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1 Introduction

Two-sided many-to-one matching models with monetary transfers are crucial for understand-

ing a variety of transactional environments, including auctions, labor markets, and housing

markets. In their seminal work, Kelso and Crawford (1982) established the existence of

stable matchings, provided that firms’ production technologies satisfy gross substitutability

(no workers serve as complementary inputs in a firm’s production) and workers’ preferences

do not exhibit peer effects (workers ignore their colleagues’ identities and characteristics).

However, complementarities and peer effects are present in many important matching

markets. In industries such as manufacturing, healthcare, and software development, it is

common for tasks to require the collaboration of workers with complementary skills. In labor

markets such as academia, startups, and construction engineering, colleagues are an impor-

tant consideration when choosing where to work. Although recent literature has obtained

positive existence results by modeling large markets or considering alternative assumptions

on preferences, accommodating arbitrary production technologies and peer effects has been

challenging.

In this paper, we propose an approach that does not rely on restrictions on market size,

technologies, or preferences. We observe that matching is often an ongoing process in which

long-lived players on one side of the market interact with short-lived players or objects on the

other side over time. This dynamic is salient in many matching environments: Long-lived

sellers can serve a sequence of short-lived buyers, firms can hire a new batch of interns in

every recruitment season, and brokers can purchase newly issued securities in every trading

cycle. Given this observation, we consider stable matching as an unfolding process rather

than a static allocation. We find that in the presence of complementarities and peer effects

that destabilize static matchings, no-poaching agreements among firms can maintain stability

in the dynamic setting, even if these agreements are not legally binding. The key idea is that

dynamic incentives can act as both carrots and sticks to deter firms’ deviations. We provide

an illustrative example at the end of this section.

From a technical standpoint, our setting differs from standard repeated games since our

stage game is a cooperative game. In standard repeated games, the noncooperative stage
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game is guaranteed to have a Nash equilibrium; playing a Nash equilibrium at every history

delivers a subgame perfect Nash equilibrium. In our setting, by contrast, the cooperative

stage game may not have a stable matching, so the existence of a stable matching process

cannot be guaranteed simply by forming a static stable matching at every history. Instead,

we prove the claim by explicitly constructing a dynamic matching process. We do this

in three steps. First, we define and characterize the analog of “minmax payoffs” in the

cooperative stage game. We then use a folk-theorem like construction to show that payoff

profiles above these minmax payoffs can be sustained in a dynamically stable matching

process when firms are sufficiently patient. Finally, we show that in a no-poaching agreement

implemented through a random serial dictatorship, each firm obtains random payoffs that

first-order stochastically dominate their respective minmax payoffs.

No-poaching agreements appear in many labor markets (Krueger and Ashenfelter 2022).

They have attracted intense scrutiny in antitrust regulations, although these agreements are

often informal and nonbinding.1 A case in point is the ongoing civil antitrust litigation,

Henry, et al. v. Brown University, et al.: Despite antitrust exemptions granted to uni-

versities under the Improving America’s Schools Act of 1994, this case scrutinizes the use

of a consensus approach by universities in allocating financial aid to students. Our find-

ing adds a new perspective to this debate: While no-poaching agreements are inherently

anti-competitive, they may serve a vital role in sustaining market stability, especially in

environments lacking static stable matchings due to significant complementarities and peer

effects.

An Example. Two long-lived firms f1 and f2 each offer two internship positions every

period. Each firm treats workers as complements: It generates a revenue of $6 only when

both of its vacancies are filled and is unproductive otherwise. On the other side of the

market, every period, three new identical workers w1, w2, and w3 look for positions. For

simplicity, assume that workers’ payoffs are equal to the wages they receive. If the matching

market in every period is treated as an isolated one-shot interaction, there is no static stable

matching: In any static matching, at most one firm can be productive, and for both firms
1In US v. Adobe Systems Inc., et al., these agreements are reached via emails among CEOs and HR

officers. In Seaman v. Duke University and Binotti v. Duke University, the debate revolved around hiring
guidelines that have been mutually agreed upon by university administrators.
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to break even, there must be one worker earning zero and another worker earning no more

than $3. The unproductive firm can then form a blocking coalition with these two workers

and split the gain.

Instead of static matchings, consider the following history-dependent matching process

(illustrated in Figure 1). In each period, the market is in one of four possible states: Two

wage-suppressing collusion states C1 and C2 and two punishment states P1 and P2. Each

collusion state has a dominant firm, f1 in C1 and f2 in C2, and each punishment state has a

punished firm, f1 in P1 and f2 in P2. The market starts at and remains in state C1 until a

firm deviates. Whenever a firm deviates, the market transitions to the punishment state for

that firm and remains there for four periods; if a firm deviates during a punishment phase,

then the process transitions to the punishment phase for that firm. After this punishment

phase, the market enters the collusion state in which the non-deviating firm assumes the role

of the dominant firm and stays there until a firm deviates.

C1
(4, 2)

C2
(2, 4)

P1
(0,−6)

P2
(−6, 0)

×44×

Figure 1. A stable matching process. The first number in paren-
theses is the per-period payoff of f1, while the second number is the
payoff of f2. Black arrows represent transitions when no firm deviates,
red arrows represent transitions after f1’s deviations, and blue arrows
represent transitions after f2’s deviations.

At the beginning of every period in collusion states C1 and C2, a biased coin toss deter-

mines which firm secures the hiring rights for the current period. The dominant firm wins

with a probability of 2/3, and the nondominant firm wins with a probability of 1/3. The

firm that wins the coin toss hires two workers at zero wage, while the losing firm temporarily

shuts down. Therefore, the dominant firm obtains $4 on average, while the other obtains $2.

Notice that the collusion states feature a no-poaching agreement: In each period, the non-
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hiring firm refrains from soliciting workers from the other firm, thus forgoing an immediate

gain in the current period. In punishment states P1 and P2, the firm being punished shuts

down, while the punishing firm hires two workers each at a wage of $6. Figure 1 depicts

firms’ payoffs in each state.

To see that this matching process is dynamically stable, we use a one-shot deviation

principle (Lemma 3), which establishes dynamic stability by checking two requirements at

every history: (1) no worker wishes to unilaterally leave her matched firm to be unemployed

and (2) no firm has a profitable one-shot deviation with a group of workers who also find

this deviation profitable. Note that the first requirement is satisfied in every state of the

matching process, since all workers are weakly better off than being unemployed. We next

verify that the second requirement is also met in every state.

