement, player 2 accepts it or announces her demand.9 At each instant,
each player can either concede to their opponent or not concede. We assume that a justified player never
concedes. When an unjustified player 𝑖 concedes to player 𝑗 , player 𝑖 gets a payoff of 1−𝑎 𝑗 and player 𝑗 gets
a payoff of 𝑎 𝑗 . In addition, we start by assuming a one-sided challenge model: Player 1 has opportunities
to challenge player 2 with an ultimatum. The game ends upon a concession, and moves to the challenge
stage if a player challenges.

Challenge. It costs 𝑐1𝐷 for player 1 to challenge. A justified player 1’s challenge opportunities arrive
according to a Poisson process with rate 𝛾1 ∈ [0,∞), and he challenges whenever such an opportunity
arrives. An unjustified player 1 can challenge at any time, so he can time his challenge strategically and
bluff with an ultimatum.10

Response to a challenge. Player 2 can respond to a challenge either by yielding to the challenge or by
seeing it. A justified player 2 always sees a challenge, and an unjustified player 2 chooses between the two

9Because for now there is only a single justifiable type, the initial demand announcement stage is redundant. When we allow
for multiple types in Section B.3, we add the demand announcement stage.

10In Online Appendix C.1, we consider themodel in which an unjustified player’s challenge opportunities also arrive according
to a Poisson process with rate 𝛾1 and he can decide whether to challenge.
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actions. If player 2 yields, she gets 1 − 𝑎1 and player 1 gets 𝑎1. It costs 𝑘2𝐷 for player 2 to see a challenge,
and in this case the division of the pie is determined by external resolution.

External resolution. We start with the extreme case in which the external resolution always favors a
justified player against an unjustified player. One interpretation is that external resolution simply reveals
the types publicly. If an unjustified player meets a justified player, the unjustified player 𝑖 receives 1 − 𝑎 𝑗 .
If two unjustified players meet, the challenging player 1 is favored and gets 𝑎1 (with probability 𝑤1), or
is disfavored and gets 1 − 𝑎2 (with probability 1 − 𝑤1). Therefore, his expected share is 1 − 𝑎2 + 𝑤1𝐷

and defending player 2’s expected share is 1 − 𝑎1 + (1 −𝑤1)𝐷 . Players’ payoffs are linear in the share of
the surplus they receive, so we could equivalently interpret that the third party decides on a deterministic
compromise division that gives each player their respective expected share. We do not specify the outcome
for justified players, since this does not play any role in the strategic decisions of unjustified players.
Table 1 summarizes the outcome of the external resolution considered in the benchmark model. In the

Unjustified defender Justified defender
Unjustified challenger 1 − 𝑎2 +𝑤1𝐷, 1 − 𝑎1 + (1 −𝑤1)𝐷 1 − 𝑎2, ·
Justified challenger ·, 1 − 𝑎1 ·, ·

Table 1: Outcome in the external resolution
Note: · indicates that the payoff is irrelevant for the strategic consideration of an unjustified player.

benchmarkmodel, we assume that if player 2 is expected to see a challenge, then player 1 prefers conceding
to challenging: 𝑤1 < 𝑐1 < 1; and that player 2 prefers seeing a challenge from an unjustified player 1 to
yielding to it: 0 < 𝑘2 < 1 − 𝑤1. If 𝑤1 = 0———i.e., the external resolution never favors an unjustified
plaintiff———we are simply assuming 𝑐1 and 𝑘2 to be strictly between 0 and 1.In Online Appendix C.3, we
explore alternative external resolution mechanisms.

We note that when the external resolution mechanism is an auditor or mediator who publicly reveals
players’ types, the perfect association between the commitment behavior and being justified is natural.
This is because when an auditor or mediator is called upon to reveal the commitment behavior of players,
there is a perfect association of committed and justified and that of strategic and unjustified in the fol-
lowing sense. When the auditor reveals a party to be committed and the other party to be rational, in the
continuation game the rational party concedes. When both parties are rational, the continuation payoffs
are efficient and captured by the division share𝑤1 (as in Fanning (2021a)).

In summary, a bargaining game 𝐵 = (𝑎1, 𝑎2, 𝑧1, 𝑧2, 𝑟1, 𝑟2, 𝛾1, 𝑐1, 𝑘2,𝑤1) with ultimatum opportunities for
one player and single demand types for both players is described by players’ justified demands 𝑎1 and 𝑎2,
prior probabilities 𝑧1 and 𝑧2 of being justified, discount rates 𝑟1 and 𝑟2, challenge opportunity arrival rate
𝛾1 for a justified player 1, challenge cost 𝑐1 and seeing cost 𝑘2 as proportions of the conflicting difference,
and an unjustified player 1’s winning probability𝑤1 against an unjustified opponent. Online Appendix A
provides several applications that can be thought of as negotiation with external resolution opportunities.
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2.1 Modeling choices and extensions

We assume that challenge opportunities arrive stochastically. The chance of invoking the court is not al-
ways available and is mostly private: It depends on the availability of the court, the availability of attorneys
willing to take the case, and/or the availability of material evidence that supports a party’s claim. Hence,
we model the arrival of a court as stochastic. Moreover, we model the arrival according to a Poisson pro-
cess, which implies a constant arrival rate. This assumption eases some of the calculation and exposition
of our results. Our analyses do not require the arrival process to be Poisson. Assuming a stationary arrival
process helps tease out the sources of nonmonotonicity and discontinuity of dispute resolution.

For relative expositional ease of equilibrium characterization, we start with the “asymmetric” case in
which the unjustified player can challenge at any time and the justified player challenges only when the
opportunity arrives. In Online Appendix C.1.1 we extend to the “symmetric” case, in which challenge op-
portunities arrive equally frictionally for justified and unjustified player 1, and extend the equilibrium char-
acterization and demonstrate the generality of the key results established in the “asymmetric” benchmark
model. In Online Appendix C.1.3, in the “symmetric” case, we also demonstrate the outcome equivalence
of public and private frictional arrival of ultimatum opportunities.

Also for relative expositional ease, we start with the perfect association of commitment behavior (i.e.,
always challenging and always seeing a challenge) with justified players, who get a favorable outcome in
the external resolution. We also relax this perfect association by allowing unjustified players to exhibit
commitment behavior and justified players to exhibit strategic behavior in Section C.2. The equilibrium
in the extended model is a generalization of the equilibrium in the benchmark model.

In the current specification of external resolution, challenge is dominated by concession if an unjusti-
fied opponent always sees the challenge: 𝑤1 < 𝑐1. In Section C.3, we explore alternative external resolution
specifications to showcase the versatility of our solution method. We first consider the setting in which
challenge dominates concession (e.g., if external resolution is random and/or if the challenge is costless)
and then the setting in which challenge neither dominates nor is dominated by concession (e.g., external
resolution is noisy): 𝑤1 > 𝑐1. Moreover, our results continue to hold if player 1 pays the court cost only
when player 2 sees the challenge.

We focus on the model with one-sided ultimatum opportunities, since it has many applications (e.g.,
patent infringement, debt collection, country aggression) and captures most of the economic channels
under consideration. Online Appendix C.4 studies the model with two-sided ultimatum opportunities
(which has a different set of applications———e.g., the division of financial assets in a dissolved firm) and
highlights the similarities to (Online Appendix C.4.2) and differences from (Online Appendix C.4.3) the
one-sided model.

We model the negotiation process directly as a concession game in the style of a war of attrition with
the addition of ultimatum opportunities. We could alternatively model the negotiations in a continuous-
discrete-time model in which a player can change his demand at any positive integer time, but can also
concede to an outstanding demand (or challenge in our case) at any time 𝑡 ∈ [0,∞). This formulation was
introduced by Abreu and Pearce (2007) in a setting of repeated games with contracts and adopted by Abreu,
Pearce, and Stacchetti (2015) in a bargaining context. In that formulation, without ultimatum opportunities,
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whenever a player makes a demand different from that of a commitment (justified) type she reveals her
rationality, and there is a unique equilibrium continuation payoff vector, which coincides with the payoff
vector from concession. With ultimatum opportunities, however, when player 2 reveals rationality, there
are multiple equilibria with different continuation payoffs. For example, there is an equilibrium in which
player 2 chooses a fixed demand, players concede to each other at constant hazard rates, player 1 challenges
at a constant rate, and player 1’s reputation remains constant. However, when player 1 reveals rationality,
there is a unique equilibrium continuation payoff vector, which coincides with the payoff vector from
concession. In particular, all of the equilibria we identify in our model have an analogous equilibrium in
the continuous-discrete-time bargaining model that yields identical behavior.

2.2 Formal description of strategies and payoffs

Since only unjustified players can choose their strategies, we drop the qualifier “unjustified” or “strategic”
whenever no confusion can arise. An unjustified player 1’s strategy is described by Σ1 = (𝐹1,𝐺1), where
𝐹1 and 𝐺1, the probabilities of conceding and challenging by time (including) 𝑡 , respectively, are right-
continuous and increasing functions with 𝐹1(𝑡) +𝐺1(𝑡) ⩽ 1 for every 𝑡 ⩾ 0. A strategic player 2’s strategy
is described by Σ2 = (𝐹2, 𝑞2), where 𝐹2, the probability of conceding by time 𝑡 , is a right-continuous and
increasing function with 𝐹2(𝑡) ⩽ 1 for every 𝑡 ⩾ 0, and 𝑞2(𝑡) ∈ [0, 1], her probability of yielding to
a challenge at time 𝑡 , is a measurable function. Each strategy profile induces a distribution over action
profiles, which we refer to as equilibrium play.

A strategic player 1’s (time-zero) expected utility from conceding at time 𝑡 is11

𝑈1(𝑡, Σ2) = (1 − 𝑧2)
∫ 𝑡

0
𝑎1𝑒

−𝑟1𝑠𝑑𝐹2(𝑠) +
[
1 − (1 − 𝑧2)𝐹2(𝑡)

]
𝑒−𝑟1𝑡 (1 − 𝑎2)

+(1 − 𝑧2)
[
𝐹2(𝑡) − 𝐹2(𝑡−)

] 𝑎1 + 1 − 𝑎2
2

, (1)

where 𝐹2(𝑡−) := lim𝑠↑𝑡 𝐹2(𝑠). His expected utility from challenging at time 𝑡 is12

𝑉1(𝑡, Σ2) = (1 − 𝑧2)
∫ 𝑡

0
𝑎1𝑒

−𝑟1𝑠𝑑𝐹2(𝑠) +
[
1 − (1 − 𝑧2)𝐹2(𝑡)

]
𝑒−𝑟1𝑡 (1 − 𝑎2 − 𝑐1𝐷) +

(1 − 𝑧2) [1 − 𝐹2(𝑡)]𝑒−𝑟1𝑡 [(1 − 𝑞2(𝑡))𝑤1 + 𝑞2(𝑡)]𝐷.

His expected utility from strategy Σ1 is

𝑢1(Σ1, Σ2) =
∫ ∞

0
𝑈1(𝑠, Σ2)𝑑𝐹1(𝑠) +

∫ ∞

0
𝑉1(𝑠, Σ2)𝑑𝐺1(𝑠) .

A strategic player 2’s expected utility from conceding at time 𝑡 and yielding according to 𝑞2(·) when

11We assume an equal split when two players concede at the same time. This is inconsequential for our results, because
simultaneous concession occurs with probability zero in equilibrium.

12We assume that whenever concession and challenge occur simultaneously, the outcome is determined by the concession.
This is an innocuous assumption, because simultaneous concession and challenge occur with probability 0 in equilibrium.
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facing a challenge is

𝑈2(𝑡, 𝑞2(·), Σ1) = (1 − 𝑧1)
∫ 𝑡

0
𝑎2𝑒

−𝑟2𝑠𝑑𝐹1(𝑠) + 𝑧1
∫ 𝑡

0

[
1 − 𝑎1 − (1 − 𝑞2(𝑠))𝑘2𝐷

]
𝑒−𝑟2𝑠𝛾1𝑒−𝛾1𝑠𝑑𝑠

+(1 − 𝑧1)
∫ 𝑡

0

{
1 − 𝑎1 +

[
1 − 𝑞2(𝑠)

] [
1 −𝑤1 − 𝑘2

]
𝐷
}
𝑒−𝑟2𝑠𝑑𝐺1(𝑠)

+𝑒−𝑟2𝑡 (1 − 𝑎1)
[
1 − (1 − 𝑧1)𝐹1(𝑡) − (1 − 𝑧1)𝐺1(𝑡−) − 𝑧1

(
1 − 𝑒−𝛾1𝑡 ) ]

+𝑒−𝑟2𝑡 (1 − 𝑧1)
[
𝐹1(𝑡) − 𝐹1(𝑡−)

] 𝑎2 + 1 − 𝑎1
2

, (2)

where 𝐹1(𝑡−) := lim𝑠↑𝑡 𝐹1(𝑠). Her expected utility from strategy Σ2 is

𝑢2(Σ2, Σ1) =
∫ ∞

0
𝑈2(𝑠, 𝑞2, Σ1)𝑑𝐹2(𝑠).

We study this game’s Bayesian Nash equilibria. Because the game is dynamic, it is natural to define
public beliefs about players’ types———i.e., reputations———throughout the game. We define the reputation
process 𝜇𝑖 (𝑡) in the natural way, as the posterior belief that player 𝑖 is justified conditional on the game’s
not ending by time 𝑡 . Bayes’ rule gives us this process explicitly as

𝜇1(𝑡) =
𝑧1

[
1 −

∫ 𝑡
0
𝛾1𝑒

−𝛾1𝑠𝑑𝑠
]

𝑧1
[
1 −

∫ 𝑡
0
𝛾1𝑒−𝛾1𝑠𝑑𝑠

]
+ (1 − 𝑧1)

[
1 − 𝐹1(𝑡−) −𝐺1(𝑡−)

] ,

and
𝜇2(𝑡) = 𝑧2

𝑧2 + (1 − 𝑧2) [1 − 𝐹2(𝑡−)] .

Finally, let 𝜈1(𝑡) be player 2’s posterior belief that player 1 is justified conditional on player 1 challenging
at time 𝑡 . Namely, 𝜈1(𝑡) = 0 at any 𝑡 ⩾ 0where𝐺1 has an atom, and at any 𝑡 ⩾ 0where𝐺1 is differentiable,

𝜈1(𝑡) = 𝜇1𝛾1
𝜇1𝛾1 + [1 − 𝜇1(𝑡)]𝛽1(𝑡) , (3)

where
𝛽1(𝑡) =

𝐺 ′
1(𝑡)

1 − 𝐹1(𝑡−) −𝐺1(𝑡−)
is an unjustified player 1’s hazard rate of challenging.13

3 Equilibrium
In this section, we solve and characterize equilibrium strategies and reputations. The bargaining game
entails a unique equilibrium play, which satisfies the following four properties.

13The function𝐺1 is differentiable almost everywhere, because it is right-continuous and monotone. Moreover, the posterior
beliefs are well defined at the jump points of𝐺1, and hence they are well defined almost everywhere in both the𝐺1 measure and
Lebesgue measure.
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3.1 Equilibrium characterization

Theorem 1. Consider 𝐵 = (𝑎1, 𝑎2, 𝑧1, 𝑧2, 𝑟1, 𝑟2, 𝛾1, 𝑐1, 𝑘2,𝑤1), a bargaining game with one-sided ultimatum

opportunities and single demand types. There exists an equilibrium. There exist finite times𝑇 and𝑇1 ∈ [0,𝑇 )
such that every equilibrium strategy profile (𝐹1,𝐺1, 𝐹2, 𝑞2) satisfies the following properties.

1. 𝐹1 and 𝐹2 are strictly increasing in (0,𝑇 ) and constant for 𝑡 ⩾ 𝑇 ;

2. 𝐹1 and 𝐹2 are atomless in (0,𝑇 ] and at most one of the two has an atom at 𝑡 = 0;

3. (a) 𝐹1(𝑇 ) +𝐺1(𝑇1) = 1;

(b) 𝐹2(𝑇 ) = 1;

4. (a) 𝐺1 is atomless in [0,𝑇 ], strictly increasing in [0,𝑇1], and constant for 𝑡 ⩾ 𝑇1;
(b) For almost every 𝑡 ∈ [0,𝑇 ], 𝑞2(𝑡) ∈ (0, 1) if 𝑡 ∈ [0,𝑇1] and 𝑞2(𝑡) = 1 if 𝑡 ∈ (𝑇1,𝑇 ].

Moreover, 𝐹1, 𝐹2, and 𝐺1 are unique, and 𝑞2 is unique almost everywhere for 𝑡 ⩽ 𝑇 .

Property 1 states that there is a finite time𝑇 > 0 such that players concede to each other with a strictly
positive probability in every subinterval of (0,𝑇 ], and never concede after time 𝑇 . Property 2 states that
the distributions of concession are atomless except at time zero, and there can be an atom in at most
one of these distributions. Property 3a states that an unjustified player 1 has either conceded before time
𝑇 or challenged before time 𝑇1, and Property 3b states that an unjustified player 2 has conceded before
time 𝑇 . Properties 1, 2, and 3b coincide with the three properties in AG, and Property 3a modifies AG to
characterize equilibrium challenge usage.

Property 4 extends AG’s equilibrium characterization when there are ultimatum opportunities. There
are difficulties, however, due to players’ larger strategy spaces: In addition to the timing of concession,
player 1 chooses the timing of challenge and player 2 chooses how to respond to a potential challenge
at each instant. A priori, players may have bigger or smaller incentives to concede due to the arrival or
anticipated arrival of challenge opportunities at each instant. We first show that in every equilibrium,
player 2 does not benefit from challenges———i.e., at each instant she weakly prefers conceding to seeing a
challenge. Second, we show that𝐺1 is atomless. These findings allow us to show that players’ concession
distributions are strictly increasing and atomless in an interval (0,𝑇1).

Property 4a asserts that player 1 challenges his opponent with an atomless distribution until some time
𝑇1 < 𝑇 , and never challenges afterward. Property 4b asserts that player 2 responds to a challenge by both
seeing the challenge and yielding to it with positive probabilities until time 𝑇1, and yields to it afterward.
Because this is a new property, let us provide an intuition for why this property must hold. Property 1
implies that at any time 𝑡 ∈ (0,𝑇 ), player 𝑖’s continuation payoff at time 𝑡 is equal to 1−𝑎 𝑗 . If𝐺1 is constant
in some interval, after observing a challenge in that time interval, player 2’s posterior belief that player
1 is justified is one, and player 2 optimally yields to any challenge. However, if player 2’s reputation is
smaller than 𝜇∗2 := 1 − 𝑐1, challenging gives player 1 a payoff that strictly exceeds 1 − 𝑎2, which yields a
contradiction. Similarly, if𝐺1 had an atom at some time 𝑡 , then after observing a challenge at time 𝑡 , player
1’s reputation would be 0 and player 2 would optimally see the challenge. However, then player 1 would
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receive a payoff strictly lower than 1− 𝑎2, leading again to a contradiction. Furthermore, as we will argue
in the next section, player 2’s reputation increases over time, and at some time 𝑇1 < 𝑇 reaches 𝜇∗2. After
this time, player 1 never challenges. Finally, for time 𝑡 < 𝑇1, player 1 is indifferent between conceding and
challenging, and player 2’s reputation is smaller than 𝜇∗2. Therefore, 𝑞2(𝑡) ∈ (0, 1) for time 𝑡 < 𝑇1.

We now use the four properties to derive the closed-form solutions of equilibrium strategies 𝐹 and 𝐺 .
In the next subsection, we first derive the equilibrium concession rates at time 𝑡 > 0, player 1’s challenge
rate, and player 2’s challenge response. We then derive reputation evolution based on these rates and
construct a reputation coevolution diagram, which allows us to compute the probabilities of concession at
time 𝑡 = 0.

3.2 Equilibrium strategies

3.2.1 Challenge and response to challenge

Property 2 implies that player 1 is indifferent between challenging and conceding at any time 𝑡 ∈ (0,𝑇1).
At any such time 𝑡 , 𝜇2(𝑡) denotes player 2’s reputation and 𝑞2(𝑡) denotes the probability that player 2
yields if a challenge comes at time 𝑡 . Compared with conceding, the benefit of challenging comes from
winning against an unjustified opponent who yields or sees,

[
1− 𝜇2(𝑡)

] [
𝑞2(𝑡) + (1−𝑞2(𝑡))𝑤1

]
𝐷 , and the

cost of challenging is 𝑐1𝐷 . Hence, we obtain that

𝑞2(𝜇2) := 𝑐1 −𝑤1(1 − 𝜇2)
1 − 𝜇2 −𝑤1(1 − 𝜇2) . (4)

The yielding probability is interior if 1 − 𝑐1/𝑤1 < 𝜇2 < 𝜇∗2 := 1 − 𝑐1. The lower bound is negative given
the assumption that 𝑐1 > 𝑤1, and when 𝜇2 exceeds the upper bound 𝜇∗2 = 1 − 𝑐1, the optimal choice is
𝑞2(𝜇2) = 1. At any time 𝑡 ⩽ 𝑇1, player 2 is indifferent between seeing and yielding to a challenge when
player 1’s reputation conditional on challenging player 2 is

𝜈∗1 := 1 − 𝑘2
1 −𝑤1

⇐= (1 − 𝜈∗1) (1 −𝑤1)𝐷 − 𝑘2𝐷 = 0. (5)

This implies, by Bayes’ rule and Equation (3), that player 1’s overall challenge rate seen as a function of
player 1’s reputation is

𝜒1(𝑡) = 𝜇1(𝑡)
𝜈∗1

𝛾1 ⇐=
𝜇1(𝑡)𝛾1
𝜒1(𝑡) = 𝜈∗1. (6)

Equivalently, an unjustified player 1’s rate of bluffing with an ultimatum is

𝛽1(𝜇1) :=
1 − 𝜈∗1
𝜈∗1

𝜇1
1 − 𝜇1𝛾1 ⇐=

𝜇1𝛾1
𝜇1𝛾1 + (1 − 𝜇1)𝛽1 = 𝜈∗1. (7)

To summarize, Equation (4) holds almost everywhere for 𝑡 ⩽ 𝑇 , because actions after time 𝑇 are off
equilibrium path for an unjustified player 2, and Equation (6) holds almost everywhere for 𝑡 ⩽ 𝑇1 and
𝛽1(𝑡) = 0 almost everywhere for 𝑡 ∈ (𝑇1,𝑇 ]. As we will see, the reputations will increase over time in
equilibrium, and unjustified player 1’s challenge rate 𝛽1 will increase until player 2’s reputation increases
to a threshold 𝜇∗2. Hence, the overall challenge rate 𝜒1 will increase until player 2’s reputation reaches 𝜇∗2
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and will then drop discontinuously and increase thereafter until player 1’s reputation reaches 1.

3.2.2 Concessions

Property 1 says that player 1 concedes with a positive probability in every subinterval of (0,𝑇 ), so player
1’s continuation payoff at every time 𝑡 is equal to 1 − 𝑎2 and he is indifferent between conceding at any
time in (0,𝑇 ). Hence, player 2 concedes at the constant rate 𝜆2 in the interval (0,𝑇 ) that sustains this
indifference:

1 − 𝑎2 = 𝑎1𝜆2𝑑𝑡 + 𝑒−𝑟1𝑑𝑡 (1 − 𝑎2) (1 − 𝜆2𝑑𝑡) =⇒ 𝜆2 =
𝑟1(1 − 𝑎2)
𝑎1 + 𝑎2 − 1

,

as in AG; an unjustified player 2 concedes at rate 𝜅2 = 𝜆2/(1−𝜇2). An immediate implication is that player
2’s reputation conditional on negotiation continuing at time 𝑡 < 𝑇 , 𝜇2(𝑡), is an increasing function.

Property 1 says that player 2 concedes with a positive probability in every subinterval of (0,𝑇 ), as is
the case for player 1. However, from player 2’s perspective, in any time interval, player 1 may concede or
challenge. As Property 4b indicates, because player 2 sees the challenge with an interior probability, her
continuation payoff when she is challenged is equal to her payoff from conceding to player 1. Hence, the
indifference condition for player 2 in yielding across all times 𝑡 ∈ (0,𝑇 ) implies that the overall hazard rate
of player 1’s conceding to player 2 is 𝜆1 = 𝑟2(1 − 𝑎1)/𝐷 , as in AG. To summarize, each player 𝑖 , 𝑖 = 1, 2,
concedes at the overall rate of

𝜆𝑖 :=
𝑟 𝑗 (1 − 𝑎𝑖)
𝑎1 + 𝑎2 − 1

=
𝑟 𝑗 (1 − 𝑎𝑖)

𝐷
. (8)

3.3 Equilibrium reputations

3.3.1 Reputation evolution: Bad-news and good-news effects

We now characterize the evolution of players’ reputations. To do so, we use the concession rates and the
challenge rate of player 1 derived in the previous section. We start with player 2’s reputation building for
𝑡 ∈ (0,𝑇 ]. Player 1’s reputation dynamics depend on both his concession rate and challenge rate. We start
with the no-challenge phase, 𝑡 ∈ (𝑇1,𝑇 ], and characterize the challenge phase, 𝑡 ∈ (0,𝑇1].