In punishment states, the punished firm cannot find a profitable deviation in the stage

game. The punishing firm can gain a profit in the current period by deviating, but by doing

so it would forgo the advantage of being the dominant firm in future collusive periods. As a

result, for high values of δ, the punishing firm does not find one-shot deviations profitable.

In collusion states, regardless of which firm has the hiring rights for the period, the

dominant firm finds no profitable one-shot deviations when δ is high: Any deviation would

lead to the loss of its position as the dominant firm and thus a lower long-run payoff. The

nondominant firm also has no incentive to deviate: Even though it could potentially obtain a

current-period gain of $6 by poaching workers from the winning firm, this would be followed

by a net loss of $2 for each of the next four periods (it gets $0 from shutting down, compared

with $2 in the collusive state). When firms are patient, the loss outweighs the potential gain,

so the nondominant firm also has no profitable one-shot deviations.

Some discussion of the importance of various assumptions is in order. The coin tosses in

the collusion states are public randomization devices that convexify players’ payoffs. Public

randomization simplifies our exposition but is not essential to our results, since we can also

convexify payoffs using sequence of play. Our results do, however, require firms to have the

ability to make transfers to workers, since otherwise firms would have less scope to punish

each other. In Section 4.2 we provide an example of matching without transfers in which no

dynamically stable matching process exists.

4



Related Literature. The literature on static job matching has guaranteed the existence of

stable matching by (i) imposing restrictions on preferences (Hatfield and Milgrom 2005; Sun

and Yang 2006; Echenique and Yenmez 2007; Hatfield and Kojima 2008; Pycia 2012; Hatfield,

Kominers, Nichifor, Ostrovsky and Westkamp 2013; Rostek and Yoder 2020; Kojima, Sun

and Yu 2020, 2024; Pycia and Yenmez 2023); (ii) studying large markets (Kojima, Pathak

and Roth 2013; Ashlagi, Braverman and Hassidim 2014; Azevedo and Hatfield 2018; Che,

Kim and Kojima 2019); (iii) making minimal adjustments to quotas (Nguyen and Vohra

2018); or (iv) considering strategically consistent beliefs (Rostek and Yoder 2024).2 In this

paper, we propose a different approach based on firms’ dynamic incentives.

Our paper also contributes to the literature on dynamic matching (Corbae, Temzelides

and Wright 2003; Damiano and Lam 2005; Du and Livne 2016; Kadam and Kotowski 2018a,b;

Altınok 2020; Kotowski 2020; Kurino 2020; Doval 2022; Pe�ski 2022). In addition, Ali and

Liu (2020) propose a general framework for studying coalition deviations in repeated nonco-

operative and cooperative games where all players are long-lived, and characterize when and

how dynamic incentives deter blocking coalitions. The main difference of our paper is that

we study matching markets with long-lived firms on one side and generations of short-lived

workers on the other.

The work most closely related to this paper is Liu (2023), which also incorporates carrot-

and-stick incentives into matching with long-lived firms and short-lived workers. However,

Liu (2023) focuses on repeated matching markets without transfers, which significantly con-

strains the scope of dynamic punishments and rewards. In Section 4 we present an example

with peer effects in which dynamic incentives fail to ensure stability in the absence of transfers.

Liu (2023) relies on assumptions on payoffs (i.e., gross substitutability and no peer effects) to

guarantee the existence of static stable matchings in the stage game and focuses on character-

izing when dynamic incentives can overcome the constraints of the Rural Hospital Theorem.

By contrast, our paper studies matching markets with transfers, which substantially expands

the scope of dynamic enforcement. The main contribution of the current paper is therefore

to shed light on the stabilizing role of dynamic incentives in matching markets with transfers,

2A related paper by Echenique and Yenmez (2007) considers matching with peer effects and proposes an
algorithm that finds all static stable matchings whenever they exist.
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especially when static stability breaks down due to nonstandard preferences.

The rest of the paper is organized as follows. Section 2 introduces the model. Section 3

describes the main results and their proofs. Section 4 provides extensions and discussions of

crucial assumptions. Section 5 concludes. Appendix A collects omitted proofs.

2 Model

Players. At the beginning of every period t = 0, 1, 2, . . ., a new generation of workers

enters the market to match with a fixed set of long-lived firms. Let F denote the finite set

of firms, where |F| ≥ 2. Matching is many-to-one: In every period, each firm f ∈ F has

qf > 0 hiring slots to fill. Workers are short-lived and remain in the market for only one

period. For expositional convenience, we use the same notation W to denote the finite set

of workers in every period; however, each worker w ∈ W can have a different type in every

period.3 A finite set Θw contains all possible types θw of worker w, and Θ =
Ś

w∈W Θw

is the set of type profiles of all workers. Workers’ type profile θ ∈ Θ is randomly drawn

from a distribution π ∈ ∆(Θ) for each generation. It is important to note that while we

can accommodate random θ, we do not rely on this randomness for our results. In fact, all

results hold in the special case when π is a degenerate distribution.

Each firm f has a stage-game revenue function ũf : 2W ×Θ → R defined over subsets of

workers and type profiles.4 We normalize the revenue of staying unmatched, ũf (∅, θ), to 0 for

every θ ∈ Θ. Note that for each type profile, we do not require firms’ revenue functions to

satisfy the gross substitutes condition. Firms share a common discount factor δ and evaluate

a sequence of flow utilities through exponential discounting.

Each worker cares about both her employer and her colleagues, which we will refer to

collectively as her work environment. Let Φw = (F × 2W\{w}) ∪ {(∅, ∅)} denote the set of

possible work environments of worker w, where (∅, ∅) represents staying unmatched. Each

3Our model can accommodate fluctuations in the number of workers across periods by introducing
undesirable types, so that matching with an undesirable worker renders all of her partners strictly worse off
(before transfers) than staying unmatched.

4While it may be reasonable to assume that a firm’s revenue depends solely on the types of workers it
employs, none of our results require this assumption. Hence, for notational simplicity, we allow revenue to
depend on the entire profile of worker types. The same applies to workers’ payoff functions.
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worker w has utility function ṽw : Φw × Θ → R over work environments. For every worker

w ∈ W and type profile θ ∈ Θ, ṽw(∅, ∅, θ) is normalized to 0.