Note that Property 3 implies that 𝜇𝑖 (𝑇 ) = 1 for 𝑖 = 1, 2. Using this property and the reputation
dynamics we derive, we characterize the reputation coevolution curve. This curve shows the locus of the
reputation vectors at times 𝑡 > 0. The curve will determine the identity of the player who yields with a
positive probability at time 0 and the magnitude of that atom. This will complete the characterization of
the unique equilibrium.

We use the Martingale property 𝜇𝑖 (𝑡) = E𝑡𝜇𝑖 (𝑡 + 𝑑𝑡) to characterize players’ reputation evolution in
different phases, which can be succinctly summarized in the following lemma.

Lemma 1. Player 1’s reputation evolution can be characterized as

¤𝜇1(𝑡) :=
𝜇′1(𝑡)
𝜇1(𝑡) = 𝜆1 − 𝛾1 + 𝜒1(𝑡) (9)

=



𝜆1 −

[
1 − 𝜇1 (𝑡 )

𝜈∗1

]
𝛾1 if 0 < 𝑡 ⩽ 𝑇1

𝜆1 − [1 − 𝜇1(𝑡)] 𝛾1 if 𝑇1 < 𝑡 ⩽ 𝑇
(10)
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and player 2’s reputation evolution is

¤𝜇2(𝑡) :=
𝜇′2(𝑡)
𝜇2(𝑡) = 𝜆2. (11)

Two forces shape the evolution of player 1’s reputation. First, no concession is good news: With
player 1 conceding at rate 𝜆1, his reputation conditional on not having conceded increases exponentially
at rate 𝜆1. The second force, which is new, comes from the equilibrium challenges. Observe that when
𝛾1 = 𝛽1(𝑡) = 0, Equation (9) boils down to the exponential growth reputation dynamics in AG.

This second force can decelerate or accelerate reputation building. In the no-challenge phase, no chal-
lenge is bad news: With a justified player 1 challenging and an unjustified player 1 not challenging at all,
player 1’s reputation declines at rate [1− 𝜇1(𝑡)]𝛾1. In the challenge phase, however, the unjustified player
1 also challenges at a positive rate. Hence, the bad-news effect of no challenge is less severe in this phase
than in the no-challenge phase. This is captured by the third term in Equation (9). In fact, when 𝛽1(𝑡) > 𝛾1,
player 1’s reputation building accelerates with no challenge, and no challenge becomes good news. Player
1’s reputation builds faster when 𝜇1(𝑡) > 𝜈∗1———equivalently, 𝛽1(𝑡) > 𝛾1 and 𝜒1(𝑡) > 𝛾1———while player
2’s reputation is not too high, 𝜇2(𝑡) < 𝜇∗2. This effect provides a benefit from the presence of ultimatum
opportunities for an unjustified player 1 who has an intermediate range of reputations. We characterize
the range of initial reputations for ultimatum opportunities to be beneficial for an unjustified player 1 in
Section 4.2; this range may not exist in equilibrium. Decomposition of the bad-news and good-news effects
clarifies the potential benefit of external resolution opportunities for an unjustified player 1.

3.3.2 Reputation coevolution diagram

Both players’ reputation dynamics in each phase follow the Bernoulli differential equation, which is one
of the few cases of ordinary differential equations with closed-form solutions and includes the exponential
growth of AG as the special case when ultimatum opportunities are absent. Hence, it is feasible to combine
the reputation-building dynamics at different phases of the game to find the evolution of both players’
reputations in equilibrium. To do so, we run the Bernoulli differential equations that describe players’
reputation dynamics backward, starting from time 𝑇 .

Recall that the finiteness of 𝑇 in Property 3 of Theorem 1 implies that 𝜇1(𝑇 ) = 𝜇2(𝑇 ) = 1. Moreover,
𝜇2(𝑇1) = 𝜇∗2. Hence,𝑇 −𝑇1 can be found using player 2’s reputation dynamics given by Equation (11). Then
we can use player 1’s reputation dynamics in the no-challenge phase, Equation (10), to find 𝜇1(𝑇1). Then
we let 𝑇 ∗

1 be the time it takes for player 1 to build a reputation from 𝑧1 to 𝜇1(𝑇1) using the dynamics in
Equation (10), and 𝑇 ∗

2 the time it takes for player 2 to build a reputation from 𝑧2 to 𝜇∗2 using the dynamics
in Equation (11). Finally, we let 𝑇2 := min{𝑇 ∗

1 ,𝑇
∗
2 }, and conclude that if 𝑇 ∗

𝑖 > 𝑇2, player 𝑖 concedes at time
0 with a strictly positive probability.

Alternatively, we can trace a parametric reputation coevolution curve (𝜇1(𝑡), 𝜇2(𝑡)) in the belief plane,
which represents the locus of players’ reputations for any initial reputations at any time 𝑡 > 0. Because
both reputations are characterized analytically, we can represent the graph of the coevolution curve as
𝜇̃1(𝜇2) for 𝜇2 ∈ (0, 1], or equivalently, its inverse 𝜇̃2(𝜇1) for 𝜇1 ∈ (

max
{
0, 𝜙∗

1𝜈
∗
1

}
, 1

]
, where𝜙∗

1 := 1−𝜆1/𝛾1.
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𝜇1

𝜇2

1 concedes

0

b

b

(𝑧1, 𝑧2)
bc

b
𝜇̃2(𝜇1)

1

1

𝜇∗2

𝜇𝑁1

2 concedes

(a) 𝛾1 ⩽ 𝜆1

2 concedes
𝜇∗2

𝜇𝑁1
𝜇1

𝜇2

0
bc

b

𝜈∗1 (1 − 𝜆1
𝛾1
)

1 concedes

b

(𝑧1, 𝑧2)
b

𝜇̃2(𝜇1)
1

1

(b) 𝛾1 > 𝜆1

Figure 1: Reputation coevolution and initial concession in games with one-sided ultimatum opportunities
Note. The solid line in each panel depicts the reputation coevolution curve 𝜇̃2 (𝜇1). Player 1 concedes with a positive probability
at time 0 when (𝑧1, 𝑧2) is strictly to the left of the curve, player 2 concedes with a positive probability at time 0 when (𝑧1, 𝑧2) is
strictly to the right of the curve, and neither player concedes with a positive probability at time 0 when (𝑧1, 𝑧2) is on the curve.
The probability of initial concession ensures that the posterior reputation vector after initial concession lies on the curve. The
reputations coevolve to (1, 1) according to the curve. When player 2’s reputation reaches 𝜇∗2, player 1 stops challenging, and
player 1’s reputation 𝜇𝑁1 at the time is derived from the reputation coevolution curve.

The coevolution curve is characterized by

𝜇̃1(𝜇2) =




𝜆1−𝛾1
𝜆1 (𝜇2 )

𝛾1−𝜆1
𝜆2 −𝛾1

if 𝜇∗2 < 𝜇2 ⩽ 1,

𝜆1−𝛾1

𝜆1 (𝜇2 )
𝛾1−𝜆1

𝜆2 +
(
𝛾1
𝜈∗
1
−𝛾1

) (
𝜇2
𝜇∗
2

) 𝛾1−𝜆1
𝜆2 − 𝛾1

𝜈∗
1

if 0 < 𝜇2 ⩽ 𝜇
∗
2,

when𝛾1 ≠ 𝜆1. When𝛾1 = 𝜆1, this curve is obtained directly from 𝜇1(𝑡) and 𝜇2(𝑡) or by applying L’Hôpital’s
rule to the above formula, and is explicitly given in Online Appendix B.1.3. We can obtain the reputation
𝜇𝑁1 = 𝜇̃1(𝜇∗2) of player 1 when player 2’s reputation is 𝜇∗2.

Figure 1 provides examples of the reputation coevolution curve in two cases. When 𝛾1 ⩽ 𝜆1, the curve
tends toward (0, 0) (Figure 1a), and when 𝛾1 > 𝜆1, since player 1’s reputation is decreasing for reputation
lower than𝜙∗

1𝜈
∗
1 in the challenge phase, the curve tends toward (𝜙∗

1𝜈
∗
1, 0) (Figure 1b). When (𝑧1, 𝑧2) is on the

coevolution curve, their reputations situate on the equilibrium path to (1, 1), so neither player concedes at
time 0with a strictly positive probability. When (𝑧1, 𝑧2) is to the left of the curve———that is, 𝜇̃2(𝑧1) < 𝑧2———or
equivalently, 𝜇̃1(𝑧2) > 𝑧1, player 1 will be the player who concedes with a positive probability at time 0.
He must concede with a probability 𝑄1 such that the pair of his posterior reputation and player 2’s initial
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reputation 𝑧2 exactly falls on the curve:

𝑧1
𝑧1 + (1 − 𝑧1) (1 −𝑄1) = 𝜇̃1(𝑧2) =⇒ 𝑄1 = 1 − 𝑧1

1 − 𝑧1

/
𝜇̃1(𝑧2)

1 − 𝜇̃1(𝑧2) . (12)

When (𝑧1, 𝑧2) is to the right of the reputation coevolution curve, player 2 will be the one who concedes
with a positive probability at time 0, which raises her reputation if she does not concede at time 0 to lie on
the coevolution curve.

This completes our equilibrium characterization. We summarize the resulting equilibrium strategies
and beliefs explicitly in Online Appendix B.

4 Implications

4.1 Rates of challenge and resolution

Whereas distributions of challenging and dispute resolution depend on model primitives such as prior
reputations and ultimatum opportunity arrival rates, some qualitative features of equilibrium hazard rates
do not depend on the fine details of the model. For an unjustified player 1, the equilibrium hazard rate of
bluffing is increasing as 𝑡 approaches𝑇1, and the rate of conceding is increasing to infinity as 𝑡 approaches
𝑇 .14 Building on these rates, we can derive the overall hazard rates———that is, the aggregate rates for justified
and unjustified players———of challenge and resolution.

Namely, an unjustified player 1’s equilibrium hazard rate of ultimatum usage increases between time 0
and time𝑇1 and drops to zero afterward, and an unjustified player 1’s equilibrium concession rate increases
between time 0 and time𝑇 . The overall hazard rate of ultimatum usage increases between time 0 and time
𝑇1, drops from

𝜇𝑁1
𝜈∗1
𝛾1———which might be above or below𝛾1——— to a rate below𝛾1, and increases to𝛾1 between

time 𝑇1 and time 𝑇 . The overall hazard rate of dispute resolution adds the concession rate 𝜆1 + 𝜆2 to the
challenge rate before time 𝑇 , and hence exhibits discontinuities at both time 𝑇1 and time 𝑇 .

A testable prediction of the model is that the hazard rate of resolution in negotiations, which we can
observe in many settings, experiences local peaks and subsequent discontinuities in three instances: (i) the
onset of negotiation, (ii) the moment when an unjustified player stops challenging, and (iii) the moment
players stop conceding. The first peak arises when agreement is reached at the onset of the negotiation,
the second peak arises when player 2’s reputation approaches the level beyond which player 1 has no
incentive to challenge, and the last peak arises when both players’ reputations approach 1, beyond which
neither player has an incentive to continue the negotiation. We predict some resolution in the middle of
the negotiation, in addition to agreements at the onset of the game (predicted by Abreu and Gul (2000)
and Fanning (2016)) and before the deadline (predicted by Fanning (2016); Simsek and Yildiz (2016); and
Vasserman and Yildiz (2019)).15 In an earlier version of the paper (Ekmekci and Zhang, 2021), we provide
evidence that suggests that there is also a spike in agreements after the beginning of the negotiation and
before the deadline in MLB and NHL salary arbitration cases.

14These rates are unique almost everywhere with respect to both the 𝐹2 measure and Lebesgue measure.
15Wedo not explicitly add a deadline to themodel, but if we do, therewill be amass of deals near the deadline, and discontinuity

in the hazard rates of challenge and resolution in the middle of the negotiation remains.
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4.2 Who benefits from access to external resolution?

We now investigate the implications of external resolution on payoffs. This is important because some
states (e.g., California, New York, Illinois, Texas) choose to restrict access to legal threat for the fear that
it may be too powerful for a plaintiff (Shavell, 2019; Hunter, 2020). We show that when we consider the
equilibrium effects of the access to external resolution on bargaining dynamics, accessmay hurt that player.

Whether a player benefits from access or not depends on the good-news and bad-news effects of ul-
timatum opportunities on reputation building described in Section 3.3.1. Recall that player 1’s reputation
building slows in the no-challenge phase, because no challenge is a sign of weakness. In contrast, in the
challenge phase, reputation building may be faster when an unjustified player 1 bluffs at a rate higher than
𝛾1 (when the “no ultimatum is good news” effect dominates the “no ultimatum is bad news” effect), which
results in a benefit for an unjustified player 1. Figure 2 illustrates whether an unjustified player 1 benefits
from the introduction of ultimatum opportunities.

µ1

µ2
1

10
bc

µ∗
2

µN
1

1 strictly worse off; 2 unaffected

1 unaffected; 2 strictly better off

1 strictly worse off; 2 strictly better off

(a) 1 is never strictly better off

1

10
bc µ1

µ2

µ∗
2

µN
1

1 strictly worse off

1 strictly better off

1 unaffected

(b) 1 may be strictly better off

Figure 2: Does player 1 benefit from the introduction of infrequent access to external resolution?

Note. The thick solid line depicts the reputation coevolution curve with 𝛾1 > 0, and the thick dashed line is the reputation
coevolution curve with 𝛾1 = 0, as in AG. In Figure 2a, with the introduction of a challenge opportunity, player 1 (resp., 2) is
strictly worse off if the pair of initial reputations is in the region with red (resp., blue) horizontal lines, and is strictly better off if
the pair of initial reputations is in the region with red (resp., blue) vertical lines. In Figure 2b, player 2’s change is not illustrated
but can be analogously derived.

Figure 2a illustrates the case in which player 1 never benefits from the introduction of ultimatum
opportunities. Figure 2b shows that when player 1 challenges at a rate higher than 𝛾1, there may be an
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intermediate range of initial reputations of player 1 in which he benefits from the introduction. We can
show that this is always a connected interval bounded away from 0 and 1 when it exists.

This indeterminacy remains even when ultimatum opportunities arrive very frequently. This limit case
of frictionless access to external resolution helps us clarify when and how an unjustified player 1 benefits
from access to external resolution. Since ultimatum opportunities arrive very frequently (essentially fric-
tionlessly), the game ends quickly. Figure 3 illustrates reputation coevolution curves under large 𝛾1. As
𝛾1 → +∞, the reputation coevolution curve converges to the vertical line segment from (𝜈∗1, 0) to (𝜈∗1, 𝜇∗2),
the horizontal line segment from (𝜈∗1, 𝜇∗2) to (1, 𝜇∗2), and the vertical line segment from (1, 𝜇∗2) to (1, 1) (but
never reaches them for any finite 𝛾1), where 𝜈∗1 = 1 − 𝑘2

1−𝑤1
and 𝜇∗2 = 1 − 𝑐1. Hence, the equilibrium play

can undergo a few reputation phases after an initial concession: Player 2’s quickly increases (as it tends
toward 𝜇∗2), player 1’s quickly increases (as it tends to 𝜇𝑁1 ), and then player 2’s quickly increases (from 𝜇∗2
to 1).
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Figure 3: Does player 1 benefit from the introduction of frequent access to external resolution?

Intuitively, the introduction of frequent ultimatum opportunities may benefit only player 1 of interme-
diate reputation for the following reasons. For low initial reputations of player 1 (𝑧1 < 𝜈∗1(1− 𝜆1

𝛾1
) ≈ 𝜈∗1), the

introduction of frequent ultimatum opportunities helps quickly resolve uncertainty about players’ justifia-
bility, and the bad-news effect absolutely dominates when the strategy of persisting is dwarfed by justified
players’ quick challenges. For high initial reputations of player 1 (𝑧1 > (𝜇∗2)𝜆1/𝜆2 ), the introduction of
frequent ultimatum opportunities renders the strategy of persisting at a finite rate ineffective, especially
given that an unjustified player 1 does not bluff. Only when player 1 challenges at a rate higher than 𝛾1
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does the good-news effect dominate and absolutely dominate (the speed of reputation building tends to
infinity) as 𝛾1 → +∞. Whether player 1 can benefit from the introduction of frequent ultimatum opportu-
nities in equilibrium depends on the comparison between 𝜈∗1 and (𝜇∗2)𝜆1/𝜆2 . When 𝜈∗1 ⩾ (𝜇∗2)𝜆1/𝜆2 , player 1
never strictly benefits (Figure 3a). When 𝜈∗1 < (𝜇∗2)𝜆1/𝜆2 , for the intermediate range (𝜈∗1, (𝜇∗2)𝜆1/𝜆2) of initial
reputation of player 1 (and when player 2’s reputation is below 𝜇∗2), an unjustified player 1 strictly benefits
from the introduction of frequent ultimatum opportunities (Figure 3b).

In the next subsection, we will analyze the case when players’ probabilities of being justified are small
and show that player 1 is weakly worse off from access to external resolution opportunities, and increas-
ingly worse off from more frequent access to these opportunities when their reputations are small.

4.3 Who benefits in the limit case of rationality?

We now investigate the limit case of rationality, in which the prior probability that each player is justified is
small. This case captures situations in which being justified is a rare event and an ultimatum is prominently
used for strategic posturing.

4.3.1 Single type space

We start with the case in which each player 𝑖 may have a single justifiable demand 𝑎𝑖 . Generically (when
𝜆1 ≠ 𝛾1 + 𝜆2, to be precise), players divide the surplus efficiently, with one player immediately conceding
at time zero in equilibrium.

Proposition 1. Let {𝐵𝑛}𝑛 be a sequence of games in which for each 𝑛 ∈ N, 𝐵𝑛 = (𝑎1, 𝑎2, 𝑧𝑛1 , 𝑧𝑛2 , 𝑟1, 𝑟2,
𝛾1, 𝑐1, 𝑘2, 𝑤1) is a bargaining game with one-sided ultimatum opportunities and single demand types. If

lim
𝑛→∞ 𝑧

𝑛
1 = lim

𝑛→∞ 𝑧
𝑛
2 = 0, and 𝑢𝑛𝑖 is the equilibrium payoff for player 𝑖 in the game 𝐵𝑛 , then

(
lim
𝑛→∞𝑢

𝑛
1 , lim𝑛→∞𝑢

𝑛
2

)
=




(1 − 𝑎2, 𝑎2) if 𝜆1 < 𝛾1, or

if 𝛾1 ⩽ 𝜆1 < 𝛾1 + 𝜆2 and lim
𝑛→∞ 𝑧

𝑛
1/𝑧𝑛2 ∈ (0,∞),

(𝑎1, 1 − 𝑎1) if 𝜆1 > 𝛾1 + 𝜆2 and lim
𝑛→∞ 𝑧

𝑛
1/𝑧𝑛2 ∈ (0,∞).

If 𝜆1 < 𝛾1, the reputation coevolution curve approaches the x-axis at belief 𝜙∗
1𝜈

∗
1 (Figure 1b). Hence, for

small 𝑧1 and 𝑧2, player 1 concedes at time 0 with a large probability such that conditional on no concession,
player 1’s reputation jumps above 𝜙∗

1𝜈
∗
1; we can verify this from Equation (12).

If 𝜆1 ⩾ 𝛾1, the reputation coevolution curve approaches the x-axis at belief 0. In this case, when the
prior probability of being justified goes to zero on the same order for the two players, agreement is efficient,
is on the terms of player 1 if 𝜆1 − 𝛾1 > 𝜆2, and is on the terms of player 2 if 𝜆1 − 𝛾1 < 𝜆2. To see this, note
that the derivative of the reputation coevolution curve, 𝜇̃′2(𝜇1), as 𝜇2 goes to 0, tends to ∞ if 𝜆1 − 𝛾1 > 𝜆2

and tends to 0 if 𝜆1 − 𝛾1 < 𝜆2. Hence, as 𝑧1 and 𝑧2 go to 0 on the same order, player 2 in the former case
and player 1 in the latter case concede at time 0 with a probability that approaches 1.

Note that limit payoffs are independent of the details of the arbitration; the costs of challenging and
seeing the challenge as proportions of the disagreement, 𝑐1 and 𝑘2; and the probability𝑤1 of winning the
challenge. Discount rates 𝑟1 and 𝑟2 and the ultimatum opportunity arrival rate 𝛾1 do not affect efficiency,
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although they determine who is the winner (the player who is conceded to immediately) and the loser
(the player who concedes immediately). In particular, the higher the ultimatum opportunity arrival rate
𝛾1, the more likely player 1 loses. Hence, unlike the general case in which the ultimatum opportunity may
benefit or harm an unjustified player 1, in the limit case of rationality, the ultimatum opportunity is always
detrimental to an unjustified player 1.

The intuition for this “independence from the details of external resolution” finding can be gained
from the reputation dynamics. When 𝑧1 and 𝑧2 are small, negotiation may last for a long time———i.e., 𝑇 is
long. Moreover, reputation building for player 1 takes the most time when 𝜇1(𝑡) is small. Hence, player 1’s
reputation increases approximately exponentially, and at the rate 𝜆1−𝛾1. In other words, it is as if the bad-
news effect of not challenging slows the rate of reputation building exactly by 𝛾1. In light of our discussion
in Section 3, this result shows that the good-news effect of challenging disappears and the bad-news effect
persists for player 1 in the limit case of rationality.

Finally, the player who builds reputation at the higher rate is the “winner”———i.e., their opponent con-
cedes at time zero with a positive probability. Because reputations grow exponentially (approximately for
player 1), the initial concession probability converges to 1 as 𝑧1 and 𝑧2 approach 0 on the same order. This
final part of our analysis is similar to that of Abreu and Gul (2000) and Kambe (1999).

4.3.2 Rich type space

We investigate the limit case of rationality when the set of available demand types for each player is
sufficiently rich. The purpose of the analysis is to investigate which types stand out as the ones that are
mimicked most often.

We first solve the case in which there are multiple justifiable demands for both players. Player 1
announces his demand 𝑎1 ∈ 𝐴1 first, and upon observing player 1’s announcement, player 2 either accepts
the demand or rejects the demand and announces her own demand 𝑎2 ∈ 𝐴2. Assume 𝐴1 and 𝐴2 are finite;
assume that player 𝑖’s maximal demand is incompatible with all demands of player 𝑗 : max𝐴𝑖 +min𝐴 𝑗 > 1.
The prior conditional probability distribution 𝜋𝑖 of demands by a justified player 𝑖 , in which 𝜋𝑖 (𝑎𝑖) specifies
the conditional probability of demanding 𝑎𝑖 by a justified player, is commonly known. The game then
proceeds as in the previous case with one-sided ultimatum opportunities and single demand types for
both players. Hence, a game with one-sided ultimatum opportunities and multiple demands is described
by the bargaining game 𝐵 = (𝜋1, 𝜋2, 𝑧1, 𝑧2, 𝑟1, 𝑟2, 𝛾1, 𝑐1, 𝑘2,𝑤1). In addition to choosing their subsequent
challenge, concession, and response to challenges, unjustified players choose initial demands to mimic.

Note that we model the costs of challenging and seeing a challenge as proportional to the disagreement
in players’ demands. This is without loss in the single-type case. However, with multiple demand types,
this assumes a special relationship: The costs of challenging and seeing a challenge are proportional to the
claimed disagreement between the two players. Our results in this section, Theorem 2 and Proposition 2,
do not rely on this specific assumption, as long as the cost of challenging is higher than player 1’s expected
gain𝑤1𝐷 and the cost of responding is lower than player 2’s expected gain (1 −𝑤1)𝐷 .

Let 𝜎1 ∈ Δ(𝐴1) denote an unjustified player 1’s mimicking strategy at the beginning of the game, and
𝜎2(·|𝑎1) an unjustified player 2’s upon observing player 1’s announced demand 𝑎1, where the argument
can be either any 𝑎2 ∈ 𝐴2 or {0}, which indicates the acceptance of player 1’s demand 𝑎1.
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Theorem 2. For any bargaining game with ultimatum opportunities for one player and multiple demand

types for both players, all equilibria yield the same distribution over outcomes.

The proof is similar to the proof in AG. The key property———that players’ payoffs are monotonic in
𝑧𝑖———is preserved in the current setting, as we will show in the comparative statics exercises. In the proof,
we will first consider the intermediate case in which there is only one justified type of player 1 but there are
several justified types of player 2. In this case, a unique equilibrium exists. Then we consider the general
case in which player 1 first chooses which type 𝑎1 ∈ 𝐴1 to mimic, and seeing this, player 2 responds with
a type 𝑎2 ∈ 𝐴2 to mimic. In this case, we show that the distribution of equilibrium outcomes is unique.

Note that the equilibrium outcome does depend on the order of the move. If player 2 announces
the demand before player 1, then the distribution of equilibrium outcomes is still unique but potentially
different from that when player 1 announces first. However, as wewill show, these orders will be irrelevant
in the limit case of rationality and rich demand space.

For 𝐾 ∈ Z>0, let𝐴𝐾 := {2/𝐾, 3/𝐾, ..., (𝐾 −1)/𝐾} be a set of demands. Each element of𝐴𝐾 corresponds
to a commitment type whose demand coincides with that element. Suppose that 𝜋𝑖 ∈ Δ(𝐴𝐾 ) with full
support———i.e., the prior distribution of player 𝑖’s type conditional on player 𝑖 being justified has full support
on𝐴𝐾 . Finally, let 𝑧𝑛𝑖 be the probability that player 𝑖 is a justified type. Hence, 𝑧𝑛𝑖 𝜋𝑖 (𝑘/𝐾) is the probability
that player 𝑖 is a justified type who demands 𝑘/𝐾 , for 𝑘 = 2, .., 𝐾 − 1.