Stage Matching. The outcome in every period is a static many-to-one matching among

the firms and workers. Formally, a stage matching m = (ϕ, p) is described by an assignment

ϕ and a wage vector p. In particular, ϕ is a mapping defined on the set F∪W such that (i) for

every w ∈ W , ϕ(w) ∈ Φw; (ii) for every f ∈ F , ϕ(f) ⊆ W and |ϕ(f)| ≤ qf ; and (iii) for every

w ∈ W and every f ∈ F , w ∈ ϕ(f) if and only if ϕ(w) = (f,W ′) for some W ′ ∈ 2W\{w}. The

wage vector p = (pfw) ∈ R|F|×|W| describes the transfer from firms to workers. We assume

that any nonzero transfer occurs only between a firm and its own employees: pfw = 0 for

every w /∈ ϕ(f).

Players have quasilinear utilities: For every stage matching m = (ϕ, p) and type profile

θ,

uf (m, θ) ≡ ũf (ϕ(f), θ)−
∑
w′∈W

pfw′ and vw(m, θ) ≡ ṽw(ϕ(w), θ) +
∑
f ′∈F

pf ′w

are the stage-game payoffs received by firm f and worker w, respectively.5

A stable stage matching is immune to three kinds of deviation: (i) a unilateral deviation

by a firm f to fire all its employees; (ii) a unilateral deviation by a worker w, who leaves her

employer and remains unmatched; and (iii) a coalitional deviation (f,W ′, p′f ) ∈ F×2W×R|W|

with |W ′| ≤ qf and p′fw = 0 for every w /∈ W ′, where firm f and workers W ′ match at wages

specified in p′f and abandon any other pre-existing match partners. A deviation is profitable

if all participants strictly prefer the deviating matching to the original matching m. A stage

matching is individually rational if no unilateral deviations are profitable, and is stable if

none of the three kinds of deviations above is profitable.

When studying the stability of static matchings, there is no need to specify how other

players will be matched after a deviation by a coalition. However, in our dynamic setting,

players’ future behavior is influenced by past histories, so to study the stability of matching

processes, we need to specify the realized stage-game outcome after a deviation. To this end,

we adopt the following assumption.

5Our results do not hinge on quasilinearity and hold as long as utilities are monotone and unbounded in
wages.

7



Assumption 1. After coalitional deviation (f,W ′, p′f ) from matching m = (ϕ, p), let match-

ing m′ = [m, (f,W ′, p′f )] ∈ M denote the resulting stage matching and let ϕ′ denote the

assignment in m′. Assume ϕ′(f) = W ′ and ϕ′(f ′) = ϕ(f ′)\W ′ for every f ′ 6= f .

Assumption 1 says that in the stage matching that results from a coalitional deviation,

the deviators are matched together, players abandoned by the deviators remain unmatched,

and those untouched by the deviation remain matched with their original partners. The

sole purpose of this assumption is to ensure “perfect monitoring”: When a matching m is

blocked by a coalition (f,W ′, p′f ), the firm in the deviating coalition is identifiable. Lemma 4

formally proves this identifiability property from Assumption 1. Any alternative assumption

that delivers the same identifiability property will not change our results.6

Repeated Matching. To convexify players’ stage-game payoffs, we employ a public

randomization device on the unit interval S = [0, 1] endowed with the Lebesgue measure.

The use of public randomization streamlines our proofs, but our results do not depend on

it.7

The timing in each period is as follows. First, a new cohort of workers arrives. A

type profile θ ∈ Θ is drawn from the distribution π, and a public randomization s ∈ S is

realized. Based on the realized (θ, s), a stage matching is recommended for active players

in the market. Players then decide whether to deviate from this recommendation, which

determines the outcome of the stage game.

A t-period ex ante history h = (θτ , sτ ,mτ )
t−1
τ=0 specifies a sequence of past realizations of

the type profile, the public correlation device, and the stage matching up to period t − 1.8

We write Ht for the set of all t-period ex ante histories, with H0 = {∅} being the singleton

set comprising the null history. Let H ≡
⋃∞

t=0 Ht be the set of all ex ante histories. Moreover,

let Ht ≡ Ht × Θ × S denote the set of t-period ex post histories, and H ≡ H × Θ × S the

set of all ex post histories.
6A similar assumption that serves the same purpose is seen in Roth and Sotomayor (1992), Mauleon,

Vannetelbosch and Vergote (2011), and Liu (2023).
7For example, we could follow arguments in Sorin (1986) and Fudenberg and Maskin (1991) to convexify

players’ payoffs using sequences of play instead.
8Note that this assumes observable wages. However, since workers are short-lived and none of the self-

enforcing matching processes constructed in this paper make use of information about wages, the existence
result continues to hold even if wages are unobservable.
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A matching process µ : H → M specifies a stage matching for every ex post history. It

represents a shared understanding among players regarding how past histories impact future

employment. For every ex post history h ∈ H, we let µ(f |h) and µ(w|h) denote the matching

partners for firm f and worker w in the stage matching µ(h), respectively.

Let H∞ = (Θ×S×M)∞ be the set of outcomes h∞ of the repeated cooperative matching

game. Let mt(h∞) denote the stage matching in the t-th period of h∞. Following every t-

period (ex ante or ex post) history ĥ ∈ H ∪H, let

Uf (ĥ |µ) ≡ (1− δ)Eµ

[ ∞∑
τ=t

δτ−tuf (mτ (h∞), θτ )
∣∣∣ ĥ ]

denote the continuation payoff firm f obtains from µ following ĥ, where the expectation is

taken with respect to the measure over H∞ induced by µ conditional on ĥ.

Deviation Plan. We make two observations that allow us to tractably analyze firms’

deviations in the repeated cooperative matching game. Recall that there are three kinds of

deviations within a period. We first observe that a unilateral deviation by firm f to fire

all its employees is equivalent to a deviation by the coalition consisting of f and an empty

set of workers. It is therefore without loss to focus on two kinds of deviation: (i) unilateral

deviations by workers and (ii) deviations by coalitions consisting of a firm and a (possibly

empty) set of workers in the stage game.

Our second observation is that as a long-lived player, a firm can participate in a sequence

of deviations by forming coalitions with workers across periods. Each of these coalitions must

be immediately profitable for the participating short-lived workers but not necessarily for

the firm, since the firm cares about the profit it collects from the entire sequence.

Motivated by this second observation, we define a deviation plan for firm f as a complete

contingent plan that specifies, at every ex post history, a set of workers to recruit and their

wage offers. Formally, a deviation plan for firm f is a pair (d : H → 2W , η : H → R|W|)

such that |d(h)| ≤ qf for any h and ηw(h) 6= 0 only if w ∈ d(h). Together with the original

matching process, a deviation plan generates a distribution over the outcomes of the game

H∞. Given a matching process µ and f ’s deviation plan (d, η), the manipulated matching
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process, denoted by [µ, (f, d, η)] : H → M , is a matching process defined by

[
µ, (f, d, η)

]
(h) ≡

[
µ(h),

(
f, d(h), η(h)

)]
∀h ∈ H.

Firm f ’s deviation plan (d, η) from µ is feasible if at every ex post history h = (h, θ, s),

vw

([
µ, (f, d, η)

]
(h), θ

)
≥ vw

(
µ(h), θ

)
∀w ∈ d(h),

and the inequality is strict if w /∈ µ(f |h). That is, workers participate in the deviation

only if they find the new stage matching weakly better than the recommendation from µ,

and this preference must be strict if the worker is employed by a different firm under µ.

Lastly, the deviation plan (d, η) is profitable if there exists an ex post history h such that

Uf

(
h
∣∣ [µ, (f, d, η)]) > Uf (h|µ).

Self-Enforcing Matching Process. The two observations above motivate our notion of

dynamic stability.

Definition 1. Matching process µ is self-enforcing if (i) vw(µ(h), θ) ≥ 0 for every w ∈ W at

every ex post history h ∈ H and (ii) no firm has a strictly profitable feasible deviation plan.

The first requirement guards against deviations by a single worker in any generation,

and the second guards against deviations by firms. These requirements are imposed on the

matching process at all ex post histories, including those that are off path. This restriction

on all ex post histories embeds a form of sequential rationality in the same way as subgame

perfection does in a repeated noncooperative game. It is also worth noting that Definition 1

focuses on coalitions of a single firm and multiple workers: This is stronger than pairwise

stability but weaker than group stability. In dynamic environments, these stability notions

are not equivalent.9 Nevertheless, in static settings, Definition 1 reduces to the definition of

core allocation in Kelso and Crawford (1982), so our definition can be viewed as its dynamic

generalization.
9Allowing infinite-horizon deviations by multiple long-lived players creates a conceptual difficulty in

assessing whether those deviations themselves can be self-enforcing. Ali and Liu (2020) show that if coalitions
cannot commit to long-run behavior and are unable to make anonymous transfers, then modeling coalitions
with multiple long-run players does not alter the set of sustainable outcomes when players are patient.
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3 Results

Minmax Payoffs. We begin by defining firms’ minmax payoffs. For every realized type

profile θ ∈ Θ, let

M◦(θ) ≡ {m ∈ M : vw(m, θ) ≥ 0 for all w ∈ W}

denote the set of stage matchings that are individually rational for workers. From Defini-

tion 1, a self-enforcing matching process can only recommend stage matchings in M◦(θ).

Moreover, for every firm f ∈ F and recommended stage matching m = (ϕ, p), let

Df (m, θ) ≡

(W ′, p′f ) :

|W ′| ≤ qf , p
′
fw = 0 if w /∈ W ′,

ṽw(f,W
′, θ) + p′fw ≥ vw(m, θ) for every w ∈ W ′, and

ṽw(f,W
′, θ) + p′fw > vw(m, θ) for every w ∈ W ′\ϕ(f)


denote the set of feasible stage-game deviations for f at type profile θ. Similar to the

definition of feasible deviation plans, a deviation in the stage matching is feasible if (i) the

deviating firm does not exceed its quota in hiring, (ii) all participating workers are weakly

better off compared to the recommended stage matching, and (iii) any worker recruited

elsewhere should be strictly incentivized compared to the recommended stage matching.

Firm f ’s minmax payoff is its payoff from “best responding” to the worst recommendation.

Definition 2. Firm f ’s minmax payoff at type profile θ is

uf (θ) ≡ inf
m∈M◦(θ)

sup
(W ′,p′f )∈Df (m,θ)

uf ([m, (f,W ′, p′f )], θ).

To characterize this minmax payoff, let

χ(f,W, θ) ≡ ũf (W, θ) +
∑
w∈W

ṽw(f,W\{w}, θ)

denote the total surplus of coalition (f,W ) at type profile θ. The following lemma charac-

terizes each firm’s minmax payoff.

Lemma 1. Let Q ≡
∑

f ′∈F qf ′ represent the sum of all firms’ hiring quotas. For every firm
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f and type profile θ, f ’s minmax payoff satisfies

uf (θ) = min
W ′⊆W,|W ′|≤Q

max
W⊆W\W ′,|W |≤qf

χ(f,W, θ). (1)

Lemma 1 states that a firm’s minmax payoff equals the maximum surplus it can generate

after
∑

f ′ qf ′ workers have been removed from the market in an adversarial manner. The

intuition is as follows. To punish f , other firms can offer high wages to
∑

f ′ ̸=f qf ′ workers,

which renders them unattractive as potential partners for f . Also, if the employees of f are

paid high wages by f and require consent to join a deviation, then f would be better off

abandoning them and looking for cheaper workers for its deviation. Altogether, this excludes∑
f ′ qf ′ workers from f ’s potential match pool in case of a deviation. Instead, f will select its

partners from the remaining workers and secure all the matching surplus by offering those

workers zero payoff.

Characterization. We first introduce some notation. For every θ ∈ Θ and m ∈ M◦(θ),

let u(m, θ) ≡ (uf (m, θ))f∈F denote firms’ payoff profile under m. For every θ ∈ Θ, let

U(θ) ≡ co
( {

u ∈ RF : u = u(m, θ) for some m ∈ M◦(θ)
} )

denote the convex hull of these payoff profiles. In addition, define

U∗ ≡
{∑

θ∈Θ

π(θ)u(θ) : u(θ) ∈ U(θ) for every θ ∈ Θ
}
.

Finally, for every firm f , let

u∗
f ≡ Eπ[uf (θ)]

denote its expected minmax payoff over type profiles.

The next result characterizes the discounted payoffs from self-enforcing matching pro-

cesses.