In what follows, we fix 𝐾 and analyze any sequence of equilibrium outcomes of bargaining games in
which the probabilities of each player being justified go to zero on the same order for the two players.

Proposition 2. Let {𝐵𝑛}𝑛 be a sequence of games in which for each 𝑛 ∈ N, 𝐵𝑛 = (𝜋1, 𝜋2, 𝑧𝑛1 , 𝑧
𝑛
2 , 𝑟1, 𝑟2, 𝛾1,

𝑐1, 𝑘2, 𝑤1) is a bargaining game with one-sided ultimatum opportunities and rich type spaces. If lim
𝑛→∞ 𝑧

𝑛
1 =

lim
𝑛→∞ 𝑧

𝑛
2 = 0, lim

𝑛→∞ 𝑧
𝑛
1/𝑧𝑛2 ∈ (0,∞), and𝑢𝑛𝑖 is the equilibrium payoff for player 𝑖 in the 𝑛th game of the sequence,

lim inf 𝑢𝑛1 >
𝑟2

max{𝑟1, 𝛾1} + 𝑟2 − 1/𝐾 and lim inf 𝑢𝑛2 >
max{𝑟1, 𝛾1}

max{𝑟1, 𝛾1} + 𝑟2 − 1/𝐾.

Remark 1. Proposition 2 implies that lim sup𝑢𝑛𝑖 ⩽ 1− lim inf 𝑢𝑛−𝑖 , because the size of the pie is 1. Therefore,
as 𝐾 grows without bound, player 1’s limit equilibrium payoff converges to 𝑟2

max{𝑟1,𝛾1}+𝑟2 and player 2’s limit

equilibrium payoff converges to max{𝑟1,𝛾1}
max{𝑟1,𝛾1}+𝑟2 .

Proposition 2 illustrates how the bargaining power depends on the arrival of ultimatum opportunities
in a remarkably simple way. The specific outcome of external resolution does not affect players’ payoffs.
Moreover, ultimatums have no impact if their arrival rate is smaller than the discount rate, and their arrival
rate takes the role of the discount rate otherwise. Finally, when ultimatum opportunities are arbitrarily
frequent———i.e., as 𝛾1 → ∞———player 2 guarantees herself the highest justifiable demand.

Proposition 1 shows that the limit equilibrium outcomewhen each side has a single type is (generically)
efficient, i.e., agreement is immediate. Moreover, player 1 wins if 𝜆1 − 𝛾1 > 𝜆2, and player 2 wins if
𝜆1 − 𝛾1 < 𝜆2. In terms of the primitives of the model, player 1 wins if

𝑟2(1 − 𝑎1) > 𝑟1(1 − 𝑎2) + 𝛾1(𝑎1 + 𝑎2 − 1),
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and player 2 wins if the strict inequality sign is flipped. Note that in AG, the comparison is between
𝑟2(1 − 𝑎1) and 𝑟1(1 − 𝑎2)———two terms that resemble the marginal costs of waiting that involve only de-
mands and discount rates———to determine the winner. The comparison in our model is complicated by an
additional term that involves the ultimatum opportunity arrival rate 𝛾1 and the amount of disagreement
𝐷 . Addition of ultimatum opportunities cannot be thought of as simply a discount rate. Player 𝑖’s problem
is to maximize 𝑎𝑖 subject to being the winner.

In the case of 𝛾1 ⩽ 𝑟1, which includes 𝛾1 = 0 in AG as a special case, player 1 can guarantee being
the winner by choosing the demand max

{
𝑎1 ∈ 𝐴𝐾

���𝑎1 ⩽ 𝑟2
𝑟1+𝑟2

}
. The result holds because the inequality

above can be rearranged as

𝑟2(1 − 𝑎1) > (𝛾1 − 𝑟1) (𝑎1 + 𝑎2 − 1) + 𝑟1𝑎1 ⇐⇒ 𝑟2 − (𝑟1 + 𝑟2)𝑎1 > (𝛾1 − 𝑟1) (𝑎1 + 𝑎2 − 1) .

Given the negative term on the right-hand side of the inequality, player 1’s Rubinstein-like demand guar-
antees his being the winner. Analogously, player 2 is the winner if

𝑟1 − (𝑟1 + 𝑟2)𝑎2 > (−𝛾1 − 𝑟2) (𝑎1 + 𝑎2 − 1),

and she can guarantee being the winner by demandingmax
{
𝑎2 ∈ 𝐴𝐾

���𝑎2 ⩽ 𝑟1
𝑟1+𝑟2

}
.

However, when 𝑟1 < 𝛾1, player 1 can no longer guarantee max
{
𝑎1 ∈ 𝐴𝐾

���𝑎1 ⩽ 𝑟2
𝑟1+𝑟2

}
. Rearranging

the inequality, we have that player 1 wins if

𝑟2(1 − 𝑎1) > (𝑟1 − 𝛾1) (1 − 𝑎2) + 𝛾1𝑎1 ⇐⇒ 𝑟2 − (𝑟2 + 𝛾1)𝑎1 > (𝑟1 − 𝛾1) (1 − 𝑎2).

Given that the right-hand side of the inequality is negative, but can be close to 0, player 1 can guarantee
winning by choosing any demand 𝑎1 ⩽ 𝑟2

𝛾1+𝑟2 .
Conversely, player 2 can guarantee payoff 𝛾1

𝛾1+𝑟2 −1/𝐾 by choosing the demand 1−1/𝐾 (the inequality
is flipped whenever 𝑎1 is at least 𝑟2

𝛾1+𝑟2 + 1/𝐾 ). Observe that player 2 guarantees this high payoff by choos-
ing the greediest demand, which increases the disagreement 𝐷 between the two players, which lowers
concession rates 𝜆𝑖 and amplifies the disadvantage to player 1. This is in contrast to prior results in the
literature, in which players tend to make compromise demands to get their Rubinstein-like payoffs.

Note that the arguments above do not depend on the order of moves, so the limit payoffs in a rich type
space are independent of the order of players’ moves.

5 Extensions and conclusion
In this section, we describe additional extensions to showcase the applicability of our solution method and
the robustness of our findings.

5.1 Application: Commitment to defend

Countries form defense alliances (e.g., NATO and theWarsaw Pact) to publicly pledge to defend each other
when they face an aggression. Similarly, to fight patent trolls who file frivolous infringement cases, big
companies often follow through on the cases. And in recent years, teams in MLB and the NHL pledge to go
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to the arbitration court when players ask for that, even though the two sides can continue to negotiate up
to the arbitration date (usually two to four weeks from filing for arbitration). The formation of a defense
alliance or a pledge to follow through in court or arbitration can be modeled in our setting as player 2’s
commitment to see an ultimatum when player 1 challenges. We can use the machinery we have developed
to study the benefits and costs of this commitment. To facilitate exposition, we use terms in the context of
defense alliance formation.

Consider the scenario in which player 2 is ex ante committed to see any ultimatum. In this case, an
unjustified player 1 never challenges, because his payoff from challenge, 1−𝑎2−𝑐1𝐷 , is strictly worse than
the payoff from concession, 1−𝑎2. This implies that the equilibrium play has a single strategy phase: Both
players are indifferent to conceding at any time 𝑡 > 0 and challenges are made by only a justified player
1. The indifference conditions help pin down the equilibrium behavior for both players.16 The reputation
coevolution curve is denoted by the dotted red curve in Figure 4.
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2 strictly better
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2 unaffected

by committing to defend

2 strictly worse
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reputation coevolution curve when 2 chooses defense strategy (baseline)
reputation coevolution curve when 2 commits to defend

Figure 4: Comparison of reputation coevolution curves and equilibrium payoffs: 2 chooses defense strategy
(baseline) versus 2 commits to defend

Commitment to defend affects reputation building in two ways. First, commitment to defend has
a deterrence effect on an unjustified player 1. An unjustified player 1 never challenges, so player 1’s
reputation builds more slowly. Second, against a justified player 1, commitment to defend leads to a loss
for an unjustified player 2. In equilibrium, player 1 concedes faster to make up for player 2’s loss (to keep

16An unjustified player 1 is indifferent between conceding at time 𝑡 and conceding at time 𝑡 + 𝑑𝑡 :

𝑟1 (1 − 𝑎2) = 𝜆2 (𝑡) · 𝑑𝑡 · 𝐷 ⇒ 𝜆2 (𝑡) = 𝜆2 .

An unjustified player 2 is indifferent between conceding at time 𝑡 and conceding at time 𝑡 + 𝑑𝑡 :

𝑟2 (1 − 𝑎1) = 𝜆1 (𝑡) · 𝑑𝑡 · 𝐷 − 𝜇1 (𝑡) · 𝛾1 · 𝑑𝑡 · 𝑘2 · 𝐷 ⇒ 𝜆1 (𝑡) = 𝜆1 + 𝜇1 (𝑡) · 𝛾1 · 𝑘2 .

Because of commitment to see a challenge, an unjustified player 2 gets a strictly lower payoff than yielding to a challenge.
However, player 1’s concession rate increases compared with the uncommitted benchmark to compensate for player 2’s payoff
loss from commitment. Hence, players’ reputations evolve according to ¤𝜇1 (𝑡) = (𝜆1 − 𝛾1) + 𝜇1 (𝑡) · 𝛾1 · (1 + 𝑘2) and ¤𝜇2 (𝑡) = 𝜆2.
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player 2 indifferent across concession times), and this accelerates player 1’s reputation building.
In the baseline model, when player 2’s reputation is above 𝜇̃2(𝜇𝑁1 ) (i.e., in the no-challenge phase), the

deterrence effect against an unjustified player 1 is also present, so commitment to defend brings no benefit
but only loss against a justified player 1. Hence, when players’ reputations are close to 1, the reputation
coevolution curve in the commitment case is above that in the no-commitment case. When 𝜇2 < 𝜇̃2(𝜇𝑁1 ),
i.e., in the challenge phase in the baselinemodel, the deterrence effect is absent. In the commitment case the
deterrence effect leads to player 1’s slower reputation building overall.17 Hence, the reputation coevolution
curve is flatter in the no-commitment case for 𝜇2 < 𝜇̃2(𝜇𝑁1 ). This explains why the two curves cross at
most once.

Figure 4 illustrates the comparison between the reputation coevolution curve when 2 chooses defense
strategy versus 2 commits to defend. Player 2 weakly benefits from a commitment to defend for any of her
initial reputation that is not too large, and strictly benefits when in addition player 1’s initial reputation is
sufficiently small. For the majority of instances when player 2 strictly benefits, player 1 is indifferent (the
orange region to the left of the blue coevolution curve).

Player 2 is strictly worse off when her initial reputation is high and player 1’s reputation is low (the
orange region). Note that player 2 is worse off from committing to defend when an unjustified player 1
would not have challenged in equilibrium without committing, i.e., when 𝜇2(𝑡) > 𝜇̃2(𝜇𝑁1 ), because her
commitment brings a lower payoff when she encounters a justified player 1 but no benefit when she
encounters an unjustified player 1. In addition, however, player 2 is also worse off for 𝜇2(𝑡) close to and
slightly below 𝜇̃2(𝜇𝑁1 ).

The commitment to defend can be thought as the decision for player 2 to join an alliance (e.g., NATO)
in which countries commit to protect each other in case of aggression. Our model implies that there is
benefit for joining such an alliance when one’s own reputation is low, and there will be a strict benefit
when the probability of a strong and dedicated rival is relatively low. It may not be beneficial to join a
defensive alliance when a country’s initial reputation to respond to aggression is high.

Can joining an alliance increase or decrease the total probability of conflict? On one hand, joining an
alliance has a deterrence effect on unjustified opponents: The overall chance of challenge will decrease
in equilibrium. On the other hand, joining an alliance increases the chance of conflict with justified op-
ponents. The overall effect on the probability of conflict is ambiguous. This finding is consistent with
and sheds light on the ongoing debate in the literature on the complicated relationship between defense
alliances and conflict (Kenwick, Vasquez, and Powers, 2015; Leeds and Johnson, 2017; Morrow, 2017).

Finally, note that in the limit case of rationality (i.e., when the initial probabilities of being justified are
small), player 2’s commitment to defend does not affect players’ payoffs.

5.2 Extensions

We summarize here our extensions detailed in Online Appendix C. First, to demonstrate the robustness
of our findings to alternative specifications in the arrival of ultimatum opportunities, we consider the set-
ting in which ultimatum opportunities arrive equally frictionally for both justified and unjustified players

17For 𝜇2 < 𝜇̃2 (𝜇𝑁1 ), ¤𝜇2commits
1 (𝑡) = 𝜆1 − 𝛾1 + 𝜇1 (𝑡) · 𝛾1 · (1 + 𝑘2) < ¤𝜇baseline1 (𝑡) = 𝜆1 − 𝛾1 + 𝜇1 (𝑡) · 𝛾1

1−𝑘2 .

24



(Online Appendix C.1). In this setting, there may be an additional strategy phase in which an unjustified
player’s equilibrium ultimatum usage rate is capped by the frictional ultimatum opportunity arrival rate,
which complicates equilibrium characterization and uniqueness proof. Nonetheless, the frictional arrival
of ultimatum opportunities does not alter our key qualitative results, such as discontinuous ultimatum and
resolution rates, and payoffs in the limit case of rationality. In this setting, because an unjustified player
1 cannot challenge more frequently than a justified player 1, he never benefits from the introduction of
ultimatum opportunities, which further highlights the importance of sufficiently frequent use of ultima-
tum opportunities to render not using them a sign of strength. This frictional ultimatum arrival setting
enables us to compare private and public arrival of ultimatum opportunities. We demonstrate that the
public arrival of ultimatum opportunities does not alter players’ equilibrium payoffs: Compared with the
baseline model, player 1 challenges at a higher rate and concedes at a lower rate.

Moreover, we relax our assumption that justified players are committed by allowing strategic justified
players (Online Appendix C.2). We then consider settings in which external resolution is costless, random,
compromising, or noisy (Online Appendix C.3). These settings clarify the roles of bluffing opportunities
and the external resolution mechanism in determining the bargaining behavior and outcome, and further
showcase the generality of our solution method to analyze alternative settings of conflicts.

Finally, we consider the extension in which both players have opportunities to challenge (Online Ap-
pendix C.4). If at least one player’s exogenous ultimatum opportunity arrival rate is lower than the AG
equilibrium concession rate, there exists a unique equilibrium outcome that is similar to the one in the
setting with one-sided ultimatum opportunities. Otherwise, inefficient delays arise in equilibrium even in
the limit case of rationality due to overabundant availability of access to external resolution opportunities.
One implication of this result is that more convenient access to external resolution opportunities may be
counterproductive and socially inefficient for resolution.

5.3 Concluding remarks

We study bargaining situations (i) that can be resolved not only internally but also externally (ii) in which
the outcome depends on parties’ privately held information. Examples include patent infringement, labor
disputes with arbitration, and negotiation with imminent war. Even when the external resolution does
not favor unjustified players, they may nonetheless benefit from its availability: Although the potential
arrival of ultimatum opportunities slows their reputation building, bluffing with an ultimatum when they
have built a sufficiently high reputation may drive the opposing party to yield. In the limit in which the
private information vanishes, immediate agreement and efficiency ensue, and determination of the winner
and payoff division incorporates the ultimatum opportunity arrival rate in a parsimonious and intuitive
manner. In addition, our model sheds light on the benefits and costs of defense alliance formation and the
probability of war.

More questions are worth exploring. For example, we can model continuous-discrete-time games and
study other equilibria, in which players’ continuation payoffs after revealing rationality do not coincide
with their concession payoffs. Another direction would be to include deadlines. Finally, we can study
settings with nonstationary arrival of ultimatum opportunities or more complex demands such as nonsta-
tionary justified demands.
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6 Omitted proofs

Proof of Theorem 1. Let Σ̂ = (Σ̂1, Σ̂2) = ((𝐹1(·),𝐺1(·)), (𝐹2(·), 𝑞2(·))) denote an equilibrium strategy
profile. We argue that Σ̂ indeed define an equilibrium (which implies the existence of equilibrium strate-
gies) and must have the form specified in the theorem (which implies the uniqueness of the equilibrium
outcome). Let 𝑢𝑖 (𝑡) denote the expected utility of an unjustified player 𝑖 who concedes at time 𝑡 . Define
T𝑖 := {𝑡 |𝑢𝑖 (𝑡) = max𝑠 𝑢𝑖 (𝑠)} as the set of conceding times that attain the highest expected utility for player
𝑖 given opponent 𝑗 ’s strategy Σ̂ 𝑗 . Because Σ̂ is an equilibrium, T𝑖 is nonempty for 𝑖 = 1, 2. Furthermore,
define 𝜏𝑖 := inf{𝑡 ⩾ 0|𝐹𝑖 (𝑡) = lim𝑠→∞ 𝐹𝑖 (𝑠)} as the time of last concession for player 𝑖 , with inf ∅ := ∞.
Finally, the support of player 1’s challenge distribution is [0,∞) due to the justified type’s challenge be-
havior. Hence, in any equilibrium, 𝑞2(𝑡) maximizes player 2’s expected payoff at time 𝑡 when she faces
a challenge when player 1’s reputation is 𝜈1(𝑡) upon challenging, for almost every 𝑡 ⩽ 𝜏2 in both the 𝐺1

measure and the Lebesgue measure. In the remainder of the proof, we will drop the “almost everywhere”
qualifier. We obtain the following results.

(a) Player 1’s challenging strategy 𝐺1 is continuous for 𝑡 ⩾ 0. To show that 𝐺1 does not have any
atoms, suppose to the contrary that𝐺1 jumps at time 𝑡 so that an unjustified player 1 challenges with
a positive probability at time 𝑡 ; that is,𝐺1(𝑡) > 0 for 𝑡 = 0, or𝐺1(𝑡) −𝐺1(𝑡−) > 0 for 𝑡 > 0. Given that
an unjustified player 1 challenges with a positive probability and a justified player 1 challenges with
probability 0, when player 2 faces a challenge she believes that a challenging player 1 is unjustified
with probability 1: 𝜈1(𝑡) = 0. Consequently, she is strictly better off responding to the challenge and
obtaining a payoff of 1 − 𝑎1 + (1 −𝑤1)𝐷 − 𝑘2𝐷 than yielding to the challenge and obtaining a payoff
of 1−𝑎1, because 𝑘2 < 1−𝑤1 by assumption. But if player 2 responds to a challenge with probability
1, an unjustified player 1’s payoff from challenging is less than 1 − 𝑎1 + 𝑤1𝐷 − 𝑐1𝐷 (an unjustified
player 1’s expected payoff when player 2 who responds to a challenge is unjustified with probability
1), which is strictly less than his payoff from conceding. This is because 𝑐1 > 𝑤1 by assumption, so
an unjustified player 1 has a profitable deviation to conceding at 𝑡 from challenging with a positive
probability at 𝑡———a contradiction.

(b) Player 2’s yielding probability 𝑞2(𝑡) is positive for almost all 𝑡 ⩽ 𝜏2. Suppose to the contrary
that 𝑞2(𝑡) = 0 on a set 𝐴 of positive Lebesgue measure. Then

∫
𝐴
𝑑𝐺1(𝑡)𝑑𝑡 = 0. Then 𝜈1(𝑡) = 1 for

almost every 𝑡 ∈ 𝐴. Then 𝑞2(𝑡) = 1 for 𝑡 ∈ 𝐴 is a profitable deviation———a contradiction.

(c) Player 2’s payoff when challenged at time 𝑡 is 1 − 𝑎1 for almost all 𝑡 ⩽ 𝜏2. Whenever an
unjustified player 2 yields to a challenge with a positive probability at time 𝑡 in equilibrium, her
payoff when being challenged at time 𝑡 is equal to 1 − 𝑎1. By (b), player 2 yields to a challenge with a
positive probability for almost all 𝑡 ⩽ 𝜏2, so her payoff when challenged at time 𝑡 is 1 − 𝑎1.

(d) The last instant at which two unjustified players concede is the same: 𝜏1 = 𝜏2. An unjustified
player will not delay conceding upon learning that the opponent will never concede. Note that even if
an unjustified player 1 might challenge with a positive probability but never concedes, an unjustified
player 2’s payoff from being challenged is 1 − 𝑎1 (by (c)), so she does not benefit from waiting for a
challenge. Denote the last concession time by 𝜏 .
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(e) If 𝐹𝑖 jumps at 𝑡 , then 𝐹 𝑗 does not jump at 𝑡 for 𝑗 ≠ 𝑖. If 𝐹𝑖 has a jump at 𝑡 , then player 𝑗 receives
strictly higher utility by conceding an instant after 𝑡 than by conceding exactly at 𝑡 ; note that whether
or not player 1 challenges at 𝑡 does not affect the result, by (c).

(f ) If 𝐹2 is continuous at time 𝑡 , then 𝑢1(𝑠) is continuous at 𝑠 = 𝑡 . If 𝐹1 and 𝐺1 are continuous at
time 𝑡 , then 𝑢2(𝑠) is continuous at 𝑠 = 𝑡 . These claims follow immediately from the definition of
𝑢1(𝑠) in Equation (1) and the definition of 𝑢2(𝑠) in Equation (2), respectively.

(g) There is no interval (𝑡 ′, 𝑡 ′′) ⊆ [0, 𝜏] such that both 𝐹1 and 𝐹2 are constant on the interval
(𝑡 ′, 𝑡 ′′). Assume the contrary and without loss of generality, let 𝑡∗ ⩽ 𝜏 be the supremum of 𝑡 ′′ for
which (𝑡 ′, 𝑡 ′′) satisfies the above properties. Fix 𝑡 ∈ (𝑡 ′, 𝑡∗) and note that for 𝜀 small enough there
exists 𝛿 > 0 such that 𝑢𝑖 (𝑡) − 𝛿 > 𝑢𝑖 (𝑠) for all 𝑠 ∈ (𝑡∗ − 𝜀, 𝑡∗). In words, conditional on that the
opponent is not conceding in an interval, it is strictly better for a player to concede earlier within that
interval, and it is sufficiently significantly better by conceding early than by conceding close to the
end of the time interval. By (e) and (f ), there exists 𝑖 such that 𝑢𝑖 (𝑠) is continuous at 𝑠 = 𝑡∗, so for
some 𝜂 > 0, 𝑢𝑖 (𝑠) < 𝑢𝑖 (𝑡) for all 𝑠 ∈ (𝑡∗, 𝑡∗ + 𝜂) (observe that this relies on that player 2 does not
benefit from waiting for a challenge from player 1, by (c)). In words, because of the continuity of the
expected utility function at time 𝑡∗, the expected utility of conceding a bit after time 𝑡∗ is still lower
than the expected utility of conceding at time 𝑡 within the time interval. Since 𝐹𝑖 is optimal, 𝐹𝑖 must be
constant on the interval (𝑡 ′, 𝑡∗ +𝜂). The optimality of 𝐹𝑖 implies that 𝐹 𝑗 is also constant on the interval
(𝑡 ′, 𝑡∗ +𝜂), because player 𝑗 is strictly better off conceding before or after the interval than conceding
during it. Hence, both functions are constant on (𝑡 ′, 𝑡∗ + 𝜂) ⊆ (𝑡 ′, 𝜏). However, this contradicts the
definition of 𝑡∗.

(h) If 𝑡 ′ < 𝑡 ′′ < 𝜏 , then 𝐹𝑖 (𝑡 ′′) > 𝐹𝑖 (𝑡 ′) for 𝑖 = 1, 2. If 𝐹𝑖 is constant on some interval, then the optimality
of 𝐹 𝑗 implies that 𝐹 𝑗 is constant on the same interval, for 𝑗 ≠ 𝑖 (again, by (c)). However, (g) shows that
𝐹1 and 𝐹2 cannot be constant simultaneously.

(i) 𝐹𝑖 is continuous for 𝑡 > 0. Assume the contrary: Suppose 𝐹𝑖 has a jump at time 𝑡 . Then 𝐹 𝑗 is constant
on interval (𝑡 − 𝜀, 𝑡) for 𝑗 ≠ 𝑖 . This contradicts (h).

(1) Strictly increasing 𝐹1 and 𝐹2 for 𝑡 < 𝑇 follow from (h) and constant 𝐹1 and 𝐹2 for 𝑡 ⩾ 𝑇 follow from (d).
(2) No atom for 𝐹𝑖 follows from (i). At most one atom for 𝐹1 and 𝐹2 at 𝑡 = 0 follows from (e).
(3) (a) 𝐺1 has no atom follows from (a), and (b) implies that 𝐺1 is strictly increasing; if 𝐺1 is constant,
then 𝑞2(𝑡) = 1, which contradicts (b). (b) 𝑞2(𝑡) ∈ (0, 1) for 𝑡 ∈ [0,𝑇1] follows from (b). From (f ) and (i), it
follows that 𝑣1(𝑡) is continuous on (0, 𝜏]. Furthermore, 𝑣1(𝑡) is strictly smaller than 1−𝑎1 when 𝜇2(𝑡) > 𝜇∗2
(i.e., 𝐹2(𝑡) > 1− 𝑘2

1−𝑧2 ). Therefore, after 𝜇2(𝑡) > 𝜇∗2, an unjustified player 1 does not challenge. Since player
2’s reputation strictly increases over time, there is a finite time 𝑇1 such that player 1 challenges from time
0 to 𝑇1 and does not challenge from 𝑇1 onward. Hence, 𝑞2(𝑡) = 0 for 𝑡 ⩾ 𝑇1.
(4) It follows from (h) that T𝑖 is dense in [0, 𝜏] for 𝑖 = 1, 2. From (d), (f ), and (i), it follows that 𝑢𝑖 (𝑠) is
continuous on (0, 𝜏], and hence 𝑢𝑖 (𝑠) is constant for all 𝑠 ∈ (0, 𝜏]. Consequently, T𝑖 = (0, 𝜏]. Hence, 𝑢𝑖 (𝑡)
is differentiable as a function of 𝑡 and 𝑑𝑢𝑖 (𝑡)/𝑑𝑡 = 0 for all 𝑡 ∈ (0, 𝜏).

27



In particular, player 1’s expected utility from conceding at time 𝑡 is

𝑢1(𝑡) = (1 − 𝑧2)
∫ 𝑡

0
𝑎1𝑒

−𝑟1𝑠𝑑𝐹2(𝑠) + (1 − 𝑎2)𝑒−𝑟1𝑡 [1 − (1 − 𝑧2)𝐹2(𝑡)] . (13)

The differentiability of 𝐹2 follows from the differentiability of 𝑢1(𝑡) on (0, 𝜏). Differentiating Equation (13)
and applying Leibnitz’s rule, we obtain

0 = 𝑎1𝑒
−𝑟1𝑡 (1 − 𝑧2) 𝑓2(𝑡) − (1 − 𝑎2)𝑟1𝑒−𝑟1𝑡 (1 − (1 − 𝑧2)𝐹2(𝑡)) − (1 − 𝑎2)𝑒−𝑟1𝑡 (1 − 𝑧2) 𝑓2(𝑡),

where 𝑓2(𝑡) = 𝑑𝐹2(𝑡)/𝑑𝑡 . This in turn implies 𝐹2(𝑡) = 1−𝐶2𝑒
−𝜆2𝑡

1−𝑧2 , where constant𝐶2 is yet to be determined.
This characterization implies that 𝜏2 is finite. At 𝜏1 = 𝜏2, optimality for player 𝑖 implies 𝐹1(𝜏1) +𝐺1(𝜏1) = 1

and 𝐹2(𝜏2) = 1.
This completes the proof that the structure of equilibrium strategies is unique. We now proceed to

show the uniqueness of equilibrium strategies. We derive the reputation coevolution diagram using the
reputation dynamics in Section 3.3. The reputation coevolution curve is strictly increasing, and 𝜇̃1(𝜇2) is
well defined for 𝜇2 ∈ (0, 1]. Hence, the unique equilibrium entails 𝐹1(0) = 0 and 𝐹2(0) > 0 if 𝑧1 < 𝜇̃1(𝑧2);
𝐹1(0) > 0 and 𝐹2(0) = 0 if 𝑧1 > 𝜇̃1(𝑧2); and 𝐹1(0) = 0 and 𝐹2(0) = 0 if 𝑧1 = 𝜇̃1(𝑧2). Moreover, 𝐹1(0) is
uniquely determined by Equation (12), and 𝐹2(0) is uniquely determined analogously. This completes the
uniqueness of equilibrium strategies. □

Proof of Proposition 1. We now consider a sequence of games in which all parameters of the game
are fixed but the initial probabilities of commitment types, {𝑧𝑛1, 𝑧𝑛2}𝑛 , satisfy that lim 𝑧𝑛1

𝑧𝑛2
∈ (0,∞) and

lim 𝑧𝑛1 = lim 𝑧𝑛2 = 0. Recall the reputation coevolution curve for 𝜇2 < 𝜇𝐹2 ,

𝜇̃1(𝜇2 |𝛾1) = 𝜆1 − 𝛾1
𝜆1(𝜇2)

𝛾1−𝜆1
𝜆2 + (𝛾1𝜈∗1 − 𝛾1) ( 𝜇2𝜇∗2 )

𝛾1−𝜆1
𝜆2 − 𝛾1

𝜈∗1

.

(i) If 𝜆1 < 𝛾1, then lim𝜇2→0+ 𝜇̃1(𝜇2 |𝛾1) = 𝜈∗1(𝛾1−𝜆1)/𝛾1 = [1−𝑘2/(1−𝑤)] (1−𝜆1/𝛾1) > 0. Therefore, in this
case, along the equilibrium sequence of the sequence of games with vanishing probability of commitment
types, player 1 concedes at time 0 with a probability converging to 1 (since otherwise after time 0, the
reputations would not land on the reputation coevolution diagram). Hence, we obtain efficiency in this
case, where players agree on player 2’s terms right away———i.e., player 2 is the “winner.”
(ii) If 𝜆1 = 𝛾1, the expression of 𝜇̃1(𝜇2 |𝛾1 ≠ 𝜆1) becomes

𝜇̃1(𝜇2 |𝛾1) =



1
− 𝛾1

𝜆2
log(𝜇2 )+1 if 𝜇∗2 < 𝜇2 < 1,

1

− 𝛾1
𝜈∗
1

1
𝜆2

log

(
𝜇2
𝜇∗
2

)
+𝜇𝑁1

if 0 < 𝜇2 ⩽ 𝜇
∗
2,
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where in this case 𝜇𝑁1 = 1/
[
−𝛾1𝜆2 log(𝜇∗2) + 1

]
. Hence,

lim
𝜇2→0

𝜇̃′1(𝜇2 |𝛾1 ≠ 𝜆1) = lim
𝜇2→0

𝛾1
𝜈∗1

1
𝜆2

1
𝜇2[

−𝛾1𝜈∗1
1
𝜆2

log
(
𝜇2
𝜇∗2

)
+ 𝜇𝑁1

]2 = lim
𝜇2→0

−𝛾1𝜈∗1
1
𝜆2

1
𝜇22

−2
[
−𝛾1𝜈∗1

1
𝜆2

log
(
𝜇2
𝜇∗2

)
+ 𝜇𝑁1

]
𝛾1
𝜈∗1

1
𝜆2

1
𝜇2

= lim
𝜇2→0

1
𝜇2

2
[
−𝛾1𝜈∗1

1
𝜆2

log
(
𝜇2
𝜇∗2

)
+ 𝜇𝑁1

] = lim
𝜇2→0

− 1
𝜇22

−2𝛾1𝜈∗1
1
𝜆2

1
𝜇2

= lim
𝜇2→0

1

2
𝛾1
𝜈∗1

1
𝜆2
𝜇2

= ∞,

where L’Hôpital’s rule is applied once on each line. Hence, player 2 will be the “winner.”
(iii) If 𝜆1 > 𝛾1, then lim𝜇2→0+ 𝜇̃1(𝜇2 |𝛾1) = 0. If 𝜆1 > 𝛾1 + 𝜆2, then lim𝜇2→0+ 𝜇̃

′
1(𝜇2 |𝛾1) = 0, if 𝜆1 = 𝛾1 + 𝜆2,

then lim𝜇2→0+ 𝜇̃
′
1(𝜇2 |𝛾1) > 0, and if 𝜆1 < 𝛾1 + 𝜆2, then lim𝜇2→0+ 𝜇̃

′
1(𝜇2 |𝛾1) = ∞. The limits of 𝜇̃′1(𝜇2 |𝛾1)

above can be derived from the expression of 𝜇̃1(𝜇2 |𝛾1) for 𝜇2 ⩽ 𝜇∗2, which can be rearranged as

𝜇̃1(𝜇2 |𝛾1) = (𝜆1 − 𝛾1) (𝜇2)
𝜆1−𝛾1
𝜆2

𝜆1 + 𝛾1 1−𝜈
∗
1

𝜈∗1
(𝜇∗2)

𝜆1−𝛾1
𝜆2 − 𝛾1

𝜈∗1
(𝜇2)

𝜆1−𝛾1
𝜆2

.

The derivative is

𝜇̃′1(𝜇2 |𝛾1) = (𝜇2)
𝜆1−𝛾1−𝜆2

𝜆2

[
𝜆1 + 𝛾1 1−𝜈

∗
1

𝜈∗1
(𝜇∗2)

𝜆1−𝛾1
𝜆2

]
(𝜆1 − 𝛾1)[

𝜆1 + 𝛾1 1−𝜈
∗
1

𝜈∗1
(𝜇∗2)

𝜆1−𝛾1
𝜆2 − 𝛾1

𝜈∗1
(𝜇2)

𝜆1−𝛾1
𝜆2

]2 ,

which in the limit is

lim
𝜇2→0+

𝜇̃′1(𝜇2 |𝛾1) = lim
𝜇2→0+

(𝜇2)
𝜆1−𝛾1−𝜆2

𝜆2
𝜆1 − 𝛾1

𝜆1 + 𝛾1 1−𝜈
∗
1

𝜈∗1
(𝜇∗2)

𝜆1−𝛾1
𝜆2

.

The “winner” is player 1 (resp., player 2) if 𝜆1 > (resp., <) 𝛾1 + 𝜆2, so there is efficiency. □

Proof of Proposition 2. Our result does not depend on the initial order of moves of the players in their
demand choice. We will perform the analysis for the case in which player 1 first picks a demand and
then player 2, observing this, chooses her demand, and then the war of attrition starts. Let 𝜎𝑛1 (𝑖) be the
equilibrium probability that player 1 chooses type 𝑖/𝐾 in the 𝑛th game, and let 𝜎𝑛2 ( 𝑗 |𝑖) be the equilibrium
probability that player 2 chooses type 𝑗/𝐾 after observing that player 1 chooses 𝑖/𝐾 in the 𝑛th game. Let(
𝜎1, {𝜎2(·|𝑖)}𝑖∈{2,...,𝐾−1}

)
be the limits of these strategies (along a convergent subsequence).

The first case is 𝛾1 ⩽ 𝑟1. In this case, if player 1 chooses 𝑎1 = max{𝑎 ∈ 𝐴𝐾 |𝑎 ⩽ 𝑟2
𝑟1+𝑟2 }, then for any

incompatible demand of player 2, 𝜆1 = 𝑟2 (1−𝑎1 )
𝑎1+𝑎2−1 is decreasing in 𝑎2, so it is minimized at 𝑎2 = (𝐾 −1)/𝐾 . In

that case, 𝜆1 > 𝛾1. Hence, when player 2 makes an incompatible demand, either 𝜎2(·|𝑎1) = 0 or 𝜎1(𝑎1) = 0,
and player 1 is the winner, or the winner is determined by the comparison between 𝜆1 − 𝛾1 and 𝜆2.

𝜆1 − 𝛾1 > 𝜆2 ⇐⇒ 𝑟2(1 − 𝑎1) − 𝛾1(𝑎1 + 𝑎2 − 1) > 𝑟1(1 − 𝑎2)
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⇐⇒ 𝑟2(1 − 𝑎1) − 𝛾1𝑎1 > (1 − 𝑎2) (𝑟1 − 𝛾1). (14)

It is then routine to verify that if 𝑎1 = max{𝑎 ∈ 𝐴𝐾 |𝑎 ⩽ 𝑟2
𝑟1+𝑟2 }, and if 𝑎2 > 1 − 𝑎1, player 1 is the winner.

Turning to player 2 in this case, for any 𝑎1 >
𝑟2

𝑟1+𝑟2 such that 𝜎1(𝑎1) > 0, player 2 is the winner if she
demandsmax

{
𝑎 ∈ 𝐴𝐾 |𝑎 ⩽ 𝑟1

𝑟1+𝑟2 }. This is again routine to verify. This completes the proof for 𝑟1 ⩾ 𝛾1.
The second case is 𝛾1 > 𝑟1. In this case, if player 1 chooses max{𝑎 ∈ 𝐴𝐾 |𝑎 ⩽ 𝑟2

𝛾1+𝑟2 }, then for any
incompatible demand of player 2, 𝜆1 > 𝛾1. This is because 𝜆1 is decreasing in player 2’s demand, 𝑎2, and
when 𝑎2 < 1 and when player 1’s demand is not more than 𝑟2

𝛾1+𝑟2 , 𝜆1 > 𝛾1. Moreover, the right-hand side
of Equation (14), (1 − 𝑎2) (𝑟1 − 𝛾1) < 0, and the left-hand side, 𝑟2(1 − 𝑎1) − 𝛾1𝑎1 ⩾ 0. Hence, whenever
player 2 chooses an incompatible demand 𝑎2 with 𝜎2(𝑎2 |𝑎1) > 0, player 1 is the winner. Hence, player 1
secures the payoff of 𝑟2

𝛾1+𝑟2 − 1/𝐾 .
Turning to player 2 in this case, consider the strategy for player 2 of always choosing 𝑎2 = (𝐾 − 1)/𝐾 .

When player 1’s demand, 𝑎1, is less than 𝑟2
𝑟2+𝛾1 + 1/𝐾 , player 2’s payoff is at least 1 − 𝑎1, and our claim is

true. If 𝑎1 ⩾ 𝑟2
𝑟2+𝛾1 + 1/𝐾 , and if 𝜎1(𝑎1) > 0, then

𝜆1 =
(1 − 𝑎1)𝑟2
𝑎1 + 𝑎2 − 1

=
(1 − 𝑎1)𝑟2
𝑎1 − 1/𝐾 < 𝛾1,

which implies that player 2 is the winner. Hence, player 2 secures the payoff of 𝛾1
𝛾1+𝑟2 − 1/𝐾 . □
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Online Appendices (not for publication)

A Applications
We provide a brief description of several applications that can be thought of as negotiations with one-sided
and/or two-sided external resolution opportunities.
(1) Negotiation in the shadow of the law. A plaintiff claims to be entitled to a demand, which must be
proven in court, and a defendant may disagree with the claim and proceed with the trial. Before trial, they
engage in negotiations———warning, arraignment, pretrial hearings, and so on. (a) Patent infringement.
An inventor demands reparations from a firm for an alleged patent infringement. A justified patent owner
collects evidence to sue and beat the infringer, but an unjustified patent troll can take the firm to court
anytime (Cohen, Gurun, and Kominers, 2019). (b) Child support. A mother of a child demands overdue
alimony payments from the father, but the father refuses to pay, alleging that the mother frequently denied
his visitation rights. Both sides must collect evidence to defend their claims; to receive the payment, the
mother must sue the father. (c) Renter eviction. A landlord demands to evict a renter who allegedly
violated the terms of the lease agreement (e.g., no smoking or no pets). The burden of proof falls on the
landlord, who must share a proportion of the gain with their attorney.
(2) Negotiation in the presence of arbitration. Since 1974 in MLB, a player with between 3 and 6 years
of service has been able to ask that his salary be determined by a final-offer arbitration. If the player and
club have not agreed on a salary by a deadline in mid-January, they must report their final salary figures
and a hearing is scheduled to be held in February. If no settlement can be reached by the hearing date, the
case is brought before a panel of arbitrators. After hearing arguments from both sides, the panel selects
the salary figure of either the player or the club———but not any price in between———as the player’s salary
for the upcoming season. The NHL has used a similar arbitration procedure since 1994.
(3) Negotiation with the threat of war. Two countries are involved in a border dispute. They can
peacefully negotiate or settle the conflict by war. Their preparedness for a war is privately known. A
country can issue an ultimatum before initiating a war, and the rival country can back down or escalate
the situation. If an armed conflict ensues, the stronger side prevails (Fearon, 1994).
(4) Evidence procurement for auditing. Two parties independently claim their valuations of a firm for
sale (in merger and acquisition or bankruptcy cases). They either settle on one party’s claim or invite an
independent third-party auditor to come up with an estimate, which is expected to be between the two
valuations. In bankruptcy cases the seller usually has the right to invite an auditor, and it takes time for the
accounting department to submit the necessary files for audit (e.g., some investors still had not received
any payment in 2020 from the 2008 Lehman bankruptcy). The audit and attorneys’ fee can be costly; for
example, lawyers can claim up to 40% of the winning proceeds.
(5) Negotiation with the chance to match competing offers. A buyer wants to buy a good from a
seller. The buyer may have a purchasing opportunity for a similar product at a discounted price from
another seller. The two sides can negotiate with each other while the buyer waits for the outside option
to arrive. When the outside option arrives, the buyer issues an ultimatum to the seller, and the seller must
decide whether to strike a deal. The seller can verify, for a cost, the existence of the outside option (e.g.,
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by spending time and effort to verify the existence of the claimed outside option). If the buyer presents
proof, the seller sells to the buyer at the discounted price. If the buyer does not present proof, the buyer
reveals that he is bluffing and buys the good at the seller’s requested price (or continues negotiation).

B Omitted details
We present detailed proofs and derivations regarding (i) equilibrium strategies and reputations with one-
sided ultimatum opportunities, (ii) comparative statics, and (iii) equilibrium existence and uniqueness with
multiple demand types.

B.1 One-sided ultimatum opportunities and single demand types

B.1.1 Bernoulli differential equations

Lemma 2. The solution to the Bernoulli differential equation 𝜇′(𝑡) = 𝐴𝜇 (𝑡) + 𝐵𝜇2(𝑡) given 𝜇 (0) = 𝜇0 is

𝜇 (𝑡 ; 𝜇0, 𝐴, 𝐵) =


1

/ [(
1
𝜇0

+ 𝐵
𝐴

)
exp(−𝐴𝑡) − 𝐵

𝐴

]
if 𝐴 ≠ 0,

1

/ [
−𝐵𝑡 + 1

𝜇0

]
if 𝐴 = 0.

If 𝜇0 > −𝐴/𝐵, then 𝜇′(𝑡) > 0 for 𝑡 ⩾ 𝑡0, and the time length it takes to reach reputation 𝜇 from 𝜇0 is

𝑡 (𝜇; 𝜇0, 𝐴, 𝐵) = 1

𝐴
ln

( 1
𝜇0

+ 𝐵
𝐴

1
𝜇 + 𝐵

𝐴

)
.

B.1.2 Equilibrium strategies, reputations, and payoffs

Theorem 3. Consider a bargaining game 𝐵 = (𝑎1, 𝑎2, 𝑧1, 𝑧2, 𝑟1, 𝑟2, 𝛾1, 𝑐1, 𝑘2,𝑤1) with one-sided ultimatum

opportunities and single demand types. Equilibrium strategies and reputations (𝐹1,𝐺1, 𝐹2, 𝑞2, 𝜇̂1, 𝜇̂2) satisfy

𝑓𝑖 (𝑡) = exp

[
−

∫ 𝑡

0
𝜅̂𝑖 (𝑠)𝑑𝑠

]
𝜅̂𝑖 (𝑡), where 𝜅̂𝑖 (𝑠) = 1𝑠<𝑇

𝜆𝑖
1 − 𝜇̂𝑖 (𝑠)

;

𝑔1(𝑡) = exp

[
−

∫ 𝑡

0
𝜒1(𝑠)𝑑𝑠

]
𝜒1(𝑡), where 𝜒1(𝑠) = 1𝑠<𝑇−𝑡𝑁2

1 − 𝜈∗1
𝜈∗1

𝜇̂1(𝑠)
1 − 𝜇̂1(𝑠)

𝛾1;

𝑞2(𝑡) = 1𝑡<𝑇−𝑡𝑁2
1

1 −𝑤

[
𝑐1

1 − 𝜇̂2(𝑡)
−𝑤

]
;

𝜇̂𝑖 (𝑇 − 𝑡) = 𝜇𝑖 (−𝑡),

where 𝜇2(−𝑡) = 𝜇 (−𝑡 ; 1, 𝜆2, 0),

𝜇1(−𝑡) =


𝜇 (−𝑡 ; 1, 𝜆1 − 𝛾1, 𝛾1𝜈∗1 ) if 𝑡 < 𝑇 −𝑇1,
𝜇 (𝑡𝑁2 − 𝑡 ; 𝜇𝑁1 , 𝜆1 − 𝛾1, 𝛾1) if 𝑡 ⩾ 𝑇 −𝑇1,
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𝑇𝑖 solves 𝜇𝑖 (−𝑇𝑖) = 𝑧𝑖 , and 𝑇 = min{𝑇1,𝑇2}. Player 𝑖’s equilibrium payoff is

𝑢𝑖 = 1 − 𝑎 𝑗 + 1𝑧𝑖⩾𝜇̃𝑖 (𝑧 𝑗 )

[
1 − 𝑧 𝑗

1 − 𝑧 𝑗

/
𝜇̃ 𝑗 (𝑧𝑖)

1 − 𝜇̃ 𝑗 (𝑧𝑖)

]
𝐷.

B.1.3 Reputation coevolution curves

When player 2’s reputation is 𝜇∗2, player 1’s reputation is

𝜇𝑁1 :=
𝜆1 − 𝛾1

𝜆1(𝜇∗2)
𝛾1−𝜆1

𝜆2 − 𝛾1
.

The reputation coevolution curve can be represented by

𝜇̃1(𝜇2) =



1
− 𝛾1

𝜆2
log(𝜇2 )+1 if 𝜇∗2 < 𝜇2 ⩽ 1,

1

− 𝛾1
𝜈∗
1

1
𝜆2

log

(
𝜇2
𝜇∗
2

)
+ 1

1− 𝛾1
𝜆2

log(𝜇∗
2
)

if 0 < 𝜇2 ⩽ 𝜇
∗
2,

when 𝛾1 = 𝜆1. Equivalently, the curve is represented by the inverse

𝜇̃2(𝜇1) =




[(
1 − 𝛾1

𝜆1

)
1
𝜇1

+ 𝛾1
𝜆1

] 𝜆2
𝛾1−𝜆1 if 𝜇𝑁1 < 𝜇1 ⩽ 1,


𝜆1−𝛾1
𝜆1

1
𝜇1

+ 𝛾1
𝜆1

1
𝜈∗1

1 + 1−𝜈∗1
𝜈∗1

𝛾1
𝜆1
(𝜇∗2)

𝜆1−𝛾1
𝜆2



𝜆2
𝛾1−𝜆1

if max
{
0,

(
1 − 𝜆1

𝛾1

)
𝜈∗1

}
< 𝜇1 ⩽ 𝜇

𝑁
1 .

and

𝜇̃2(𝜇1) =



exp
[
𝜆2
𝛾1

(
1 − 1

𝜇1

)]
if 𝜇𝑁1 < 𝜇1 ⩽ 1,

𝜇∗2 exp

[ 1

1− 𝛾1
𝜆2

log(𝜇∗2) −
1
𝜇1

𝛾1
𝜈∗
1

1
𝜆2

]
if max

{
0, 1 − 𝜆1

𝛾1

}
< 𝜇1 ⩽ 𝜇

𝑁
1 .

B.2 Comparative statics

Proposition 3. Start with a bargaining game 𝐵 = (𝑎1, 𝑎2, 𝑧1, 𝑧2, 𝑟1, 𝑟2, 𝛾1, 𝑐1, 𝑘2,𝑤1) with one-sided ultima-

tum opportunities and single demand types. When either 𝑐1 increases, 𝑘2 decreases, or𝑤1 decreases, 𝑢1 strictly

decreases if and only if 𝜇̃1(𝑧2) ⩽ 𝑧1 < 𝜇𝑁1 , and 𝑢2 strictly increases if and only if 𝜇̃2(𝑧1) ⩽ 𝑧2 < 𝜇∗2; in
alternative regions, 𝑢𝑖 and 𝑢 𝑗 are not unaffected by the changes and equal 1 − 𝑎 𝑗 and 1 − 𝑎𝑖 , respectively.

It may not be straightforward to see the unambiguous effects of changes in 𝑐1, 𝑘2, and 𝑤1 (in the
specified intervals). For example, when 𝑐1 increases, there are two opposite effects. On one hand, an
unjustified player 1 is less likely to challenge because it is more costly. On the other hand, because an
unjustified player 1 is less likely to challenge, when facing a challenge player 2 is less likely to face an
unjustified player 1, and hence is more likely to yield, which may increase the value of a challenge and
hence player 1’s payoff. However, in equilibrium, this second effect is moot, because in equilibrium the
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value of a challenge is eliminated by player 2’s adjustment of her strategy to render player 1 indifferent
between challenging and not challenging. While similar logic applies to changes in 𝑘2 and 𝑤1, obtaining
unambiguous results requires accounting for various shifts in both the speed of reputation building and
the threshold beliefs that divide the challenge and no-challenge phases. These details of the court will not
affect players’ payoffs in the limit case of rationality———i.e., when priors 𝑧1 and 𝑧2 approach 0.

When 𝑧𝑖 increases or 𝑟𝑖 decreases,𝑢𝑖 strictly increases if and only if 𝑧𝑖 ⩾ 𝜇̃𝑖 (𝑧 𝑗 ), and𝑢 𝑗 strictly decreases
if and only if 𝑧𝑖 ⩽ 𝜇̃𝑖 (𝑧 𝑗 ). It is unambiguous and relatively straightforward that an unjustified player’s
payoff strictly decreases when their initial reputation declines or they become more impatient. The first
is due to the strict monotonicity of the reputation coevolution curve, and the second is because of the
monotonic shift of the curve with respect to a player’s concession rate.