Proposition 1. (i) If u ∈ U∗ satisfies uf > u∗
f for all f ∈ F , then there is a δ ∈ (0, 1) such

that for every δ ∈ (δ, 1), there exists a self-enforcing matching process with firms’ discounted

payoffs u. (ii) Suppose µ is a self-enforcing matching process for a given δ ∈ (0, 1). For
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every ex ante history h ∈ H, firms’ discounted payoff profile satisfies
(
Uf (h |µ)

)
f∈F ∈ U∗

and Uf (h |µ) ≥ u∗
f for every f ∈ F .

To prove statement (i), we first show that U∗ satisfies the NEU condition (Abreu, Dutta

and Smith 1994). For every payoff profile in U∗ that is strictly above every firm’s average

minmax payoff, this allows us to construct a set of payoff profiles, each individually tailored

for a specific firm, which can be used as carrots and sticks to discipline the firms. Finally,

these payoff profiles are integrated into the classic idea of Fudenberg and Maskin (1986) to

construct a matching process that is self-enforcing when firms are patient.

The cooperative nature of the stage game gives rise to a technical difficulty. Since stage

matchings lack the usual product structure of strategy profiles in normal-form games, when

a firm f is being minmaxed, it might be necessary for f to obtain stage payoffs that are even

lower than its minmax value. When π ∈ ∆(Θ) is not a degenerate distribution, this may

create incentives for f to deviate at some ex post histories when it is being minmaxed, even

though it is not profitable to do so on average. We tackle this by adjusting wages in the

punishment scheme so that the ex post benefits of deviations are equalized across realizations

of θ (see Lemma 5(iii)).

To prove statement (ii), note that given realized type profile θ, by the definition of

minmax payoffs, every firm f can secure the minmax payoff uf (θ) by deviating with workers.

Taking expectation over the distribution of type profiles delivers the result.

Proposition 1, however, does not guarantee the existence of self-enforcing matching pro-

cesses. In fact, statement (i) would be vacuously true if there is no feasible payoff profile

u ∈ U∗ that satisfies uf > u∗
f for all f ∈ F . Note that this is not a concern for noncoop-

erative games, but in two-sided matching environments such scenarios can indeed arise, for

example, when the market has no wages or there are matching externalities. We provide

detailed illustrations of these possibilities in Section 4.

Proving the existence of a self-enforcing matching process therefore amounts to showing

that the existence of u ∈ U∗ that satisfies uf > u∗
f for all f ∈ F . We will show that such a

payoff profile can arise from a random serial dictatorship among the firms.

No-Poaching Agreement. Let Γ ≡
{
γ : F → {1, . . . , |F|}

}
denote the set of orderings
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over firms. In the serial dictatorship corresponding to an ordering γ ∈ Γ, firms sequentially

choose workers based on γ while setting all of their matched workers’ payoffs to zero, thereby

capturing the entire matching surplus.

Definition 3 (Serial Dictatorship). Given θ ∈ Θ and γ ∈ Γ, stage matching m̂(θ, γ) is

induced by the following procedure. Initialize W#
0 ≡ ∅. For every step i = 1, . . . , |F|, denote

f̂i ≡ γ−1(i), and let

Ŵi ∈ argmax
W⊆W\W#

i−1,|W |≤q
f̂i

χ(f̂i,W, θ);

Set ϕ(f̂i) = Ŵi, pf̂iw = −ṽw(f̂i, Ŵi\{w}) for every w ∈ Ŵi, and pf̂iw = 0 for every w /∈ Ŵi;

Update W#
i ≡ W#

i−1 ∪ Ŵi.

In a random serial dictatorship (RSD), firms randomize over Γ and play matching m̂(θ, γ)

based on the realized order γ. Note that RSD can be seen as a form of no-poaching agreement

since a firm refrains from soliciting workers already employed by another firm even if it is

feasible to do so.

We make an assumption to simplify our existence proof. Let

uf (θ) ≡ max
W⊆W,|W |≤qf

χ(f,W, θ) (2)

denote firm f ’s maximum feasible payoff at type profile θ. It is easy to see that uf (θ) ≥ uf (θ)

for every θ ∈ Θ and f ∈ F , since removing Q workers in an adversarial manner reduces f ’s

maximum surplus. For now, we assume that for every firm, this inequality is strict with a

positive probability.

Assumption 2. For every firm f , there exists θ ∈ Θ with π(θ) > 0 such that uf (θ) > uf (θ).

Assumption 2 holds generically, for example, when players’ payoffs given every type

profile θ is randomly drawn from a continuous distribution. We make this assumption to

simplify the exposition of Proposition 2. In Section 4 we show that our results hold even

without this assumption.

The following lemma shows that when firms randomize uniformly over serial dictatorships,

they can simultaneously obtain payoffs that strictly exceed their expected minmax payoffs.

Figure 2 provides an illustration of this result when the market has only two firms.
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Figure 2. Firms’ payoff space. Payoff profiles in the orange region
(feasible and strictly above firms’ expected minmax payoffs) can be
sustained by Proposition 1. Lemma 2 ensures the orange region is
nonempty with a random serial dictatorship (RSD).

Lemma 2. Under Assumption 2, for every firm f ,

1

|Γ|
∑
γ∈Γ

Eπ

[
uf

(
m̂(θ, γ), θ

)]
> u∗

f .

Let us explain the intuition for Lemma 2. If firms randomize uniformly over Γ for

every realized type profile θ, then each firm f receives the payoff on the left side. Fix f

and θ. In this RSD, the worst-case scenario for f arises when f is ranked last in γ (i.e.,

γ(f) = |F|): By the time f selects its employees, Q−f ≡
∑

f ′ ̸=f qf ′ workers are already off

the market. However, for f , this worst case under RSD is still weakly more desirable than

being minmaxed, in which case f must choose its employees after Q =
∑

f ′ qf ′ workers have

been eliminated in an adversarial manner. Therefore, the distribution of payoffs f obtained

under RSD first-order stochastically dominates the distribution of its minmax payoffs, so in

expectation, every firm prefers RSD over being minmaxed.

Combined with Proposition 1, Lemma 2 delivers our existence result below.

Proposition 2. Under Assumption 2, when firms are sufficiently patient, there exists a

self-enforcing matching process in which firms play RSD in every period on path.