B.3 Equilibrium existence and uniqueness with one-sided ultimatum opportunities
and multiple demand types

Before proving Theorem 2, we prove a lemma that shows the uniqueness of equilibrium when player 1 has
a single demand type and player 2 has multiple demand types.

Lemma 3. For any game (𝑎1, 𝜋2, 𝑧1, 𝑧2, 𝑟1, 𝑟2, 𝛾1, 𝑐1, 𝑘2, 𝑤1) with ultimatum opportunities for player 1, a

single demand for player 1, and multiple demands for player 2, there exists a unique equilibrium.

Proof of Lemma 3. Denote by 𝜎2(·) a probability distribution over𝐴2∪ {𝑄}, a mimicking strategy of an
unjustified player 2. Since mimicking 𝑎2 < 1−𝑎1 is never optimal and mimicking 𝑎2 = 1−𝑎1 is equivalent
to conceding, we assume that in equilibrium 𝜎2(𝑎2) = 0 for all 𝑎2 ⩽ 1 − 𝑎1. If 𝑥 = 1, then in equilibrium
𝜎2(𝑄) = 1, because unjustified player 2 will not delay conceding if she knows that player 1 is justified. For
the remainder of the proof we assume 𝑥 < 1.

Define𝑇𝑖 (𝑎1, 𝑎2, 𝑥) as the time it takes for player 𝑖’s reputation to increase from𝑥 to 1 on the equilibrium
reputation path when each player 𝑖’s demand is 𝑎𝑖 . Explicitly,

𝑇1(𝑎1, 𝑎2, 𝑥) :=




∞ 𝑥 ⩽
(
1 − 𝜆1

𝛾1

)
𝜈∗1,

𝑡 (𝜇𝑁1 ;𝑥, 𝜆1 − 𝛾1,
𝛾1
𝜈∗1
) + 𝑡 (1; 𝜇𝑁1 , 𝜆1 − 𝛾1, 𝛾1)

(
1 − 𝜆1

𝛾1

)
𝜈∗1 < 𝑥 < 𝜇𝑁1 ,

𝑡 (1;𝑥, 𝜆1 − 𝛾1, 𝛾1) 𝜇𝑁1 ⩽ 𝑥 ⩽ 1,

that is,

𝑇1(𝑎1, 𝑎2, 𝑥) :=




∞ if 𝑥 ⩽
(
1 − 𝜆1

𝛾1

)
𝜈∗1,

1
𝜆1−𝛾1 log

[
𝜆1−𝛾1

𝑥 +𝛾1
𝜈∗
1

𝜆1−𝛾1
𝜇𝑁
1

+𝛾1
𝜈∗
1

]
− 1
𝜆2

log 𝜇∗2 if
(
1 − 𝜆1

𝛾1

)
𝜈∗1 < 𝑥 < 𝜇𝑁1 ,

1
𝜆1−𝛾1 log

[
𝜆1−𝛾1

𝑥 +𝛾1
𝜆1

]
if 𝜇𝑁1 ⩽ 𝑥 ⩽ 1,

and
𝑇2(𝑎1, 𝑎2, 𝑦) := −𝑎1 + 𝑎2 − 1

𝑟1(1 − 𝑎2) log𝑦.

Note that 𝑇1(𝑎1, 𝑎2, 𝑥) is continuous and strictly decreasing in 𝑥 on (1 − 𝜆1
𝛾1
, 1) and that 𝑇2(𝑎1, 𝑎2, 𝑦) is
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continuous and strictly decreasing in 𝑦 on (0, 1).
It remains to be shown that an unjustified player 2’s equilibrium behavior 𝜎2(·) and an unjustified

player 1’s conceding behavior 𝑄1(𝑎1, 𝑎2, 𝑥, 𝜎2) at time zero are uniquely determined. Subsequently, we
provide a series of definitions and use them to prove a series of claims that lead to equilibrium existence
and uniqueness. Define player 2’s reputation at time 0 when she plays 𝑎2 with probability 𝜎2 as

𝑦∗(𝑎2, 𝜎2) = 𝑧2𝜋2(𝑎2)
𝑧2𝜋2(𝑎2) + (1 − 𝑧2)𝜎2 .

Note that the more likely an unjustified player 2 is to announce a particular demand 𝑎2, the more likely
she is believed to be unjustified, and the lower her payoff from demanding 𝑎2 is.

Let 𝜎2(𝑎1, 𝑎2, 𝑥) be the maximum probability player 2 plays 𝑎2 in equilibrium so that the expected
payoff from demanding 𝑎2 is higher than directly conceding to player 1’s demand. For any 𝑎2 < 1 − 𝑎1,
𝜎2(𝑎1, 𝑎2, 𝑥) = 0 because conceding to player 1’s demand 𝑎1———which results in a payoff of 1 − 𝑎1———is a
strictly better strategy than demanding strictly less than 1−𝑎1 and aweakly better strategy than demanding
1 − 𝑎1. For any 𝑎2 > 1 − 𝑎1, after choosing 𝑎2, in any equilibrium, player 2 should not concede with a
positive probability at time 0. First, if player 1’s reputation can reach 1 without conceding with a positive
probability at time 0 and player 2’s reputation reaches 1 slower than player 1 when she demands 𝑎2 with
probability 1, 𝜎2(𝑎1, 𝑎2, 𝑥) is the unique solution of 𝜎2 to 𝑇1(𝑎1, 𝑎2, 𝑥) = 𝑇2(𝑎1, 𝑎2, 𝑦∗(𝑎2, 𝜎2)) so that the
two players’ reputations reach 1 at the same time. Explicitly, when we let𝜓 := 1 − 𝛾1

𝜆1
,

𝜎2(𝑎1, 𝑎2, 𝑥) =




1 𝑥 ⩽
(
1 − 𝜆1

𝛾1

)
𝜈∗1,

𝑧2
𝜋2 (𝑎2 )

1−𝜋2 (𝑎2 )


(
𝜓 1

𝑥 +(1−𝜓 ) 1
𝜈∗
1

𝜓 1

𝜇𝑁
1

+(1−𝜓 ) 1
𝜈∗
1

) 𝜆2
𝜆1

1
𝜓

− 1


(
1 − 𝜆1

𝛾1

)
𝜈∗1 < 𝑥 < 𝜇𝑁1 ,

𝑧2
𝜋2 (𝑎2 )

1−𝜋2 (𝑎2 )

[ (
𝜓 1
𝑥 + (1 −𝜓 )) 𝜆2

𝜆1
1
𝜓 − 1

]
𝜇𝑁1 ⩽ 𝑥 < 1.

Note that in equilibrium 𝜎2(𝑎2) ⩽ 𝜎2(𝑎1, 𝑎2, 𝜎2) for all 𝑎2 > 1 − 𝑎1. To see why this claim must hold,
suppose player 2 mimics 𝑎2 with a probability strictly higher than 𝜎2(𝑎1, 𝑎2, 𝜎2) < 1. Then player 2 must
concede with a strictly positive probability at time zero in order for players’ reputations to reach 1 at the
same time. However, we have specified that player 2 does not concede at time zero after announcing
her demand. Second, if player 1’s reputation reaches 1 even slower than when player 2 demands 𝑎2 with
probability 1, 𝜎2(𝑎1, 𝑎2, 𝑥) = 1. This scenario happens whenever 𝑇1(𝑎1, 𝑎2, 𝑥) > 𝑇2(𝑎1, 𝑎2, 𝑦∗(𝑎2, 1)). In
particular, it happens whenever 𝑥 < 𝜇∗1(1 − 𝜆1

𝛾1
). In summary, in any equilibrium, 𝜎2(𝑎2) ⩽ 𝜎2(𝑎1, 𝑎2, 𝑥),

where 𝜎2(𝑎1, 𝑎2, 𝑥) = 0 if 𝑎2 ⩽ 1 − 𝑎1; 𝜎2(𝑎1, 𝑎2, 𝑥) is the unique solution of 𝜎2 in 𝑇1(𝑎1, 𝑎2, 𝑥) =

𝑇2(𝑎1, 𝑎2, 𝑦∗(𝑎2, 𝜎2)) if𝑎2 > 1−𝑎1 and𝑇1(𝑎1, 𝑎2, 𝑥) < 𝑇2(𝑎1, 𝑎2, 𝑦∗(𝑎2, 1)); and𝜎2(𝑎1, 𝑎2, 𝑥) = 1 if𝑎2 > 1−𝑎1
and 𝑇1(𝑎1, 𝑎2, 𝑥) ⩾ 𝑇2(𝑎1, 𝑎2, 𝑦∗(𝑎2, 1)).

When player 2 demands 𝑎2 with probability 𝜎2 ⩽ 𝜎2(𝑎1, 𝑎2, 𝑥), player 1 must raise his time 0 reputation
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to 𝑥∗(𝑎1, 𝑎2, 𝜎2) so that their reputations reach 1 at the same time:

𝑇1(𝑎1, 𝑎2, 𝑥∗(𝑎1, 𝑎2, 𝜎2)) = 𝑇2(𝑎1, 𝑎2, 𝑦∗(𝑎2, 𝜎2)) .

In order to do so, an unjustified player 1 concedes with probability

𝑄1(𝑎1, 𝑎2, 𝑥, 𝜎2) = 1 − 𝑥

1 − 𝑥
1 − 𝑥∗(𝑎1, 𝑎2, 𝜎2)
𝑥∗(𝑎1, 𝑎2, 𝜎2) ,

so that player 1’s reputation is raised to

𝑥∗(𝑎1, 𝑎2, 𝜎2) = 𝑥

𝑥 + (1 − 𝑥) [1 −𝑄1(𝑎1, 𝑎2, 𝑥, 𝜎2)] .

Explicitly,

𝑥∗(𝑎1, 𝑎2, 𝜎2) :=




𝜆1 − 𝛾1(
𝜇∗2
𝑦

) 𝜆1−𝛾1
𝜆2

(
𝜆1−𝛾1
𝜇𝑁1

+ 𝛾1
𝜈∗1

)
− 𝛾1
𝜈∗1

if 𝑦∗(𝑎2, 𝜎2) ⩽ 𝜇∗2

1 − 𝛾1
𝜆1(

1
𝑦

) 𝜆1−𝛾1
𝜆2 − 𝛾1

𝜆1

if 𝑦∗(𝑎2, 𝜎2) > 𝜇∗2

.

When player 2 demands 𝑎2 with probability 𝜎2 and an unjustified player 1 concedes with probability
𝑄1(𝑎1, 𝑎2, 𝑥, 𝜎2), an unjustified player 2’s expected payoff is

𝑢∗2(𝑎1, 𝑎2, 𝑥, 𝜎2) = 1 − 𝑎1 + (1 − 𝑥)𝑄1(𝑎1, 𝑎2, 𝑥, 𝜎2) (𝑎1 + 𝑎2 − 1) .

Two additional properties restrict player 2’s equilibrium strategy 𝜎2(·). First, for any 𝑎2 and 𝑎′2 > 𝑎2,
if 𝜎2(𝑎2) > 0, then 𝜎2(𝑎′2) > 0. We can prove this property by contradiction. Suppose 𝜎2(𝑎2) > 0

and 𝜎2(𝑎′2) = 0. Because 𝜎2(𝑎′2) = 0, 𝑢∗2(𝑎1, 𝑎′2, 𝑥, 𝜎2(𝑎′2)) = 1 − 𝑎1 + (1 − 𝑥) (𝑎1 + 𝑎′2 − 1). Because
𝜎2(𝑎2) > 0, 𝑢∗2(𝑎1, 𝑎2, 𝑥, 𝜎2(𝑎2)) = 1 − 𝑎1 + (1 − 𝑥)𝑄1(𝑎1, 𝑎2, 𝑥, 𝜎2(𝑎2)) (𝑎1 + 𝑎2 − 1) ⩽ 1 − 𝑎1 + (1 −
𝑥) (𝑎1 + 𝑎′2 − 1) = 𝑢∗2(𝑎1, 𝑎′2, 𝑥, 𝜎2(𝑎′2)). Second, whenever

∑
𝑎2 𝜎2(𝑎1, 𝑎2, 𝑥) ⩽ 1, 𝜎2(𝑎2) = 𝜎2(𝑎1, 𝑎2, 𝑥) for

all 𝑎2, and 𝑄2 = 1 − ∑
𝑎2 𝜎2(𝑎1, 𝑎2, 𝑥). The two properties together imply that we only need to check first

if
∑
𝑎2 𝜎2(𝑎1, 𝑎2, 𝑥) ⩽ 1, and, if the first condition does not hold, then we find the equilibrium strategy

among the set of strategies 𝜎2(·) such that 𝜎2(𝑎′2) > 0 for all 𝑎′2 ⩾ 𝑎2, for each 𝑎2 ∈ 𝐴2.
Denote by

Δ2(𝑎1, 𝑥) :=
{
𝜎2(·) ∈ Δ

����� 𝜎2(𝑎2) = 0 ∀𝑎2 ⩽ 1 − 𝑎1
𝜎2(𝑎2) ⩽ 𝜎2(𝑎1, 𝑎2, 𝑥) ∀𝑎2 > 1 − 𝑎1

}

the set of candidate equilibrium mimicking strategies of player 2 in the game 𝐵1(𝑎1, 𝑥), where Δ denotes
the set of all probability distributions on 𝐴2 ∪ {𝑄}. Note that the set Δ2(𝑎1, 𝑥) is nonempty, convex, and
compact. For any candidate equilibrium mimicking strategy 𝜎2(·) ∈ Δ2(𝑎1, 𝑥), define

𝑢2(𝑥, 𝜎2(·)) := min
𝑎2:𝜎2 (𝑎2 )>0

𝑢∗2(𝑎1, 𝑎2, 𝑥, 𝜎2(𝑎2)) .
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Explicitly,

𝑢2(𝑥, 𝜎2(·)) :=



min
𝑎2:𝜎2 (𝑎2 )>0

𝑢∗2(𝑎1, 𝑎2, 𝑥, 𝜎2(𝑎2)) if 𝜎2(𝑄) = 0

1 − 𝑎1 if 𝜎2(𝑄) ≠ 0
.

Note that 𝜎2(·) is an equilibrium strategy if and only if 𝜎2(·) solves max𝜎2 ( ·) ∈Δ2 (𝑎1,𝑥 ) 𝑢2(𝑥, 𝜎2(·)). (⇒)
Suppose 𝜎2(·) is an equilibrium strategy. Any equilibrium strategy 𝜎2(·) satisfies that for all 𝑎2 ∈ 𝐴2∪{𝑄}
such that 𝜎2(𝑎2) > 0, 𝑢∗2(𝑎1, 𝑎2, 𝑥, 𝜎2(𝑎2)) is the same. If 𝜎2(𝑄) > 0, then

𝑢∗2(𝑎1, 𝑎2, 𝑥, 𝜎2(𝑎2)) = 1 − 𝑎1;

if 𝜎2(𝑄) = 0, then
𝑢∗2(𝑎1, 𝑎2, 𝑥, 𝜎2(𝑎2)) = min

𝑎2:𝜎2 (𝑎2 )>0
𝑢∗2(𝑎1, 𝑎2, 𝑥, 𝜎2(𝑎2)) .

Hence, any equilibrium strategy 𝜎2(·) must generate an equilibrium utility of 𝑢2(𝑥, 𝜎2(·)). Hence,
𝜎2(·) maximizes 𝑢2(𝑥, 𝜎2(·)) among all candidate equilibrium strategies 𝜎2(·). (⇐) Suppose 𝜎2(·) solves
max𝜎2 ( ·) ∈Δ2 (𝑎1,𝑥 ) 𝑢2(𝑥, 𝜎2(·)). By the strict monotonicity of 𝑢∗2(𝑎1, 𝑎2, 𝑥, ·), for all 𝑎2 ∈ 𝐴2 such that
𝜎2(𝑎2) > 0, 𝑢∗2(𝑎1, 𝑎2, 𝑥, 𝜎2(𝑎2)) = 𝑢2(𝑥, 𝜎2(·)). Coupled with the fact that 𝜎2(·) is the feasible strategy
that maximizes 𝑢2(𝑥, 𝜎2(·)), 𝜎2(·) is an equilibrium strategy.

Define Γ(𝜎2(·)), a correspondence from Δ2(𝑎1, 𝑥) to Δ2(𝑎1, 𝑥), as follows:

{𝜎2(·) ∈ Δ2(𝑎1, 𝑥) |𝜎2(𝑎2) > 0 ⇒ 𝑢∗2(𝑎1, 𝑎2, 𝑥, 𝜎2(𝑎2)) ⩾ 𝑢∗2(𝑎1, 𝑎′2, 𝑥, 𝜎2(𝑎′2)) ∀𝑎′2 ∈ 𝐴2}.

Note that 𝜎2(·) solves max𝜎2 ( ·) ∈Δ2 (𝑎1,𝑥 ) 𝑢2(𝑥, 𝜎2(·)) if and only if 𝜎2(·) is a fixed point of Γ. (⇒) Sup-
pose 𝜎2(·) solves max𝜎2 ( ·) ∈Δ2 (𝑎1,𝑥 ) 𝑢2(𝑥, 𝜎2(·)). By the argument above, 𝜎2(·) is an equilibrium strategy.
Therefore, 𝜎2(𝑎2) > 0 implies 𝑢∗2(𝑎1, 𝑎2, 𝑥, 𝜎2(𝑎2)) ⩾ 𝑢∗2(𝑎1, 𝑎′2, 𝑥, 𝜎2(𝑎′2)) for any 𝑎′2 ∈ 𝐴2. By the defi-
nition of Γ, 𝜎2(·) ∈ Γ(𝜎2(·)). (⇐) Suppose 𝜎2(·) ∈ Γ(𝜎2(·)). By the definition of Γ, 𝜎2(𝑎2) > 0 implies
𝑢∗2(𝑎1, 𝑎2, 𝑥, 𝜎2(𝑎2)) ⩾ 𝑢∗2(𝑎1, 𝑎′2, 𝑥, 𝜎2(𝑎′2)) for any 𝑎′2 ∈ 𝐴2. Assume by contradiction that 𝜎2(·) does
not solve max𝜎2 ( ·) ∈Δ2 (𝑎1,𝑥 ) 𝑢2(𝑥, 𝜎2(·)) but 𝜎2(·) ≠ 𝜎2(·) does. There must exist an 𝑎2 ∈ 𝐴2 such that
𝜎2(𝑎2) > 0 and 𝜎2(𝑎2) < 𝜎2(𝑎2) (otherwise, if 𝜎2(𝑎2) ⩾ 𝜎2(𝑎2) for all 𝑎2 such that 𝜎2(𝑎2) > 0, then by
the strict monotonicity of 𝑢∗2, 𝑢

∗
2(𝑎1, 𝑎2, 𝑥, 𝜎2(𝑎2)) ⩽ 𝑢∗2(𝑎1, 𝑎2, 𝑥, 𝜎2(𝑎2)), and 𝑢2(𝑥, 𝜎2(·)) ⩽ 𝑢2(𝑥, 𝜎2(·))).

However, that implies that there exists 𝑎′2 ∈ 𝐴2 ∪ {𝑄} such that 𝜎 (𝑎′2) > 𝜎 (𝑎′2). If 𝑎′2 = 𝑄 , then
𝑢2(𝑥, 𝜎2(·)) ⩽ 𝑢2(𝑥, 𝜎2(·)). If 𝑎′2 ∈ 𝐴2, then 𝑢2(𝑥, 𝜎2(·)) ⩽ 𝑢2(𝑥, 𝜎2(·)).

Hence, from the two claims above, we have that 𝜎2(·) is an equilibrium strategy for player 2 in the game
𝐵0(𝑎1, 𝑥) if and only if 𝜎2(·) is a fixed point of Γ. Equilibrium existence follows from the existence of a fixed
point of Γ by Kakutani’s fixed-point theorem. By construction, Δ2(𝑎1, 𝑥) is compact. By construction, Γ is
convex-valued. Finally, Γ is upper-hemicontinuous because 𝑢∗2 is continuous in its last argument.

It remains to show the existence of a unique equilibrium. Equilibrium uniqueness follows from the
strict monotonicity of 𝑢∗2 in 𝑥 . Suppose there are two equilibrium strategies 𝜎2(·) and 𝜎2(·); without loss
of generality, suppose 𝜎2(𝑎2) > 𝜎2(𝑎2) > 0 for some 𝑎2 > 1−𝑎1. The utilities of playing the two strategies
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are different:

𝑢2(𝑥, 𝜎2(·)) = 𝑢∗2(𝑎1, 𝑎2, 𝑥, 𝜎2(𝑎2)) < 𝑢∗2(𝑎1, 𝑎2, 𝑥, 𝜎2(𝑎2)) = 𝑢2(𝑥, 𝜎2(·)),

where the strict inequality follows from the strict monotonicity of 𝑢∗2. This contradicts the property
whereby equilibrium strategies 𝜎2(·) and 𝜎2(·) both maximize 𝑢2(𝑥, 𝜎2(·)). Multiple equilibrium distribu-
tions over types being conceded to are in conflict with the requirement that types mimicked with a positive
probability must have equal payoffs that are not smaller than the payoffs of the types that are not mim-
icked. Suppose by contradiction there are two different equilibrium strategies for player 2: 𝜎2(𝑎2) ≠ 𝜎 ′2(𝑎2)
for some 𝑎2. If 𝜎2(𝑎2) > 0 and 𝜎 ′2(𝑎2) > 0, then 𝑢2(𝑎1, 𝑎2, 𝑥, 𝜎2(𝑎2)) ≠ 𝑢2(𝑎1, 𝑎2, 𝑥, 𝜎 ′2(𝑎2)). But
𝑢2(𝑎1, 𝑎2, 𝑥, 𝜎2(𝑎2)) = 𝑢2(𝑥, 𝜎2(·)) and 𝑢2(𝑎1, 𝑎2, 𝑥, 𝜎2(𝑎2)) = 𝑢2(𝑥, 𝜎 ′2(·)), but 𝑢2(𝑥, 𝜎2(·)) ≠ 𝑢2(𝑥, 𝜎 ′2(·))
contradicts the fact that 𝜎2(·) and 𝜎 ′2(·) both solvemax𝜎2 ( ·) ∈Δ2 (𝑎1,𝑥 ) 𝑢2(𝑥, 𝜎 (·)). If 𝜎2(𝑎2) or 𝜎 ′2(𝑎2) is zero,
then by the first additional property of player 2’s equilibrium strategy above, there is an 𝑎′2 > 𝑎2 such that
𝜎2(𝑎′2) > 0, 𝜎 ′2(𝑎′2) > 0, and 𝜎2(𝑎′2) ≠ 𝜎 ′2(𝑎′2), so that the contradiction arises again. Player 1 receives
𝑢1(𝑎1, 𝑥) in the equilibrium of the bargaining game 𝐵(𝑎1, 𝑥). □

Proof of Theorem 2. Denote by 𝑢1(𝑎1, 𝑥) the payoff of player 1 in the unique equilibrium of the bar-
gaining game 𝐵1(𝑎1, 𝑥) with 𝐴1 = {𝑎1} and |𝐴2 | ⩾ 1. Note that it is a continuous function of 𝑥 . Moreover,
there exists an 𝑥 such that 𝑢∗1(𝑎1, 𝑥) = 𝑢∗1(𝑎1, 𝑥) for any 𝑥 ⩽ 𝑥 and 𝑢∗1(𝑎1, 𝑥) is strictly increasing in 𝑥 on
the interval

(
𝑥, 1

)
.

We characterize the equilibrium distribution 𝜎1 as the solution to max𝜎1 𝑢 (𝜎1), where 𝑢 (𝜎1) =

min𝑎1 s.t. 𝜎1 (𝑎1 )>0𝑢1(𝑎1, 𝑥 (𝜎1(𝑎1))), and 𝑥 (𝜎1(𝑎1)) = 𝑧1𝜋1 (𝑎1 )
𝑧1𝜋1 (𝑎1 )+(1−𝑧1 )𝜎1 (𝑎1 ) . The continuity of 𝑢1(𝑎1, 𝑥) in

𝑥 ensures that an equilibrium exists; see the fixed-point argument that establishes the existence of an
equilibrium strategy 𝜎2 in 𝐵(𝑎1, 𝑥) above.

Let 𝑢1 be the maximized value above; 𝑢1 is the utility player 1 attains in any equilibrium. Clearly,
𝑢1 ⩾ 𝑢1(𝑎1, 𝑥) for all 𝑎1. Let 𝜎1 and 𝜎1 be two equilibrium strategies for player 1.

Claim: If 𝑢1 > 𝑢1(𝑎1, 𝑥), then 𝜎1(𝑎1) = 𝜎1(𝑎1). Proof: To see this, note that either 𝑢1(𝑎1, 1) > 𝑢1 or
𝑢1(𝑎1, 1) ⩽ 𝑢1. If𝑢1(𝑎1, 1) > 𝑢1, then there is a unique 𝜎1 such that 𝜎1(𝑎1, 𝑥 (𝜎1)) = 𝑢1, and hence 𝜎1(𝑎1) =
𝜎1(𝑎1) = 𝜎1. If 𝑢1(𝑎1, 1) ⩽ 𝑢1, then by the strict monotonicity of 𝑢1(𝑎1, 𝑥) in 𝑥 for 𝑥 > 𝑥 and monotonicity
of 𝑢1(𝑎1, 𝑥) in 𝑥 for 𝑥 ⩽ 𝑥 , 𝑢1(𝑎1, 𝑥) < 𝑢1(𝑎1, 1) ⩽ 𝑢1 for any 𝑥 < 1. Hence, 𝜎1(𝑎1) = 𝜎1(𝑎1) = 0.

Define 𝐷1 = {𝑎1 ∈ 𝐴1 |𝑢1(𝑎1, 𝑥) = 𝑢1}. Recall that 𝑥 depends on 𝑎1. We have already noted that
𝜎1(𝑎1) = 𝜎1(𝑎1) for 𝑎1 ∈ 𝐴1\𝐷1. Hence,

∑
𝑎1∈𝐷1

𝜎1(𝑎1) =
∑
𝑎1∈𝐷1

𝜎1(𝑎1).
We will conclude the proof that 𝜎1 and 𝜎1 lead to the same random outcome 𝜃 by first verifying that

the probability that player 1 chooses 𝑎1 ∈ 𝐷1 and agreement is reached at time 0 is the same with either
𝜎1 or 𝜎1. This will imply that the random outcome, conditional on agreement at time 0, is the same with
either 𝜎1 or 𝜎1. Finally, we show that for each 𝑎1 ∈ 𝐷1, the probability that an unjustified player 1 will
mimic 𝑎1 and not concede is the same with either 𝜎1 or 𝜎1.

Let 𝐴(𝜎1) denote the probability that player 1 mimics some 𝑎1 ∈ 𝐷1 and agreement is reached at time
0 given the equilibrium strategy 𝜎1. Since 𝑎1 ∈ 𝐷1 implies 𝜎2(𝑎2 |𝑎1) = 1, it follows that 𝑎1 ⩾ 1 − 𝑎2;
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otherwise, player 1 would achieve a higher utility by mimickingmax𝐶1 > 1 − 𝑎2. Hence,

𝐴(𝜎1) =
∑︁
𝑎1∈𝐷1

𝑞1(𝑎1, 𝑎2, 𝑥 (𝜎1(𝑎1)), 1) [1 − 𝑥 (𝜎1(𝑎1))] [𝑧1𝜋1(𝑎1) + (1 − 𝑧1)𝜎1(𝑎1)]

=
∑︁
𝑎1∈𝐷1

𝐾 (𝑎1, 𝑎2, 1) − 𝑥 (𝜎1(𝑎1))
𝐾 (𝑎1, 𝑎2, 1) [𝑧1𝜋1(𝑎1) + (1 − 𝑧1)𝜎1(𝑎1)]

=
∑︁
𝑎1∈𝐷1

[𝑧1𝜋1(𝑎1) + (1 − 𝑧1)𝜎1(𝑎1)] −
∑︁
𝑎1∈𝐷1

𝑥 (𝜎1(𝑎1))
𝐾 (𝑎1, 𝑎2, 1) [𝑧1𝜋1(𝑎1) + (1 − 𝑧1)𝜎1(𝑎1)]

=
∑︁
𝑎1∈𝐷1

(1 − 𝑧1)𝜎1(𝑎1) +
∑︁
𝑎1∈𝐷1

𝑧1𝜋1(𝑎1) −
∑︁
𝑎1∈𝐷1

𝑧1𝜋1(𝑎1)
𝐾 (𝑎1, 𝑎2, 1) .

Since
∑
𝑎1∈𝐷1

𝜎1(𝑎1) =
∑
𝑎1∈𝐷1

𝜎1(𝑎1), we have 𝐴(𝜎1) = 𝐴(𝜎1). For any 𝑎1 ∈ 𝐷1, the probability that an
unjustified player 1 will mimic 𝑎1 and not concede at time 0 is

𝜎1(𝑎1) [1 − 𝑞1(𝑎1, 𝑎2, 𝑥 (𝜎1(𝑎1)), 1)] = 𝜎1(𝑎1)𝑥 (𝜎1(𝑎1))
1 − 𝑥 (𝜎1(𝑎1))

1 − 𝐾 (𝑎1, 𝑎2, 1)
𝐾 (𝑎1, 𝑎2, 1) =

𝜋1(𝑎1)𝑧1
1 − 𝑧1

1 − 𝐾 (𝑎1, 𝑎2, 1)
𝐾 (𝑎1, 𝑎2, 1) ,

which is independent of 𝜎1. Hence, 𝜎1(𝑎1) and 𝜎1(𝑎1), the equilibrium probabilities that an unjustified
player 1 will mimic 𝑎1, are the same. □

C Extensions

C.1 Frictional bluffing opportunities

In this section, we consider the alternative situation in which both justified and unjustified players face
equally frictional arrival of ultimatum opportunities. Because the ultimatum usage rate is capped by ul-
timatum opportunity arrival rate, an additional strategy phase with a capped rate of ultimatum usage of
player 1 and lower concession of player 2 may arise in equilibrium. Theorem 1 extends and the detailed
proof is in Online Appendix C.1.2. We show that the key qualitative results (e.g., discontinuous ultima-
tum and resolution rates, the potential benefits for player 1 by the introduction of a frictional ultimatum,
and payoffs in the limit case of rationality) do not change in this setting. We also demonstrate the irrel-
evance of public versus private arrival of ultimatum opportunities in equilibrium behavior and outcome,
and separate justified demand and commitment behavior.

C.1.1 Frictional arrival of ultimatum opportunities

Suppose an unjustified player 1’s ultimatum opportunities arrive according to the same process as a jus-
tified player 1’s———that is, a Poisson process with rate 𝛾1———and he can choose whether to bluff. Basic
properties of the equilibrium will be sustained———that is, there is a positive concession rate over the full
support of interval (0,𝑇 ], and consequently player 𝑖’ continuation payoff at time 𝑡 in that interval is 1−𝑎 𝑗 .

When player 1’s reputation exceeds 𝜈∗1, regardless of his strategy———even when he challenges with
probability one———his reputation conditional on challenging exceeds 𝜈∗1. Hence, when 𝜇1(𝑡) > 𝜈∗1, an un-
justified player 2 does not see a challenge. And when 𝜇2(𝑡) < 𝜇∗2, an unjustified player 1 challenges with
probability one when an opportunity arrives.
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1
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𝜇∗2
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(b) Frictional bluffing, 𝜇𝑁1 > 𝜈∗1

full challengepartial challenge

no challenge

𝜇1

𝜇2

max{0, 𝜙1𝜈
∗
1}

b
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1

𝜇∗2

𝜇𝑋2

𝜇𝑁1 𝜈∗1

(c) Frictional bluffing, 𝜇𝑁1 ⩽ 𝜈∗1

Figure O1: Strategy phases in games with one-sided ultimatum opportunities and frictionless or frictional
bluffing opportunities

With frictionless arrival of bluffing opportunities, there are two strategy phases, challenge and no-
challenge, that indicate whether an unjustified player 1 challenges at a positive rate (Figure O1a). With
frictional arrival of bluffing opportunities, a new “full-challenge” phase may arise between the (partial)
challenge and no-challenge phases. This phase arises in equilibrium if and only if 𝜇𝑁1 > 𝜈∗1. In this phase,
player 1’s reputation builds from 𝜈∗1 to 𝜇𝑁1 . Because player 1 receives a strictly higher payoff from chal-
lenging than from conceding, player 2’s equilibrium concession rate adjusts so that an unjustified player
1 is indifferent between conceding and persisting; the overall concession rate is lowered to

𝜆∗2(𝑡) := 𝜆2 − 𝛾1 [𝜇∗2 − 𝜇2(𝑡)] . (15)

In the (partial) challenge phase———when 𝜇1(𝑡) < 𝜈∗1 and 𝜇2(𝑡) < 𝜇∗2———an unjustified player 1 challengeswith
probability 𝛽1(𝑡)/𝛾1 ∈ (0, 1) when an opportunity arises, which results in an effective bluffing rate 𝛽1(𝑡),
and an unjustified player 2 mixes between yielding to and seeing a challenge with the same probability as
specified in the frictionless bluffing opportunity model.

FigureO1 illustrates the two possibilities: The full-challenge phasemay (FigureO1b) ormay not (Figure
O1c) exist. It is worthmentioning that equilibrium existence and uniqueness requiresmore arguments than
in the benchmark case. The additional complication arises from the lower concession rate of player 2 in
the full-challenge phase. If player 2’s reputation falls below 𝜇𝑋2 := 𝜇∗2 − 𝜆2/𝛾1 in the full-challenge phase,
her reputation may decline. Additional arguments are needed to show that player 2’s reputation exceeds
𝜇𝑋2 in the full-challenge phase, which ensures an ever-increasing reputation for player 2.

Claim 1. Suppose player 1 has a Poisson arrival of ultimatum opportunities at rate 𝛾1. In the unique equilib-

rium, the overall challenge and concession rates are

(𝜒1(𝑡), 𝜆1(𝑡), 𝜆2(𝑡)) =




(𝜇1(𝑡)𝛾1, 𝜆1, 𝜆2) if 𝜇2(𝑡) ⩾ 𝜇∗2,
(𝛾1, 𝜆1, 𝜆∗2(𝑡)) if 𝜇2(𝑡) < 𝜇∗2 and 𝜇1(𝑡) ⩾ 𝜈∗1,
( 𝜇1 (𝑡 )𝜈∗1

𝛾1, 𝜆1, 𝜆2) if 𝜇2(𝑡) < 𝜇∗2 and 𝜇1(𝑡) < 𝜈∗1,
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and players’ reputation dynamics are

¤𝜇1(𝑡) = 𝜆1 − 𝛾1 + 𝜒1(𝑡) and ¤𝜇2(𝑡) = 𝜆2(𝑡) .

Because bluffing rate 𝛽1(𝑡) is restricted to be less than 𝛾1 and a justified player 1’s challenge rate is
specified to be 𝛾1, the overall challenge rate 𝜒1(𝑡) is less than 𝛾1. Hence, player 1’s reputation building is
slower than 𝜆1, while player 2’s reputation building is also slower than 𝜆2 in the full-challenge phase; see
Equation (15). This lower 𝜆2(𝑡) may sometimes lead player 2 to build a reputation slowly and lead player
1 to benefit from the introduction of ultimatum opportunities.

Regarding the rates of challenge and resolution, there is an additional discontinuity when the dynamics
transition from the partial-challenge phase to the full-challenge phase; in the full-challenge phase, player
2 concedes at a lower rate. Because both players’ reputations may build more slowly, the introduction
of frictional ultimatum opportunities continues to have an ambiguous effect on an unjustified player 1’s
payoff in general.

The frictional arrival of bluffing opportunities does not alter the results for payoffs in the limit case of
rationality. This is because, at near zero reputations, the play will be in the partial-challenge phase for a
long period of time; hence, the impact of the additional phase vanishes.

C.1.2 Proof of Theorem 1 with frictional bluffing opportunities

Suppose an unjustified player 1 can challenge according to a Poisson rate 𝜌1 := 𝛾1.

Claim 2. Player 1’s challenging strategy 𝐺1 is continuous for 𝑡 ⩾ 0.

Proof. The claim holds by definition. □

Claim 3. Upon being challenged, player 2 weakly prefers yielding to not yielding. Hence, player 2’s payoff

conditional on being challenged is 1 − 𝑎1.

Proof. Suppose by contradiction that player 2 strictly prefers not to yield when challenged. If player 1
challenges, he gets 1 − 𝑎2 + (1 − 𝜇2)𝑤1𝐷 − 𝑐1𝐷 , which is weakly smaller than 1 − 𝑎2 + (𝑤1 − 𝑐1)𝐷 . By
the assumption that 𝑤1 < 𝑐1 and 𝐷 > 0, player 1’s expected payoff from challenging is strictly smaller
than 1 − 𝑎2, and he can guarantee that payoff by simply conceding. Hence, player 1 would choose not
to challenge so that the bluffing rate is 𝛽1 = 0. In this case, because any challenging player 1 is justified,
player 2 would strictly prefer to yield to than see the challenge, because 𝑘2 > 0, contradicting that player
2 strictly prefers not to yield to a challenge. □

Claim 4. 𝐹1 and 𝐹2 do not have an atom at the same time.

Proof. If 𝐹𝑖 jumps at time 𝑡 , then player 𝑗 receives a strictly higher expected utility by conceding an instant
after time 𝑡 (which guarantees a payoff strictly greater than 1−𝑎𝑖 , if 𝑗 yields if challenged) than by conceding
at time 𝑡 (which results in a payoff of 1 − 𝑎𝑖 ). □

Claim 5. 𝐹2 has no atom at time 𝑡 > 0.
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Proof. If 𝐹2 has an atom at 𝑡 > 0, then there exists an 𝜀 > 0 such that 𝐹1 is constant in the time interval
(𝑡 − 𝜀, 𝑡). Because 𝐹1 has no atom at 𝑡 when 𝐹2 has an atom at 𝑡 (by Claim 3), and because conditional on
a challenge, player 2 gets a payoff of 1− 𝑎1, player 2 strictly prefers yielding at 𝑡 − 𝜀/2 to yielding at 𝑡 . □

Let inf ∅ := ∞. Define 𝜏𝑖 := inf{𝑡 ⩾ 0|𝜇𝑖 (𝑡) = 1} as the earliest time for 𝑖’s reputation to reach 1.

Claim 6. 𝜏1 = 𝜏2: Players’ reputations either never reach 1 or reach 1 at the same time.

Proof. First, 𝜏1 ⩾ 𝜏2. Suppose otherwise: 𝜏1 < 𝜏2. Then 𝜏1 is finite. For time 𝑡 ∈ (𝜏1, 𝜏2], player 2 strictly
prefers conceding to waiting. Hence, it is a strictly dominated strategy to concede at time 𝜏2 than to
concede at any time prior to 𝜏2 − 𝜀 for sufficiently small 𝜀. In equilibrium, 𝜏2 cannot be the latest time of
concession for player 2. If 𝜏2 is infinite, then the claim holds. If 𝜏2 is finite, then it is a strictly dominated
strategy for player 1 to concede or challenge at any time strictly after 𝜏2. Hence, 𝜏1 = 𝜏2 in case 𝜏2 < ∞. □

We denote by 𝜏∗ the common time for the two players’ reputations to reach 1.

Case 1: 𝜏∗ < ∞. Let 𝜇𝑋2 be player 2’s reputation so that player 1 is indifferent between conceding and
waiting to challenge at rate 𝜌1 while player 2 would yield to a challenge but would not voluntarily concede:

−𝑟1(1 − 𝑎2) + 𝜌1(1 − 𝜇𝑋2 − 𝑐1)𝐷 = 0 ⇐⇒ 𝜇𝑋2 = 𝜇𝑁2 − 𝜆2/𝜌1.

In other words, player 1’s flow payoff from challenging is 𝜌1(1 − 𝜇𝑋2 − 𝑐1)𝐷 . Let

𝑡∗ := inf{𝑡 : 𝜇2(𝑡) > 𝜇𝑋2 }.

Because 𝜇2 is weakly increasing, for 𝑡 > 𝑡∗, 𝜇2(𝑡) > 𝜇𝑋2 . Let 𝜇
𝐹
1 be player 1’s reputation such that if he

challenged with rate 𝜌1, his reputation would be 𝜈∗1 and player 2 would be indifferent between seeing and
yielding to a challenge.

𝜈∗1 =
𝛾1𝜇

𝐹
1

𝛾1𝜇𝐹1 + 𝜌1(1 − 𝜇𝐹1 )
⇐⇒ 𝜇𝐹1 =

𝜌1𝜈
∗
1

𝜌1𝜈∗1 + 𝛾1(1 − 𝜈∗1)
.

We assume 𝜌1 ⩾ 𝛾1 so that 𝜇𝐹1 ⩾ 𝜈
∗
1.

Claim 7. 𝐹1 does not have an atom at any time 𝑡 > 𝑡∗.

Proof. Suppose it does. Then, for some 𝜀 > 0, 𝐹2 is constant for (𝑡 − 𝜀, 𝑡), and 𝑡 − 𝜀 > 𝑡∗. Hence, 𝜇2(𝑡) is
constant and larger than 𝜇𝑋2 in this interval. Hence, player 1’s continuation payoff at 𝑡 − 𝜀/2 is strictly less
than 1 − 𝑎2 (regardless of player 2’s response to challenge). □

Claim 8. For 𝑡 > 𝑡∗, there is no interval where 𝐹𝑖 (𝑡) < 1 and is constant.

Proof. Suppose 𝐹1(𝑡) is constant on (𝑡1, 𝑡2) and 𝐹1 is increasing at 𝑡2. Then 𝐹2 is also constant on (𝑡1, 𝑡2);
otherwise player 2 would move the yield probability to earlier. Since 𝐹2 does not have an atom at 𝑡2 and
since 𝐹1 is increasing at 𝑡2, player 1 is better off yielding earlier than at 𝑡2. The proof regarding 𝐹2(𝑡) is
similar. □
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Claim 9. Players’ reputations are continuous for 𝑡 > 𝑡∗. This implies lim𝑡↓𝑡∗ 𝜇2(𝑡) = 𝜇𝑋2 if 𝑡∗ > 0.

Proof. 𝐹1 and 𝐹2 are continuous and strictly increasing for 𝑡 > 𝑡∗ (by Claim 8) and 𝐺1 is continuous and
weakly increasing by the premise that 𝜌1 < ∞. Hence, the reputation 𝜇𝑖 (𝑡) is continuous for 𝑡 > 𝑡∗. □

Denote by 𝑡𝑁 the time for player 2’s reputation to reach 𝜇∗2; it is unique given that 𝐹2 is strictly increas-
ing (Claim 9). Denote by 𝜇𝑁1 := 𝜇1(𝑡𝑁 ) player 1’s reputation at time 𝑡𝑁 .

Claim 10. If 𝜇𝐹1 < 𝜇1(𝑡) < 𝜇𝑁1 and 𝜇2(𝑡) < 𝜇∗2, player 2 strictly prefers yielding to a challenge to conceding,

and player 1’s flow payoff for challenging is strictly higher than conceding.

Proof. When 𝜇1(𝑡) > 𝜇𝐹1 , by challenging at any rate weakly below 𝜌1, player 1’s reputation strictly exceeds
𝜈∗1, so it is a strictly dominant strategy for player 2 to yield to a challenge. Hence, it is a strictly dominant
strategy for player 1 to challenge, and to challenge at the maximum rate 𝜌1. □

Claim 11. If 𝑡∗ > 0, then lim𝑡↓𝑡∗ 𝜇1(𝑡) < 𝜇𝐹1 .

Proof. If 𝜇𝑁1 ⩽ 𝜇𝐹1 , we are done, because 𝜇1(𝑡) < 𝜇𝑁1 ⩽ 𝜇𝐹1 for all 𝑡 ∈ (𝑡∗, 𝑡𝑁 ). Suppose 𝜇𝑁1 > 𝜇𝐹1 . When
𝜇𝐹1 < 𝜇1(𝑡) < 𝜇𝑁1 , player 1’s reputation evolution is

𝜇′1(𝑡)
𝜇1(𝑡) = 𝜆1 + [1 − 𝜇1(𝑡)] (𝜌1 − 𝛾1) ⩾ 0,

and player 2 concedes with overall rate 𝜆2(𝑡) = 𝜆2 − 𝜌1𝜇∗2 + 𝜌1𝜇2(𝑡) for player 1 to be indifferent between
challenging and conceding (by Claim 8), and player 2’s reputation evolution is

𝜇′2(𝑡)
𝜇2(𝑡) = 𝜆2 − 𝜌1 [𝜇∗2 − 𝜇 (𝑡)],

which is positive if 𝜇2(𝑡) > 𝜇𝑋2 (see Lemma 1). Let 𝑡𝐹 denote the time such that 𝜇1(𝑡𝐹 ) = 𝜇𝐹1 and 𝜇𝐹2 player
2’s reputation at time 𝑡𝐹 . Because reputations are continuous for 𝑡 > 𝑡∗ (by Claim 9), 𝜇𝐹2 > 𝜇𝑋2 . By the
continuity of players’ reputations, player 1’s reputation is monotonic if 𝜇𝐹1 = 𝜌1𝜈∗1/[𝜌1𝜈∗1 + 𝛾1(1 − 𝜈∗1)] >
𝜇̃1 = 1 − 𝜆1/𝛾1, where 𝜈∗1 = 1 − 𝑘2/(1 −𝑤1). □

Claim 12. 𝜇2(𝑡) < 𝜇𝑋2 for 𝑡 < 𝑡∗.

Proof. Suppose not. Then 𝜇2(𝑡) = 𝜇𝑋2 for 𝑡 ∈ (𝑡∗−𝜀, 𝑡∗) for some 𝜀 > 0. Hence, player 2 does not concede in
the time interval. Because 𝐹2 does not have a jump at 𝑡∗ (by Claim 5), for player 1’s payoff at 𝑡 ∈ (𝑡∗− 𝜀, 𝑡∗)
to be at least 1− 𝑎2, player 1 challenges at rate 𝜌1. Hence, 𝜇′1 ⩾ 0 in this interval. For 𝐹2 to be constant, 𝐹1
needs a jump at 𝑡∗. Because lim𝑡↓𝑡∗ 𝜇1(𝑡) < 𝜇𝐹1 (by Claim 11), 𝜇1(𝑡) < 𝜇𝐹1 for 𝑡 ∈ (𝑡∗ − 𝜀, 𝑡∗). Mimicking 𝜌1,
player 1 cannot have a reputation above 𝜈∗1, and flow payoff will be low. □

Claim 13. For 𝑡 < 𝑡∗, 𝐹1 is strictly increasing.

Proof. Suppose 𝐹1 is constant on (𝑡1, 𝑡2) and then increasing at 𝑡2. We know 𝑡2 ⩽ 𝑡
∗ (because starting at

𝑡∗ we are on the reputation coevolution curve). Then, 𝐹2 is also constant on (𝑡1, 𝑡2), hence 𝜇2 is constant
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in that interval, and 𝜇2 < 𝜇𝑋2 . Because 𝐹2 does not have an atom (by Claim 5), first, 𝑡2 < 𝑡∗, and second,
player 1’s payoff at 𝑡 ∈ (𝑡1, 𝑡2) is equal to flow payoff from challenging and then yielding at 𝑡2 (i.e., a convex
combination of flow payoffs from challenge and 1 − 𝑎2).

If 𝜇1(𝑡) > 𝜇𝐹1 for some 𝑡 ∈ (𝑡1, 𝑡2), then 𝛽1 = 𝜌1, because this generates the highest flow payoff for
player 1. Because 𝜌1 ⩾ 𝛾1, 𝜇′1 ⩾ 0, this means 𝛽1 = 𝜌1 for all 𝑡 ′ ∈ [𝑡, 𝑡2), and 𝜇1(𝑡2) > 𝜇𝐹1 . But then player
1 does not have an incentive to concede at 𝑡2, which contradicts the premise that 𝐹1 is increasing at 𝑡2.

If 𝜇1(𝑡) = 𝜇𝐹1 for some 𝑡 ∈ (𝑡1, 𝑡2), then 𝛽1 = 𝜌1 (otherwise the posterior upon challenge is strictly
larger than 𝜈∗1 and player 1 strictly prefers challenging because 𝜇2 < 𝜇𝑋2 ). Then, 𝜇

′
1 ⩾ 0 and 𝛽1(𝑡 ′) = 𝜌1 for

all 𝑡 ′ ∈ [𝑡, 𝑡2). Hence, 𝜇1(𝑡2) = 𝜇𝐹1 . Because 𝜇2(𝑡2) < 𝜇𝑋2 , 𝛽1(𝑡2) = 𝜌1, and because 𝐹1 is increasing at 𝑡2, for
all 𝑡 ∈ (𝑡2, 𝑡2 + 𝜀), 𝜇1(𝑡) > 𝜇𝐹1 and 𝜇2(𝑡) < 𝜇𝑋2 . However, in this case, it is a strictly dominant strategy for
player 1 to challenge, which contradicts that 𝐹1 is strictly increasing at 𝑡2.

Hence, 𝜇1(𝑡) < 𝜇𝐹1 for all 𝑡 ∈ (𝑡1, 𝑡2). Hence, player 1 chooses 𝛽1 < 𝜌1 (since otherwise player 2 does
not yield). Hence, player 2 weakly prefers not conceding in this interval. But then there is no flow payoff
for player 1 with a positive probability———a contradiction to his payoff being at least 1 − 𝑎2. □

Claim 14. For 𝑡 < 𝑡∗, 𝐹2 is strictly increasing.

Proof. Suppose 𝐹2 is constant on an interval. Because 𝐹1 is strictly increasing (by Claim 13), player 1 is
indifferent between conceding at any point in the interval. Because 𝜇2 < 𝜇𝑋2 , if 𝜇1(𝑡) ⩾ 𝜇𝐹1 in this interval
at least once, then player 1 strictly prefers waiting for challenges to conceding. Hence, 𝜇1(𝑡) < 𝜇𝐹1 for
all 𝑡 in the interval. Player 1 is indifferent between challenging and not challenging, so he is indifferent
between conceding and waiting. Then this contradicts that 𝐹1 is strictly increasing in the interval when
𝐹2 is constant. □

Case 2: 𝜏∗ = ∞. In this case, it must be the case that 𝑡∗ = ∞. Otherwise, if 𝑡∗ < ∞, then by Claim 9, it
takes a finite time to reach reputation 1. In this case, player 𝑖’s continuation payoff is at least 1 − 𝑎 𝑗 , since
otherwise 𝑖 would concede with probability 1, which would be a contradiction to 𝜏∗ = ∞, since the other
player would also concede before infinity.