15



This result shows that as a particular form of no-poaching agreement, RSD can always be

sustained dynamically. To understand the intuition, consider the uniform RSD. For every θ

and γ, matching m̂(θ, γ) is in M◦(θ), so the randomization over Γ places firms’ payoff profile

in U(θ). Taking expectation over θ, we know that firms’ payoff profile from the uniform RSD

is in U∗. Furthermore, according to Lemma 2, each firm’s payoff is strictly higher than its

average minmax payoff. Proposition 1(i) then delivers the existence result.

4 Extensions and Discussions

In this section, we explore the extensions and limitations of our framework. We first demon-

strate that Assumption 2 is not crucial to our main results. That is, even if some firms

can never be harmed by others and thus cannot be incentivized dynamically, we can still

apply the analysis in Section 3 to the remaining firms to establish existence of self-enforcing

matching processes. We then highlight the importance of the presence of transfers and ab-

sence of externalities in our existence result by providing examples of nonexistence of stable

matching processes under alternative settings without transfers or with externalities.

4.1 Relaxing Assumption 2

We first explain how our results continue to hold when Assumption 2 is not satisfied: There

exists some firm f such that for every θ ∈ Θ with π(θ) > 0, we have uf (θ) = uf (θ). In

this case, other players’ matching decisions have no impact on the maximum static payoff

firm f can derive, since it can always turn to the unmatched workers and extract their

surpluses. This means that future punishments cannot affect the matching behavior of f via

dynamic incentives, nor does f find it beneficial to participate in any punishment scheme of

other firms. Therefore, we can treat such a firm as “inactive” in our analysis, assign it the

maximum payoff it can receive in every period, and ignore it for the rest of our analysis. An

iteration is needed to identify all such firms that cannot be incentivized dynamically.

Formally, for a set of firms F ′ ⊆ F , denote by Q(F ′) ≡
∑

f∈F ′ qf the total hiring capacity

of F ′. When all firms in F\F ′ are inactive, the effective minmax payoff of a firm f ∈ F ′ at
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θ is

uf (F ′, θ) ≡ min
W ′⊆W,|W ′|≤Q(F ′)

max
W⊆W\W ′,|W |≤qf

χ(f,W, θ).

Using a similar argument as in Lemma 1, we can show that this is exactly firm f ’s payoff

from “best responding” to the worst punishment by firms in F ′, while firms in F\F ′ leave

no surplus to their employees. Note that for each θ, the value uf (F ′, θ) weakly increases as

F ′ becomes smaller.

Definition 4. A hierarchical partition P ≡ {P1, . . . ,PN ,R} over firms F is induced by the

following procedure. Initialize P0 ≡ ∅. For n ≥ 1:

• If
{
f ∈ F\

⋃n−1
k=0 Pk : uf (θ) = uf (F\

⋃n−1
k=0 Pk, θ) ∀θ

}
6= ∅, let this set be Pn. Assign

n = n+ 1 and continue;

• If
{
f ∈ F\

⋃n−1
k=0 Pk : uf (θ) = uf (F\

⋃n−1
k=0 Pk, θ) ∀θ

}
= ∅, let R = F\

⋃n−1
k=0 Pk and stop.

Intuitively, each Pn consists of firms that cannot be punished in the matching process

without cooperation from those in
⋃n−1

k=0 Pk. If R 6= ∅, by construction, uf (θ) > uf (R, θ) for

every f ∈ R and θ ∈ Θ. Let

u∗
f ≡ Eπ[uf (θ)] ∀f ∈ F\R,

and

u∗
f (R) ≡ Eπ[uf (R, θ)] ∀f ∈ R.

A generalized version of Proposition 1 can be stated as follows.

Proposition 1∗. (i) If u ∈ U∗ satisfies uf = u∗
f for all f ∈ F\R and uf > u∗

f (R) for all

f ∈ R, then there is a δ ∈ (0, 1) such that for every δ ∈ (δ, 1), there exists a self-enforcing

matching process with firms’ discounted payoffs u. (ii) Suppose µ is a self-enforcing matching

process for a given δ ∈ (0, 1). For every ex ante history h ∈ H, firms’ discounted payoff profile

satisfies
(
Uf (h |µ)

)
f∈F ∈ U∗, Uf (h |µ) = u∗

f for every f ∈ F\R, and Uf (h |µ) ≥ u∗
f (R) for

every f ∈ R.

We next define a random serial dictatorship with respect to the hierarchical partition

P = {P1, . . . ,PN ,R}. To do so, we first introduce a subset of orderings ΓP ⊆ Γ that
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contains those that (i) give firms in R the highest priorities and (ii) rank firms in Pn higher

than those in Pk if n > k. That is,

ΓP ≡

γ ∈ Γ :
γ(R) = {1, 2, . . . , |R|}, and

if f ∈ Pk, f ′ ∈ Pn, and k < n, then γ(f) > γ(f ′)

 .

The stage matching m̂(θ, γ) induced by a serial dictatorship according to γ is defined as

in Definition 3. By using a random serial dictatorship restricted to ΓP , the following lemma

generalizes Lemma 2 and shows that Proposition 1∗(i) is not vacuously true.

Lemma 2∗. For every firm f ∈ R,

1

|ΓP |
∑
γ∈ΓP

Eπ

[
uf

(
m̂(θ, γ), θ

)]
> u∗

f (R).

For every firm f ∈ F\R,

1

|ΓP |
∑
γ∈ΓP

Eπ

[
uf

(
m̂(θ, γ), θ

)]
= u∗

f .

In view of Lemma 2∗ and Proposition 1∗, we can establish Proposition 2 without Assump-

tion 2.

Proposition 2∗. When firms are sufficiently patient, there exists a self-enforcing matching

process in which firms in R play RSD in every period on path.

4.2 Matching without Transfers

The assumption of transferable utility plays a crucial role in our analysis. When punishing

a firm f who deviates from a recommended stage matching, large transfers can be used

to attract workers that f prefers the most. Therefore, we can simplify the minmax payoff

of a firm and express it as the highest attainable payoff when workers are removed in an

adversarial manner (see Lemma 1). In contrast, without the flexibility of transfers, firms

encounter limitations in punishing deviations. The set of workers that can be lured away

during punishment is intricately tied to the preferences of all workers. This dependence
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raises the minmax payoffs of the firms, which may lead to nonexistence of a self-enforcing

matching process, that is, the payoff set characterized by Proposition 1 is empty.