If 𝜇2(𝑡) = 𝜇𝑋2 for 𝑡 ⩾ 𝑡1 for some 𝑡1 < ∞, then for player 1 to not concede with probability 1 at any
point, his continuation payoff is at least 1 − 𝑎2. This means that he challenges at rate 𝜌1, 𝜇′1 ⩾ 0, and
because player 2’s continuation payoff is at least 1 − 𝑎1, player 1 is sometimes yielding, so eventually
player 1’s reputation reaches 1, contradiction.

Hence, 𝜇2(𝑡) < 𝜇𝑋2 for all 𝑡 . If 𝜇1(𝑡) ⩾ 𝜇𝐹1 at some 𝑡 , then 𝛽1 = 𝜌1 at 𝑡 , hence 𝜇′1 ⩾ 0, and hence this
leads to 𝛽1 = 𝜌1, which leads to 𝜇′1 ⩾ 0 for all 𝑡 ′ ⩾ 𝑡 . Because there is a positive probability that player 2
never yields, player 1 needs to concede occasionally, leading his reputation to 1, a contradiction.

If 𝜇1(𝑡) < 𝜇𝐹1 for all 𝑡 , then player 1 is never challenging at rate 𝜌1, and the payoff from never chal-
lenging is strictly less than 1−𝑎2 when 𝜇2 is sufficiently close to lim𝑡→∞ 𝜇2(𝑡) (in which player 2 concedes
with a vanishingly small rate).
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C.1.3 Outcome equivalence of the public and private arrival of ultimatum opportunities

Suppose the arrival of ultimatum opportunity is public. Player 1 decides whether to use it when it arrives
publicly, and if he decides not to use it, he essentially reveals his rationality and gets 1 − 𝑎2. In this case,
player 1’s challenge probability given 𝜇1(𝑡) is the same as specified above. However, the consequence of
no challenge changes. No challenge automatically reveals player 1’s rationality and benefits player 2. As
a consequence, when 𝜇1(𝑡) < 𝜈∗1, player 1 concedes at a lower rate 𝜆

public
1 (𝑡) = 𝜆1 − 𝛾1 [1 − 𝜇1(𝑡)/𝜈∗1], and

when 𝜇2(𝑡) > 𝜇∗2, player 1 also concedes at a lower rate 𝜆public1 (𝑡) = 𝜆1 − 𝛾1 [1 − 𝜇1(𝑡)].
Somewhat surprisingly, whether the ultimatum opportunities are public or private does not affect the

outcome of the game. Although the optimal concession behavior changes, overall concession rates will
stay the same. In addition to active/voluntary concession by player 1, there is also passive/involuntary
concession by player 1 when the ultimatum opportunity arrives and is publicly known. In addition, the
reputation coevolution stays the same. Recall that when the arrival of ultimatum opportunity is private,
player 1’s reputation is ¤𝜇private1 (𝑡) = 𝜆

private
1 (𝑡) − [𝛾1 − 𝜒1(𝑡)]. In contrast, when the arrival is public,

its arrival ends the game and its nonarrival does not affect players’ reputations. Player 1’s reputation
evolution is simply ¤𝜇public1 (𝑡) = 𝜆

public
1 (𝑡). When the arrival is public, player 1 still challenges with the

overall rate 𝜒1(𝑡), but without challenging, player 1’s rationality is revealed and player 1 is essentially
conceding involuntarily, the overall rate of involuntary concession by player 1 is ℓ1(𝑡) := 𝛾1 − 𝜒1(𝑡).
Because player 1 may be forced to concede due to the public arrival of ultimatum opportunity, anticipating
such passive concession, player 1 will actively concede at a lower rate, and the active concession rate is
reduced by exactly the passive concession rate: 𝜆public1 (𝑡) = 𝜆private1 (𝑡) − ℓ1(𝑡). Coupled with the fact that
ℓ1(𝑡) and 𝜒1(𝑡) sum to 𝛾1, player 1’s reputation evolution with the public and private arrival of ultimatum
opportunities is the same.

¤𝜇public1 (𝑡) = 𝜆public1 (𝑡) = 𝜆private1 (𝑡) − ℓ1(𝑡) = 𝜆private1 (𝑡) − [𝛾1 − 𝜒1(𝑡)] = ¤𝜇private1 (𝑡).

In addition, player 2’s concession rates ensure player 1’s indifference in concessions over time, so her
concession rates and consequently her reputation evolution also are the same across the two settings.

C.2 Separation of demand justifiability and commitment behavior

To separate the association between justifiability and commitment behavior, we extend themodel to allow a
committed player to be unjustified.18 More precisely, suppose each player 𝑖 is justified and committed with
probability 𝑧𝑖𝜓𝑖 , is unjustified and committed with probability 𝑧𝑖 (1 −𝜓𝑖), and is unjustified and strategic
with probability 1 − 𝑧𝑖 . In the benchmark model, 𝜓𝑖 = 1: A committed player is justified with probability
one. In this extension, 𝑧𝑖 is the probability of commitment, and we track players’ reputation 𝜇𝑖 (𝑡) of
commitment to characterize equilibrium behavior. When a committed player is justified with a sufficiently
high probability, the equilibrium structure remains similar to our benchmark case.

A strategic player 2 is indifferent between seeing and yielding to a challenge if player 1’s conditional

18Allowing a strategic player to be justified at the same time will completely separate the association between justifiability and
commitment behavior. However, it will require tracking multiple state variables of reputation, which is beyond the machinery
developed in this paper, but warrants further investigation.
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reputation 𝜈∗∗1 of commitment satisfies

𝜈∗∗1 =
1

𝜓1

(
1 − 𝑘2

1 −𝑤1

)
⇐= [𝜈∗∗1 (1 −𝜓1) + 1 − 𝜈∗∗1 ] (1 −𝑤1) = 𝑘2.

Note that when𝜓1 = 1, 𝜈∗∗1 = 𝜈∗1 < 1, but when𝜓1 < 1, it is possible that 𝜈∗∗1 ⩾ 1.
First, suppose 𝜈∗∗1 < 1. In this case, the equilibrium characterization is quite similar to the case when

𝜓𝑖 = 1, summarized in Claim 1. All ∗ functions in the claim are replaced by the ∗∗ functions defined subse-
quently. The reputation coevolution diagram is qualitatively the same as Figures O1b and O1c. A strategic
player does not have an incentive to challenge if the maximal expected payoff is less than concession:

𝜇2(𝑡) > 𝜇∗∗2 =
1 − 𝑐1

1 − (1 −𝜓2)𝑤1
⇐= 1 − 𝜇2(𝑡) + 𝜇2(𝑡) (1 −𝜓2) < 𝑐1.

Since 𝑐1 > (1 −𝜓2)𝑤1, 𝜇∗∗2 < 1.
Partial-challenge phase. When 𝜇2(𝑡) < 𝜇∗∗2 and 𝜇1(𝑡) < 𝜈∗∗1 , a strategic player 1 challenges with a
probability less than one so that player 2 indifferent between seeing and yielding to a challenge:

𝛽∗∗1 (𝑡)/𝛾1 = 𝜇1(𝑡)
1 − 𝜇1(𝑡)

/
𝜈∗∗1

1 − 𝜈∗∗1
,

and a strategic player 2 yields with probability

𝑞∗∗2 (𝜇2) = 𝑐1 −𝑤1(1 − 𝜇2𝜓1)
1 − 𝜇2 −𝑤1(1 − 𝜇2) ,

which coincides with 𝑞2(𝜇2) in Equation (4) when𝜓1 = 1. In this phase, player 𝑖 concedes at AG rate 𝜆𝑖 .
Full-challenge phase. When 𝜇2(𝑡) < 𝜇∗∗2 and 𝜇1(𝑡) ⩾ 𝜈∗∗1 , player 1 challenges with probability one and
a strategic player 2 does not see a challenge, but she concedes at a lower rate than 𝜆2 so that a strategic
player 1 is indifferent between conceding and not:

𝜆∗∗2 (𝑡) = 𝜆2 − 𝛾1 [𝜇∗∗2 − 𝜇2(𝑡)] [1 − (1 −𝜓2)𝑤1] .

No-challenge phase. When 𝜇2(𝑡) ⩾ 𝜇∗∗2 , a strategic player 1 does not challenge; a strategic player 2 sees
a challenge if and only if 𝜇1(𝑡) ⩽ 𝜈∗∗1 . Each player 𝑖 concedes at rate 𝜆𝑖 .

Second, suppose 𝜈∗∗1 ⩾ 1. In this case, regardless of a strategic player 1’s choice of challenge, player 2
strictly prefers seeing a challenge. Then given player 2’s optimal response to a challenge, because 𝑐1 > 𝑤1,
a strategic player 1 strictly prefers not to challenge, and he is indifferent in concession time when player
2 concedes at rate 𝜆2. He can adjust his concession rate so that player 2 is indifferent in concession time:

𝜆∗∗1 (𝑡) = 𝜆1 − 𝛾1 [𝜇1(𝑡) (1 −𝜓1) (1 −𝑤1) − 𝑘2],

which is positive when 𝜇1(𝑡) <
(
𝜆1
𝛾1

+ 𝑘2
)

1
1−𝜓1

1
1−𝑤1

=: 𝜇∗∗1 .
Equilibrium. If 𝜇∗∗1 ⩾ 1, there is a unique equilibrium in which after time zero, player 1 concedes at rate

O16



𝜆∗∗1 (𝑡) and player 2 concedes at rate 𝜆∗∗2 (𝑡), and their reputation for commitment reaches one at the same
time. If 𝜇∗∗1 < 1, there is a unique equilibrium in which a strategic player 1 does not challenge and concedes
right away and a strategic player 2 does not concede and waits for a challenge.

C.3 Alternative resolution mechanisms

We examine alternative specifications of the external resolution outcome. For this examination, we stick
with the benchmark model for all other components, including frictionless arrival of challenges for unjus-
tified players. These alternative specifications show the generality of our analysis.

C.3.1 Costless resolution

Consider the case in which external resolution is costless: 𝑐1 = 𝑘2 = 0. Because 𝑘2 = 0, an unjustified
player 2 strictly prefers seeing a challenge. Given player 2’s strategy of always seeing, an unjustified player
1 challenges if 𝜇2 < 1−𝑐1/𝑤1 and does not challenge if 𝜇2 ⩾ 1−𝑐1/𝑤1. When 𝑐1 = 0, an unjustified player
1 strictly prefers challenging to conceding.19

There is a unique equilibrium in which player 1 mixes over challenge time without ever conceding.
An unjustified player 1 challenges at rate 𝛽1(𝑡) so that player 2 is indifferent between conceding now and
conceding a moment later, since the cost of waiting balances its benefit:

𝛽1(𝑡) = 𝜆1
(1 − 𝜇1(𝑡)) (1 −𝑤1) .

Player 1’s overall challenge rate is
𝜒1(𝑡) = 𝜇1(𝑡)𝛾1 + 𝜆1

1 −𝑤1
.

Player 2’s overall concession rate is

𝜆2(𝑡) = 𝜆2 + 𝑟1(1 − 𝜇2(𝑡))𝑤1

1 −𝑤1
,

higher than 𝜆2, for player 1 to sustain indifference to challenge across time.
Player 2’s reputation evolution is ¤𝜇2(𝑡) = 𝜆2(𝑡). Player 1’s reputation evolution is

¤𝜇1(𝑡) = 𝜆1
1 −𝑤1

− (1 − 𝜇1(𝑡))𝛾1,

which is positive if 𝜇1 > 1 − 𝜆1/[𝛾1(1 − 𝑤1)]. It is possible that the reputation coevolution curve tends
toward the x-intercept 1 − 𝜆1/[𝛾1(1 −𝑤1)] if it is positive. If it is nonpositive, the curve tends toward the
origin instead; Figure O2a illustrates one such reputation coevolution curve. At time zero, either player
1 challenges with a positive probability (if the initial reputations are strictly to the left of the curve), or
player 2 concedes with a positive probability (strictly to the right of the curve), or neither (on the curve).

19If 𝑐1 ⩾ 𝑤1, then an unjustified player 1 never challenges and the current setting boils down to a setting without profitable
ultimatum opportunities for unjustified players (note that it still differs from AG, because justified players challenge).

O17



𝜇1

𝜇2

0

1

1

challenge/no concede

(a) Costless or random external resolution
𝑐1 = 0 or win against justified

𝜇1

𝜇2

0

1

1

𝜇∗2 =
1 − 𝑐1

𝜇𝐿2 =

1 − 𝑐1
𝑤1

challenge/no concede

challenge/concede

concede/no challenge

(b) Noisy external resolution
0 < 𝑐1 < 𝑤1

Figure O2: Strategy phases in games with one-sided ultimatum opportunities and alternative external
resolution mechanisms
Note. In games with costless or random external resolution (𝑐1 = 0 or an unjustified player can win against a justified player), an
unjustified player strictly prefers challenging to conceding, and challenges at a positive rate throughout the game. In games with
costly noisy external resolution, there are three phases: an unjustified player 1 (i) challenges at positive rate without concession
while 2 concedes and always sees a challenge, (ii) mixes between challenging and conceding while 2 mixes between seeing and
yielding to a challenge, and (iii) does not challenge while 2 does not see a challenge.

C.3.2 Random resolution

Suppose external resolution is independent of demand justifiability: Player 𝑖 gets 𝑎𝑖 and 1 − 𝑎 𝑗 with equal
probability.20 In this case, for sufficiently small cost 𝑘2, it is a dominant strategy for an unjustified player
2 to see the challenge, and an unjustified player 1 strictly prefers challenging to conceding for sufficiently
small cost 𝑐1. Hence, the game is in a strategy phase similar to that illustrated by Figure O2a.

An unjustified player 1 never concedes, since he always benefits from challenging. An unjustified
player 2 does not yield to a challenge, but mixes between conceding and waiting at each instant. She is
indifferent between conceding and waiting when player 1 challenges at the overall rate

𝜒1(𝑡) = 𝑟2(1 − 𝑎1)
𝐷/2 − 𝑘2𝐷 =

𝜆1
1/2 − 𝑘2 =: 𝜒1𝑘 ,

a constant rate. Note that when 𝑘2 = 0, 𝜒1𝑘 = 2𝜆1.
An unjustified player 1 is indifferent between challenging at time 𝑡 and challenging at time 𝑡 +𝑑𝑡 , when

player 2 chooses a concession rate

𝜆2(𝑡) = 𝑟1 [𝑎1 + (1 − 𝑎2) − 2𝑐1𝐷]
𝐷 − 2𝑐1𝐷

=: 𝜆2𝑘 ,

20For example, Lee and Liu (2013) consider bargaining with random settlement in a repeated-game setting with a long-run
player and a sequence of short-run players.

O18



which is again a constant rate. Note that when 𝑐1 = 0, 𝜆2𝑘 = 𝜆2 + 𝑟1𝑎1/𝐷 > 2𝜆2.
If 𝜇1(𝑡)𝛾1 > 𝜒1𝑘 , then the overall challenge rate must be higher than 𝜒1𝑘 . Hence, for 𝜇1(𝑡) > 𝜒1𝑘/𝛾1,

the indifference cannot be sustained, and an unjustified player 2 strictly prefers conceding at time 𝑡 +𝑑𝑡 to
conceding at time 𝑡 . Because player 2 does not have an incentive to concede, an unjustified player 1 does
not have an incentive to challenge over time. In this case, an unjustified player 1 challenges at time zero.

Therefore, when 𝛾1 > 𝜒1𝑘 , an unjustified player 1 challenges right away; and when 𝛾1 ⩽ 𝜒1𝑘 , player 1
challenges at rate 𝜒1𝑘 and player 2 concedes at rate 𝜆2𝑘 .

C.3.3 Equal-split resolution

Suppose that equal-split is the external resolution regardless of players’ claims or the justifiability of their
claims. For example, there is a court that rules randomly or a war that has an equal chance of both sides
winning and claiming the entire pie. Suppose 1/2−𝑐1 > 1−𝑎2 so that player 1 strictly prefers challenging
to conceding, and suppose 1/2−𝑘2 > 1−𝑎1 so that player 2 always sees a challenge. At time 𝑡 > 0, player
1 challenges at rate 𝜒1(𝑡) and player 2 concedes at rate 𝜆2(𝑡), where 𝜒1(𝑡) = 𝑟2(1 − 𝑎1)/(𝑎1 − 𝑘2 − 1/2)
and 𝜆2(𝑡) = 𝑟1(1/2 − 𝑐1)/(𝑎1 + 𝑐1 − 1/2).
C.3.4 Noisy resolution

Wehave assumed that𝑤1 < 𝑐1 in the benchmarkmodel. Now assume𝑤1 > 𝑐1.21 In this case, an unjustified
player 1 strictly prefers challenging to conceding when player 2 has a sufficiently low reputation, so there
is a strategy phase in which player 1 challenges without concession. For a sufficiently high reputation of
player 2, challenging is weakly dominated by concession, and the two phases of challenge (with concession)
and no challenge exist, as in the benchmark model. Figure O2b illustrates the three strategy phases, which
combine the strategy phase illustrated in the first three alternative specifications and the two strategy
phases in the benchmark model.

Concretely, an unjustified player 1 strictly prefers challenging to conceding at time 𝑡 if 𝜇2(𝑡) < 1 −
𝑐1/𝑤1 =: 𝜇𝐿2 .

22 Because player 1 does not concede, for an unjustified player 2 to have an incentive to wait,
she must be yielding to a challenge with probability zero, 𝑞2(𝑡) = 0, and receives a strictly higher payoff
than 1− 𝑎1; otherwise, yielding to a challenge results in the same payoff as conceding, which can be done
without time delay. Hence, 𝑞2(𝑡) = 0, and she is indifferent between conceding at time 𝑡 and conceding at
time 𝑡 + 𝑑𝑡 when an unjustified player 1 bluffs at rate

𝛽1(𝑡) = 𝜆1 + 𝑘2𝜇1(𝑡)𝛾1
[1 − 𝜇1(𝑡)] (1 −𝑤1 − 𝑘2) =

𝜆1
1 −𝑤1

1

1 − 𝜇1(𝑡)
1

𝜈∗1
+ 𝜇1(𝑡)
1 − 𝜇1(𝑡)

1 − 𝜈∗1
𝜈∗1

𝛾1.

Player 2 concedes at overall rate

𝜆2(𝑡) = 𝜆2 + (1 − 𝜇2(𝑡))𝑤1 − 𝑐1
1 −𝑤1 + 𝑐1 .

21We maintain the assumption that 𝑘2 < 1 −𝑤1, though it can also be relaxed.
22The bound is derived from the inequality [1 − 𝜇2 (𝑡)] (1 − 𝑎2 +𝑤1𝐷) + 𝜇2 (𝑡) (1 − 𝑎2) − 𝑐1𝐷 > 1 − 𝑎2.
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Player 1’s reputation evolution is characterized by

¤𝜇1(𝑡) = 𝜒1(𝑡) − 𝛾1 = 𝜆1
1 −𝑤1

1

𝜈∗1
+ 𝜇1(𝑡)

𝜈∗1
𝛾1 − 𝛾1.

C.4 Two-sided ultimatum opportunities

Now consider the setting in which both players can challenge. Each player 𝑖 ∈ {1, 2} has a single demand
type 𝑎𝑖 such that the amount of disagreement is 𝐷 = 𝑎1 + 𝑎2 − 1 > 0. Specifically, a justified player 𝑖
challenges according to a Poisson process with arrival rate 𝛾𝑖 ∈ [0,∞), and to illustrate the main points,
an unjustified player 𝑖 can time a challenge strategically (𝜌𝑖 = ∞). At each instant 𝑡 , each unjustified player
can (i) give in to the other player’s demand, (ii) hold on to their demand———or, if an opportunity arrives, (iii)
challenge. If the players neither challenge nor concede, then the game continues. Player 𝑖 who challenges
at time 𝑡 incurs a cost 𝑐𝑖𝐷 and player 𝑗 ≠ 𝑖 must respond to the challenge, by either yielding to the challenge
and getting 1 − 𝑎 𝑗 or seeing the challenge by paying a cost 𝑘 𝑗𝐷 . When player 𝑗 sees the challenge, the
shares of the pie are determined as follows. An unjustified player 𝑖’s payoff against a justified player 𝑗 is
1−𝑎 𝑗 . If two unjustified players meet, then the challenging player 𝑖 wins with probability𝑤𝑖 < 1/2: Player
𝑖 gets 𝑎𝑖 with probability𝑤𝑖 and 1−𝑎 𝑗 with probability 1−𝑤𝑖 , so the challenging player 𝑖’s expected payoff
is 1 − 𝑎 𝑗 +𝑤𝑖𝐷 , and the defending player 𝑗 ’s expected payoff is 1 − 𝑎𝑖 + (1 −𝑤𝑖)𝐷 . To make challenging
and seeing a challenge worthwhile for player 𝑖 , assume𝑤𝑖 < 𝑐𝑖 < 1 and 0 < 𝑘𝑖 < 1 −𝑤𝑖 for 𝑖 = 1, 2.

In summary, 𝐵 = ({𝑎𝑖 , 𝑧𝑖 , 𝑟𝑖 , 𝛾𝑖 , 𝑐𝑖 , 𝑘𝑖 ,𝑤𝑖}2𝑖=1), a bargaining game with two-sided ultimatum opportunities

and single demand types, is described by demands 𝑎1 and 𝑎2, players’ prior probabilities 𝑧1 and 𝑧2 of being
justified, discount rates 𝑟1 and 𝑟2, challenge opportunity arrival rates𝛾1 and𝛾2, bluffing opportunity arrival
rates 𝜌1 and 𝜌2, challenge costs 𝑐1𝐷 and 𝑐2𝐷 , seeing costs 𝑘1𝐷 and 𝑘2𝐷 , and unjustified challengers’
winning probabilities𝑤1 and𝑤2 against unjustified defendants.

Formally, let Σ𝑖 = (𝐹𝑖 ,𝐺𝑖 , 𝑝𝑖 , 𝑞𝑖) denote an unjustified player 𝑖’s strategy, where 𝐹𝑖 (𝑡) is player 𝑖’s
probability of conceding by time 𝑡 , 𝐺𝑖 (𝑡) is player 𝑖’s probability of challenging by time 𝑡 , 𝑝𝑖 (𝑡) is player
𝑖’s probability of challenging when a bluffing opportunity arrives, and 𝑞𝑖 (𝑡) is player 𝑖’s probability of
conceding to a challenge at time 𝑡 . Restrict 𝐹𝑖 and𝐺𝑖 to be right-continuous and increasing functions with
𝐹𝑖 (𝑡) + 𝐺𝑖 (𝑡) ⩽ 1 for every 𝑡 ⩾ 0, and 𝑞𝑖 (𝑡) ∈ [0, 1] to be a measurable function. We again study the
Bayesian Nash equilibrium of this game. The belief process is naturally defined, with 𝜇𝑖 (𝑡), 𝜈𝑖 (𝑡), and 𝜒𝑖 (𝑡)
analogously defined as in the game with one-sided ultimatum opportunities.

C.4.1 Formal description of the game

Let us formally describe the strategies and payoffs of the (unjustified) players. Let Σ𝑖 = (𝐹𝑖 ,𝐺𝑖 , 𝑞𝑖) denote
an unjustified player 𝑖’s strategy, where 𝐹𝑖 (𝑡) is player 𝑖’s probability of conceding by time 𝑡 ,𝐺𝑖 (𝑡) is player
𝑖’s probability of challenging by time 𝑡 , and 𝑞𝑖 (𝑡) is player 𝑖’s probability of conceding to a challenge at
time 𝑡 . Restrict 𝐹𝑖 and𝐺𝑖 to be right-continuous and increasing functions with 𝐹𝑖 (𝑡) +𝐺𝑖 (𝑡) ⩽ 1 for every
𝑡 ⩾ 0, and 𝑞𝑖 (𝑡) ∈ [0, 1] to be a measurable function. For 𝑖 = 1, 2, player 𝑖’s time-zero expected utility of
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(c) 𝛾1 ⩽ 𝜆1 and 𝛾2 > 𝜆2.