Consider a model in which transfers are not allowed. That is, the wage vector is restricted

to p = 0, and any deviation plan (d, η) should satisfy η(h) = 0 for any ex post history h.

Suppose there are three workers W = {w1, w2, w3} and two firms F = {f1, f2}. Each firm

has a quota of 2. A firm earns a stage payoff of 2 with two employees, and 1 with only one

employee; it does not care about the identities of the employees. On the other hand, workers’

preferences are determined by their colleagues: w1 prefers to work with w2, w2 prefers w3,

and w3 prefers w1. Moreover, having any coworker is strictly better than working alone

or being unemployed. Workers may possess strict preferences for firms, but this aspect is

subordinate and is dominated by their preferences for coworkers.

In this example, each firm can guarantee a deviating payoff of 2 in the stage matching

game by hiring an unemployed worker w together with the worker w′ who prefers w. This is

true regardless of the other firm’s hiring decision; therefore, the firms’ minmax payoffs should

equal 2. However, there is no feasible way to generate a payoff of 2 for every firm in the stage

matching even with a randomizing device. We can conclude that no self-enforcing matching

process exists for any value of δ in this nontransferable utility setting. This nonexistence

issue is illustrated by Figure 3.

4.3 Matching with Externalities

In our setting, we implicitly assume that firms are exclusively concerned with the identities

and types of their own employees, while workers only care about their own work environ-

ments. However, in a more general context, agents’ payoffs may be contingent on the entire

matching assignment, including the hiring decisions of other firms. In this case, even with

the availability of transfers, the characterization of minmax payoffs in Lemma 1 does not

hold. We provide an example below in which the minmax payoffs are excessively high, and

thus a self-enforcing matching process no longer exists.

Consider a matching market with transferable utilities in which each firm’s stage payoff

depends on the assignments of other firms. Suppose there are three workers W = {w1, w2, w3}

and two firms F = {f1, f2}. Each firm can only hire one worker. The workers are indifferent
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Figure 3. Matching without transfers. The blue region includes
the set of firm payoffs that can be achieved via public randomization.
The green lines represent the firms’ minmax payoffs. There is no
feasible payoff vector such that both firms are weakly better off than
receiving the minmax payoffs.
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Figure 4. Matching with externalities. The blue region includes
the set of firm payoffs that can be achieved via public randomization.
The green lines represent the firms’ minmax payoffs. There is no
feasible payoff vector such that both firms are weakly better off than
receiving the minmax payoffs.
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between being unemployed and working for any firm at a payment of 0. Firm f1 obtains a

stage payoff of 2 if it hires the same number of workers as firm f2 does and a stage payoff

of 0 otherwise. On the other hand, firm f2 gets 2 if the two firms hire different numbers of

workers and 0 otherwise.

In this example, each firm can ensure a deviating payoff arbitrarily close to 2 regardless

of the other firm’s hiring decisions: For example, firm f1 can always turn to the unemployed

worker and offer an infinitesimal wage if f2 has an employee, and it can choose not to hire

and shut down if f2 does the same. Therefore, the minmax payoffs of both firms should be

equal to 2. However, there is no feasible way to generate a payoff of 2 for both firms in the

stage matching, because either they hire the same number of workers or they do not. In

other words, the frontier of the feasible payoff set has an intercept of 2 and a slope of −1; see

Figure 4 for an illustration. Hence, no self-enforcing matching process exists for any value

of δ with the presence of matching externalities.

5 Conclusion

In this paper, we propose a new approach of studying stability in matching markets with

complementarities and peer effects, which have traditionally challenged the existence of static

stable outcomes. Our approach treats stability as the result of a dynamic process that

is self-sustained by expectations; importantly, these expectations must also be themselves

consistent with stability.

We leverage the repeated interactions of long-lived firms to discipline these market par-

ticipants and sustain stability over time. As a result, we can define notions such as minmax

payoffs and feasible payoff sets that are analogous to those from standard repeated games.

However, unlike standard repeated games in which players play a noncooperative game, in

our model firms and workers participate in a cooperative game every period. This difference

makes the nonissue of equilibrium existence in noncooperative setting more challenging in

our cooperative setting. We prove the existence of a stable matching process by explicitly

constructing a feasible payoff profile through random serial dictatorship where firms take

turns to receive their more favorable outcome. This can be interpreted as a form of no-
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poaching agreement, which is prevalent and subject to intense legal debates in real-world

contexts.

From a theoretical standpoint, the existence of self-enforcing matching processes recon-

ciles the lack of static stable matching and absence of complete chaos in many matching

markets. From a practical point of view, the sustainability of outcomes through RSD adds

a new dimension to the ongoing debate regarding the anti-trust implications of no-poaching

agreements. While no-poaching agreements are generally regarded as anti-competitive, our

analysis suggests they may play a crucial role in preserving market stability.

An interesting open question for future research is the comparative statics between the

minimum amount of patience needed. In addition, it would be interesting to see if such

a dynamic approach would help solve the nonexistence of stable outcomes in roommate

problems or networks with externalities.
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A Appendix

A.1 Intermediate Results

Proof of Lemma 1. Fix f ∈ F , θ ∈ Θ, and stage matching m = (ϕ, p) ∈ M◦(θ). Define

Wm ≡ {w ∈ W : ϕ(w) 6= (∅, ∅)}, so |Wm| ≤ Q. Hiring from W\Wm at infinitesimal wages is

always a feasible deviation for f , which means

sup
(W ′,p′f )∈Df (m,θ)

uf ([m, (f,W ′, p′f )], θ) ≥ max
W ′⊆W\Wm,|W ′|≤qf

χ(f,W ′, θ)

≥ min
W⊆W,|W |=|Wm|

max
W ′⊆W\W,|W ′|≤qf

χ(f,W ′, θ)

≥ min
W⊆W,|W |≤Q

max
W ′⊆W\W,|W ′|≤qf

χ(f,W ′, θ).

Taking infimum on the LHS yields

uf (θ) ≥ min
W⊆W,|W |≤Q

max
W ′⊆W\W,|W ′|≤qf

χ(f,W ′, θ).