Figure O3: Reputation coevolution curves and initial concessions in games with two-sided ultimatum
opportunities and single demand types when 𝛾𝑖 ⩽ 𝜆𝑖 for some 𝑖 = 1, 2.
Note. There is a unique equilibrium outcome, and the game ends in finite time. The reputation coevolution curve divides the
plane into two regions that differ in the player who concedes with a positive probability at time 0. The curve tends to (0, 0) when
𝛾1 ⩽ 𝜆1 and 𝛾2 ⩽ 𝜆2, to (𝜙∗1𝜈∗1, 0) when 𝛾1 > 𝜆1 and 𝛾2 ⩽ 𝜆2, and to (0, 𝜙∗2𝜈∗2) when 𝛾1 ⩽ 𝜆1 and 𝛾2 > 𝜆2.

conceding at time 𝑡 is

𝑈𝑖 (𝑡, 𝑞𝑖 , Σ 𝑗 ) = 𝑊𝑖 (𝑡, 𝑞𝑖 , Σ 𝑗 ) + 𝑒−𝑟𝑖𝑡 (1 − 𝑎 𝑗 )
[
1 − (1 − 𝑧 𝑗 )𝐹 𝑗 (𝑡) − (1 − 𝑧 𝑗 )𝐺 𝑗 (𝑡) − 𝑧 𝑗 (1 − 𝑒−𝛾 𝑗 𝑡 )

]
+𝑒−𝑟𝑖𝑡 (1 − 𝑧 𝑗 )

[
𝐹 𝑗 (𝑡) − 𝐹 𝑗 (𝑡−)

] 𝑎𝑖 + 1 − 𝑎 𝑗
2

, (16)

where

𝑊𝑖 (𝑡, 𝑞𝑖 , Σ 𝑗 ) = (1 − 𝑧 𝑗 )
∫ 𝑡

0
𝑎𝑖𝑒

−𝑟𝑖𝑠𝑑𝐹 𝑗 (𝑠) + 𝑧 𝑗
∫ 𝑡

0

{
1 − 𝑎 𝑗 −

[
1 − 𝑞𝑖 (𝑠)

]
𝑘𝑖𝐷

}
𝑒−𝑟𝑖𝑠𝛾 𝑗𝑒−𝛾 𝑗𝑠𝑑𝑠

+(1 − 𝑧 𝑗 )
∫ 𝑡

0

{
1 − 𝑎 𝑗 +

[
1 − 𝑞𝑖 (𝑠)

] [
(1 −𝑤 𝑗 )𝐷 − 𝑘𝑖𝐷

]}
𝑒−𝑟 𝑗𝑠𝑑𝐺𝑖 (𝑠),

and it is assumed that players equally divide their surplus if they concede simultaneously, which happens
with probability zero in equilibrium. Player 𝑖’s time-zero expected utility of challenging at time 𝑡 is

𝑉𝑖 (𝑡, 𝑞𝑖 , Σ 𝑗 ) = 𝑊𝑖 (𝑡, 𝑞𝑖 , Σ 𝑗 ) + (1 − 𝑧 𝑗 ) [1 − 𝐹 𝑗 (𝑡) −𝐺 𝑗 (𝑡−)]𝑒−𝑟𝑖𝑡 [(1 − 𝑞 𝑗 (𝑡))𝑤𝑖 + 𝑞 𝑗 (𝑡)]𝐷
+ [

1 − (1 − 𝑧 𝑗 )𝐹 𝑗 (𝑡) − (1 − 𝑧 𝑗 )𝐺 𝑗 (𝑡) − 𝑧 𝑗
(
1 − 𝑒−𝛾 𝑗 𝑡 ) ] 𝑒−𝑟𝑖𝑡 (1 − 𝑎 𝑗 − 𝑐𝑖𝐷) + (1 − 𝑧 𝑗 ) ×

[𝐺 𝑗 (𝑡) −𝐺 𝑗 (𝑡−)]
{
1 − 𝑎 𝑗 + 1

2
[(1 − 𝑞𝑖 (𝑠)) (1 −𝑤 𝑗 ) − 𝑘𝑖]𝐷 + 1

2
[(1 − 𝑞 𝑗 (𝑡))𝑤𝑖 + 𝑞 𝑗 (𝑡)]𝐷

}
,

where it is assumed that players resolve the dispute in court and players are equally likely to be the chal-
lenger if they challenge simultaneously at time 𝑡 , which happens with probability zero in equilibrium, and
Player 𝑖’s expected utility from strategy Σ𝑖 is

𝑢𝑖 (Σ𝑖 , Σ 𝑗 ) =
∫ ∞

0
𝑈𝑖 (𝑠, 𝑞𝑖 , Σ 𝑗 )𝑑𝐹𝑖 (𝑠) +

∫ ∞

0
𝑉𝑖 (𝑠, 𝑞𝑖 , Σ 𝑗 )𝑑𝐺𝑖 (𝑠).
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We again study the Bayesian Nash equilibria of this game. Let 𝜇𝑖 (𝑡) denote the posterior belief (of
player 𝑗 ≠ 𝑖) that player 𝑖 is justified conditional on the game not ending by game time 𝑡 . By Bayes’ rule,

𝜇𝑖 (𝑡) :=
𝑧𝑖

[
1 −

∫ 𝑡
0
𝛾𝑖𝑒

−𝛾𝑖𝑠𝑑𝑠
]

𝑧𝑖
[
1 −

∫ 𝑡
0
𝛾𝑖𝑒−𝛾𝑖𝑠𝑑𝑠

]
+ (1 − 𝑧𝑖) [1 − 𝐹𝑖 (𝑡−) −𝐺𝑖 (𝑡−)]

.

Let 𝜈𝑖 (𝑡) denote the posterior belief that player 𝑖 is justified if player 𝑖 challenges at time 𝑡 . If 𝐺𝑖 has an
atom at 𝑡 , then 𝜈𝑖 (𝑡) = 0. If 𝐺𝑖 is differentiable at 𝑡 , then

𝜈𝑖 (𝑡) = 𝜇𝑖 (𝑡)𝛾𝑖
𝜇𝑖 (𝑡)𝛾𝑖 + [1 − 𝜇𝑖 (𝑡)]𝛽𝑖 (𝑡) ,

where 𝜒𝑖 (𝑡) is the hazard rate of challenging for an unjustified player 𝑖 ,

𝛽𝑖 (𝑡) =
𝐺 ′
𝑖 (𝑡)

1 − 𝐹𝑖 (𝑡−) −𝐺𝑖 (𝑡−) .

C.4.2 Slow ultimatum opportunity arrival for at least one player

There is a unique equilibrium outcome under the assumption that 𝛾𝑖 ⩽ 𝜆𝑖 := 𝑟 𝑗 (1−𝑎𝑖)/𝐷 for some 𝑖 = 1, 2.
This assumption is automatically satisfied in the setting with one-sided ultimatum opportunities, which is
essentially a setting with two-sided ultimatum opportunities but 𝛾2 = 0 < 𝜆2. This condition guarantees
that the reputations always increase in equilibrium and the game ends in finite time. The four properties
in Theorem 1 are modified to incorporate the possibility of player 2 challenging, as follows. Theorem 4
summarizes the results.

Equilibrium strategies are analogous to those in the setting with one-sided ultimatum opportunities:
After at most one player concedes initially, each player 𝑖 concedes at the overall AG concession rate 𝜆𝑖 , each
player 𝑖 challenges at an increasing overall rate 𝜒𝑖 (𝑡) = 𝜇𝑖 (𝑡)𝛾𝑖/𝜈∗𝑖 up to time 𝑇𝑖 to guarantee a challenger
𝑖 a reputation 𝜈∗𝑖 := 1 − 𝑘 𝑗/(1 −𝑤𝑖), the level that renders an unjustified opponent 𝑗 indifferent between
seeing and yielding to a challenge.

Again, the reputation coevolution diagram can be used to determine the player and magnitude of the
initial concession. Figure O3 illustrates the three possible reputation coevolution curves when 𝛾𝑖 ⩽ 𝜆𝑖

for some 𝑖 = 1, 2. When 𝛾𝑖 ⩽ 𝜆𝑖 for both players (Figure O3a), the reputation coevolution curve tends to
(0, 0). When 𝛾𝑖 > 𝜆𝑖 for some 𝑖 = 1, 2 (Figures O3b and O3c), the reputation coevolution curve tends to the
intercept 𝜙∗

𝑖 𝜈
∗
𝑖 , where 𝜙∗

𝑖 := 1 − 𝜆𝑖/𝛾𝑖 .
The implications in this setting with two-sided ultimatum opportunities and slow arrival for at least

one side are mostly analogous to those in the setting with one-sided ultimatum opportunities. Namely, the
hazard rates are discontinuous and piecewise monotonic, with the possibility of having two discontinuities
at the finite times when each player stops challenging (modifying the one discontinuity at the finite time
when player 1 stops challenging). Ultimatum opportunities may benefit or hurt players, but definitely
hurt them in the limit case of rationality———i.e., the case with vanishing probabilities of being justified
(preserving the qualitative results of Proposition 1). More precisely, in the limit case of rationality, the
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outcome is efficient if 𝜆1−𝛾1 ≠ 𝜆2−𝛾2, and the winner is player 𝑖 if 𝜆𝑖 −𝛾𝑖 > 𝜆 𝑗 −𝛾 𝑗 (modifying Proposition
1). The comparative statics results in Proposition 3 are generalized for both 𝑖 = 1, 2, with player 𝑖’s payoff
(weakly) hurt by decreasing initial reputation 𝑧𝑖 , increasing discount rate 𝑟𝑖 , increasing challenging cost
𝑐𝑖 , increasing challenge response cost 𝑘𝑖 , and decreasing challenge winning probability𝑤𝑖 .

Theorem 4. Consider 𝐵 =
({𝑎𝑖 , 𝑧𝑖 , 𝑟𝑖 , 𝛾𝑖 , 𝑐𝑖 , 𝑘𝑖 ,𝑤𝑖}2𝑖=1) , a bargaining game with two-sided ultimatum oppor-

tunities and single demand types. If 𝜆𝑖 ⩾ 𝛾𝑖 for some 𝑖 = 1, 2, there exist finite times𝑇 and𝑇1,𝑇2 ∈ [0,𝑇 ) such
that equilibrium strategies satisfy the following properties. For both 𝑖 = 1, 2,

1. 𝐹𝑖 is strictly increasing in (0,𝑇 ) and constant for 𝑡 ⩾ 𝑇 ;
2. 𝐹𝑖 is atomless in (0,𝑇 ] and at most one of the two has an atom at 𝑡 = 0;

3. 𝐹𝑖 (𝑇 ) +𝐺𝑖 (𝑇𝑖) = 1.

4. (a) 𝐺𝑖 is atomless, strictly increasing in [0,𝑇𝑖], and constant for 𝑡 ⩾ 𝑇𝑖 ; (b) For almost every 𝑡 ∈ [0,𝑇 ],
𝑞𝑖 (𝑡) ∈ (0, 1) if 𝑡 ∈ [0,𝑇𝑖] and 𝑞𝑖 (𝑡) = 1 if 𝑡 ∈ (𝑇𝑖 ,𝑇 ]; Moreover, 𝐹𝑖 and𝐺𝑖 are unique, and 𝑞𝑖 is unique almost

everywhere for 𝑡 ⩽ 𝑇 .

Proof of Theorem 4. All properties in the equilibrium characterization in the setting with one-sided
ultimatum opportunities are satisfied. Therefore, we can derive the equilibrium strategies and reputations
as follows.
Players’ conceding strategies. In equilibrium, players concede at the same rates as in AG. Players are
indifferent between conceding and waiting to concede the next instant. An unjustified player concedes
at a rate 𝜅𝑖 = 𝜆𝑖/(1 − 𝜇𝑖) to make the opposing unjustified player indifferent between conceding and not
conceding, where 𝜆𝑖 = 𝑟 𝑗 (1 − 𝑎𝑖)/𝐷.
Player 𝑖’s optimal yielding strategy. An unjustified player 𝑖 is indifferent between responding and
yielding when player 𝑗 ≠ 𝑖 is believed to be justified with probability 𝜈 𝑗 = 1 − 𝑘𝑖/(1 −𝑤) =: 𝜈∗𝑗 , strictly
prefers to respond when 𝜈 𝑗 < 𝜈∗𝑗 , and strictly prefers to yield when 𝜈 𝑗 > 𝜈∗𝑗 .
Player 𝑖’s optimal challenging strategy. We consider the optimal challenging strategy of an unjustified
player 𝑖 who believes that player 𝑗 ≠ 𝑖 is justified with probability 𝜇 𝑗 and an unjustified player 𝑗 yields
to a challenge with probability 𝑞 𝑗 . An unjustified player 𝑖 is indifferent between challenging and not
challenging if 𝜇 𝑗 = 1 − 𝑐𝑖/[𝑞 𝑗 + (1 − 𝑞 𝑗 )𝑤]. In particular, an unjustified player 𝑖 strictly prefers not to
challenge when 𝜇 𝑗 < 1 − 𝑐𝑖 =: 𝜇∗𝑗 .
Candidate equilibrium challenging and yielding strategies. If player 𝑗 is justified with a probability
more than 𝜇∗𝑗 , an unjustified player 𝑖 strictly prefers not to challenge. If player 𝑗 is justified with a probabil-
ity less than 𝜇∗𝑗 , an unjustified player 𝑖 must challenge at rate 𝜒 𝑗 to make player 𝑖 believe that a challenging
player 𝑖 is justified with probability 𝜈∗𝑖 := 1 − 𝑘 𝑗/(1 −𝑤𝑖):

𝜇𝑖𝛾𝑖
𝜇𝑖𝛾𝑖 + (1 − 𝜇𝑖)𝜒𝑖 = 𝜈

∗
𝑖 =⇒ 𝜒𝑖 (𝜇𝑖) =

1 − 𝜈∗𝑖
𝜈∗𝑖

𝜇𝑖
1 − 𝜇𝑖 𝛾𝑖 .

If an unjustified player 𝑖 challenges at a rate higher than the specified rate, then an unjustified player 𝑗 is
strictly better off responding than yielding to the challenge. If an unjustified player 𝑖 challenges at a rate
lower than the specified rate, then an unjustified player 2 is strictly worse off responding than yielding to
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the challenge. On the other hand, to make player 𝑖 indifferent between challenging and not challenging,
player 𝑗 yields to a challenge with probability

𝑞 𝑗 (𝜇 𝑗 ) = 1

1 −𝑤𝑖

(
𝑘𝑖

1 − 𝜇 𝑗 −𝑤𝑖
)
.

Reputation in the challenge phase. When an unjustified player 𝑖 challenges, player 𝑖’s reputation
follows the Bernoulli differential equation

𝜇′𝑖 (𝑡) = (𝜆𝑖 − 𝛾𝑖)𝜇𝑖 (𝑡) + 𝛾𝑖
𝜈∗𝑖
𝜇2𝑖 (𝑡).

Reputation in the no-challenge phase. When an unjustified player 𝑖 does not challenge, player 𝑖’s
reputation follows the Bernoulli differential equation

𝜇′𝑖 (𝑡) = (𝜆𝑖 − 𝛾𝑖)𝜇𝑖 (𝑡) + 𝛾𝑖𝜇2𝑖 (𝑡) .

Finite time. If 𝜆𝑖 ⩾ 𝛾𝑖 for some 𝑖 = 1, 2, then 𝜇′𝑖 (𝑡) ⩾ 𝛾𝑖𝑧2𝑖 for all 𝜇𝑖 (𝑡) ⩾ 𝑧𝑖 . Hence, 𝜏 < ∞.
According to the differential equations that characterize players’ reputations, a reputation coevolu-

tion diagram can be uniquely drawn backward from (1, 1), the pair of terminal reputations. Hence, the
strategies are uniquely pinned down as claimed. □

C.4.3 Fast ultimatum opportunity arrival for both players

One main difference from the setting with one-sided ultimatum opportunities is that when 𝛾𝑖 > 𝜆𝑖 for both
𝑖 = 1, 2 and both players’ initial reputations are sufficiently small, there are equilibria in which reputations
do not reach 1 and/or do not build up at all, and possibly equilibria with varying initial concession possi-
bilities. Consequently, inefficient infinite delay (i.e., 𝑇 = ∞) may arise. Inefficient infinite delays manifest
in two classes of equilibria. In the first class, players concede at AG rates, but their reputations cannot
build up because of the fast arrival of ultimatum opportunities for justified types, and consequently they
challenge at decreasing rates. Players’ reputations approach zero but never reach it. This type of equilibria,
with ever declining reputations, exists when both players’ initial reputations are sufficiently small. In this
case, one of the players may concede with a strictly positive———but sufficiently small———probability at time
zero, and still both players experience subsequent declining reputations. This creates the indeterminacy
of the initial concessions and the existence of a continuum of equilibria with different initial concession
probabilities by different players.23 In the second class of equilibria, players concede at AG rates and rep-
utations may decrease or increase toward an absorbing belief 𝜇∗𝑖 := 1−𝑐𝑖 , the reputation level that renders
the opponent indifferent between challenging and not challenging. Upon the reputation reaching this ab-
sorbing level, the challenge rates balance the exit of unjustified and justified types for each player such
that their reputations, conditional on the game not ending, stay constant at 𝜇∗1 and 𝜇

∗
2, respectively. This

second class of equilibria may or may not exist, depending on the parameters of the model.

23There may also be equilibria in which one player’s reputation stays constant and the other’s reputation declines to zero but
never reaches it. If the reputations before or after initial concessions lie on the purple lines in Figure O4, such equilibria arise.
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Figure O4: Demonstration of the range of initial reputations with infinite-delay equilibria in bargaining
games with two-sided ultimatum opportunities and single demand types when 𝛾𝑖 > 𝜆𝑖 for both 𝑖 = 1, 2.
(a) Type-1 equilibria in which players concede at AG rates for 𝑡 > 0 exist if 𝑧𝑖 ⩽ 𝜙∗𝑖 𝜈

∗
𝑖 , and there is no type-2 equilibrium, one

in which both players’ reputations eventually converge to (𝜇∗1, 𝜇∗2). (b) Type-1 equilibria exist if 𝑧𝑖 ⩽ 𝜙∗𝑖 𝜈∗𝑖 for both 𝑖 , and type-2
equilibria exist if 𝑧𝑖 ∈ (𝜙∗𝑖 𝜈∗𝑖 , 𝜙∗𝑖 ) for at least one 𝑖 and 𝑧𝑖 < 𝜙∗𝑖 for both 𝑖; (c) Type-1 equilibria exist if 𝑧𝑖 < 𝜙∗𝑖 𝜈

∗
𝑖 for both 𝑖 , and

type-2 equilibria exist if 𝑧𝑖 ∈ (𝜙∗𝑖 𝜈∗𝑖 , 𝜙∗𝑖 ) for at least one 𝑖 and 𝑧𝑖 < 𝜙∗𝑖 for both 𝑖 . In the regions not covered, a unique finite-𝑇
equilibrium exists.

Figure O4 illustrates the regions of initial reputations with these two classes of equilibria with possibly
infinite delays. The first class of equilibria always exists when 𝛾𝑖 > 𝜆𝑖 for both 𝑖 = 1, 2 for a range of initial
reputations (the purple areas in the graphs, with the boundary highlighted if such equilibria may exist on
it). The second type of equilibria (indicated by the player of initial concession in the graphs) may not exist
(Figure O4a), may exist as the unique equilibrium in a range of initial reputations (Figure O4b), and may
coexist with the first class of equilibria for a range of parameters (Figure O4c). Appendix C.4.3 provides
a comprehensive description of equilibrium reputations and strategies in this setting.24 Multiple equilib-
ria arise in previous reputational bargaining models (e.g., Atakan and Ekmekci (2014) and Sanktjohanser
(2022)), but to the best of our knowledge, multiplicity due to inefficient infinite delays and reputations not
building up is a new feature in the literature.

When 𝜆𝑖 < 𝛾𝑖 for both 𝑖 = 1, 2, payoffs in the limit case of rationality are indeterminate due to the
multiplicity of equilibria. As in the other cases, efficient equilibria with no delay can be sustained in the
limit. However, different from the other cases, the most inefficient equilibrium in which player 𝑖’s payoff
is 1 − 𝑎 𝑗 for both 𝑖 = 1, 2 can also be sustained. Thus, the fast arrival of challenge opportunities may be
detrimental for efficiency.

The analysis of limit results under multiple demand types is feasible, but will inevitably lead to a
multiplicity of outcomes. This multiplicity also carries into the limit case of rationality with a rich type
space. Performing a more predictive analysis requires additional criteria to select from multiple equilibria.

The six reputation planes in Figure O5, with appropriate labeling of 𝑖 and 𝑗 as 1 and 2, cover all possible
settings with (1) 𝜇∗1 ∈ (0, 𝜙∗

1𝜈
∗
1), 𝜇∗1 ∈ [𝜙∗

1𝜈
∗
1, 𝜙

∗
1], or 𝜇∗1 ∈ (𝜙∗

1, 1), and (2) 𝜇∗2 ∈ (0, 𝜙∗
2𝜈

∗
2), 𝜇∗2 ∈ [𝜙∗

2𝜈
∗
2, 𝜙

∗
2],

24Note that the three demonstrations do not encapsulate all possible scenarios of the model. For example, the game in which
𝜇∗1 > 𝜙∗1 but 𝜇∗2 < 𝜙∗2 is not captured. However, in the cases not covered in the demonstrations, no new type of equilibria arises,
and the characterization of equilibria falls into one of the three categories described.
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Figure O5: Illustration of the characterization of equilibrium reputations in bargaining games with single
demand types and high ultimatum opportunity arrival rates 𝛾1 > 𝜆1 and 𝛾2 > 𝜆2.
The six figures, with appropriate labeling of 𝑖 and 𝑗 as 1 and 2, cover all possible settings with (1) 𝜇∗1 ∈ (0, 𝜙∗1𝜈∗1), 𝜇∗1 ∈ [𝜙∗1𝜈∗1, 𝜙∗1],
or 𝜇∗1 ∈ (𝜙∗1, 1), and (2) 𝜇∗2 ∈ (0, 𝜙∗2𝜈∗2), 𝜇∗2 ∈ [𝜙∗2𝜈∗2, 𝜙∗2], or 𝜇∗2 ∈ (𝜙∗2, 1). Each figure contains a reputation plane with player 𝑖’s
reputation on the x-axis and player 𝑗 ’s reputation on the y-axis. Each reputation plane is divided into 16 regions with 𝜇∗

𝑘
, 𝜙∗
𝑘
𝜈∗
𝑘
,

and 𝜙∗
𝑘
, 𝑘 = 𝑖, 𝑗 , as dividing lines. (Finite-𝑇 equilibrium) If the initial reputation vector lies in the white region and its boundary,

there is a unique equilibrium, which is a finite-𝑇 equilibrium with players’ reputations coevolving on the solid line to (1, 1) after
at most one player concedes at time zero. (Type-1 infinite-𝑇 equilibrium) If the initial reputation vector lies in the (lighter
and darker) purple region and its boundary, there are many infinite-𝑇 equilibria for each of which at most one player concedes
at time zero, the reputation vector after initial concession lies in the darker purple region and any darker purple lines on the
boundary of the region, and players’ reputations evolve to but never reach (0, 0), or (0, 𝜔) if (0, 𝜔) lies on a darker purple line.
(Type-2 infinite-𝑇 equilibrium) If the initial reputation vector lies in the crosshatched region excluding its boundary, there is
an infinite-𝑇 equilibrium in which at most one player concedes at time zero players’ reputations after time zero coevolve on the
dashed line to (𝜇∗𝑖 , 𝜇∗𝑗 ).

or 𝜇∗2 ∈ (𝜙∗
2, 1). Each reputation plane has player 𝑖’s reputation on the x-axis and player 𝑗 ’s reputation on

the y-axis, and is divided into 16 regions with 𝜇∗
𝑘
, 𝜙∗
𝑘
𝜈∗
𝑘
, and 𝜙∗

𝑘
, 𝑘 = 𝑖, 𝑗 , as dividing lines. Fix any of the 16

regions. For any initial reputation vector in the region or on its boundary, if neither player concedes at time
zero and both players follow the strategies specified above, the horizontal arrow in the region represents
the direction of player 𝑖’s reputation building and the vertical arrow represents the direction of player 𝑗 ’s
reputation building, with the direction strict on the dividing lines unless the dividing line is darker purple.

Equilibrium reputations must eventually reach (1, 1) in a finite-𝑇 equilibrium, or approach (0, 0), ap-
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proach (0, 𝜔) if (0, 𝜔) is on the purple line, or reach and stay at (𝜇∗𝑖 , 𝜇∗𝑗 ) in infinite-𝑇 equilibria. Using the
directions of reputation building after initial concessions, if players follow specified equilibrium strategies,
we can derive contradictions with the eventual reputation vector for any initial concession that is not part
of any equilibrium. Hence, the directions of reputation building restrict candidate equilibrium reputation
vectors immediately after initial concessions, and consequently initial concessions in equilibrium. The
set of reputation vectors that can be equilibrium reputation vectors immediately after initial concessions
is represented by a solid line, a darker purple region (and selective darker purple lines on its boundary),
and a dashed line. Specifically, the solid line represents the collection of reputation vectors immediately
after initial concessions that situates on the path to eventually reach (1, 1) if players follow specified post-
concession strategies, a darker purple region and its selected darker purple lines on its boundary represent
the collection of reputation vectors that can be supported as equilibrium reputation vector immediately
after initial concessions, and the dashed line, if it exists in a figure, collects the reputation vector that sit-
uates on a reputation coevolution curve that eventually reaches———increases or decreases to———(𝜇∗𝑖 , 𝜇∗𝑗 ) if
players follow specified post-initial-concession strategies.

The equilibrium post-initial-concession strategies must be consistent with the reputation building
specified by the solid line, the darker purple region and its appropriate boundary, and the dashed line,
and the equilibrium initial concession. The initial concession by one player is part of an equilibrium as
long as the posterior reputations after the initial concession lies on the solid lines or the darker region.
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