For the other direction, take any W ⊆ W with |W | ≤ Q. We can always construct a

stage matching m̂ = (ϕ̂, p̂) ∈ M◦(θ) such that (i) ϕ̂ assigns all workers in W to firms, and (ii)

all workers in W receive sufficiently high wages so that f never finds it profitable to deviate

with any workers in W . Therefore,

max
W ′⊆W\W,|W ′|≤qf

χ(f,W ′, θ) = sup
(W ′,p′f )∈Df (m̂,θ)

uf ([m̂, (f,W ′, p′f )], θ)

≥ inf
m∈M◦(θ)

sup
(W ′,p′f )∈Df (m,θ)

uf ([m, (f,W ′, p′f )], θ)

Minimizing over W on the LHS yields the other direction.

Lemma 3. Deviation plan (d, η) is a one-shot deviation from matching process µ if there is

a unique ex post history ĥ where [µ, (f, d, η)](ĥ) 6= µ(ĥ). Matching process µ is self-enforcing

if and only if (i) vw(µ(h), θ) ≥ 0 for every w ∈ W at every h ∈ H; and (ii) no firm has a
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feasible and profitable one-shot deviation.

Proof of Lemma 3. Standard arguments (Blackwell 1965) suffice. We include them for

completeness. Suppose one-shot deviation plan (d, η) from matching process µ for firm f is

feasible and profitable. Since stage payoffs are bounded for firm f and there is discounting,

the standard one-shot deviation principle for individual decision-making (Blackwell 1965)

implies that there exists an ex post history ĥ = (ĥ, θ̂, ŝ) such that

(1− δ)

ũf (dj(ĥ), θ̂)−
∑

w∈d(ĥ)

ηw(ĥ)

+ δUf

([
µ(ĥ), (f, d(ĥ), η(ĥ))

] ∣∣µ) > Uf (ĥ |µ).

Consider deviation plan (dof , η
o
f ) that satisfies

[µ, (f, dof , η
o
f )](h) =

[µ, (f, d, η)](h) if h = ĥ,

µ(h) otherwise.

Then (dof , η
o
f ) is a profitable one-shot deviation plan for firm f .

Lemma 4. For any stage matching m,

[m, (f1,Wf1 , pf1)] = [m, (f2,Wf2 , pf2)] 6= m implies f1 = f2.

Proof of Lemma 4. Let m = (ϕ, p), [m, (f1,W
′
f1
, p′f1)] = (ϕ, p), and [m, (f2,W

′
f2
, p′f2)] =

(ϕ̂, p̂). Toward contradiction, suppose f1 6= f2, but [m, (f1,W
′
f1
, p′f1)] = [m, (f2,W

′
f2
, p′f2)] 6=

m. Then ϕ = ϕ̂ and pf = p̂f for every f ∈ F . Each of the three cases to consider yields a

contradiction.

1. Suppose W ′
f1

= ϕ(f1) and W ′
f2

= ϕ(f2). Since [m, (f1,W
′
f1
, p′f1)] 6= m, we have p′f1 6= pf1 .

Then pf1 = p′f1 6= pf1 = p̂f1 , a contradiction.

2. Suppose W ′
f1

⊆ ϕ(f1) and W ′
f2

⊆ ϕ(f2)) but, without loss of generality, W ′
f1

6= ϕ(f1).

We have ϕ(f1) = W ′
f1

6= ϕ(f1) = ϕ̂(f1), so ϕ 6= ϕ̂, a contradiction.

3. Suppose, without loss of generality, W ′
f1

⊈ ϕ(f1). Let w′ ∈ W ′
f1
\ϕ(f1). We have
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ϕ(w′) = f1, whereas ϕ̂(w′) ∈ {ϕ(w′), f2}. Since w′ /∈ ϕ(f1) and f1 6= f2, f1 /∈

{ϕ(w′), f2}. Hence, ϕ 6= ϕ̂, a contradiction.

Therefore, [m, (f1,Wf1 , pf1)] = [m, (f2,Wf2 , pf2)] 6= m implies f1 = f2.

A.2 Omitted Proofs for Section 3

A.2.1 Proof of Proposition 1

Lemma 5. For each θ ∈ Θ, there exist stage matchings
{
mf (θ)

}
f∈F ⊆ M◦(θ) such that

∀f ∈ F ,

(i) sup(W ′,p′f )∈Df (mf ,θ)
uf ([mf (θ), (f,W

′, p′f )], θ) = uf (θ);

(ii) uf (mf (θ), θ) ≤ uf (θ);

(iii) uf (θ)− uf (mf (θ), θ) = u∗
f − Eπ[uf (mf (θ), θ)].

Proof of Lemma 5. Fix θ ∈ Θ. For every f ∈ F , let

W f (θ) ∈ argmin
W⊆W,|W |≤Q

max
W ′⊆W\W,|W ′|≤qf

χ(f,W ′, θ)

denote a set of workers to eliminate to minmax firm f , and

bf (θ) = uf (θ)− uf (θ) ≥ 0

denotes the difference between f ’s maximum feasible payoff and minmax payoff.

For every f ∈ F , let
{
W f ′

f (θ)
}
f ′∈F be a partition of W f (θ) such that

∣∣∣W f
f (θ)

∣∣∣ ≥ 1 and∣∣∣W f ′

f (θ)
∣∣∣ ≤ qf ′ for every f ′ ∈ F . Define

Bf ≡ max
θ∈Θ

max
w∈W f

f (θ)

∣∣∣W f
f (θ)

∣∣∣ [bf (θ)− ṽw
(
f,W f

f (θ)\{w}, θ
)]

+ uf (θ)− ũf (W
f
f (θ), θ).

For every θ ∈ Θ, define stage matching mf (θ) = (ϕf (θ), pf (θ)), where

ϕf (θ)(f ′) = W f ′

f (θ),
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and

pf
f ′w

(θ) =



ũf (W
f
f (θ),θ)−uf (θ)+Bf

|W f
f (θ)|

if f ′ = f and w ∈ W f
f (θ)

bf (θ)− ṽw
(
f ′,W f ′

f (θ)\{w}, θ
)

if f ′ 6= f and w ∈ W f ′

f (θ) 6= ∅

0 otherwise.

For any θ ∈ Θ, if w ∈ W f
f (θ),

vw(mf (θ), θ) = ṽw
(
f,W f

f (θ)\{w}, θ
)
+

ũf (W
f
f (θ), θ)− uf (θ) + Bf∣∣∣W f

f (θ)
∣∣∣ ≥ bf (θ) ≥ 0

by the definition of Bf . If w ∈ W f ′

f (θ) and f ′ 6= f ,

vw(mf (θ), θ) = bf (θ) ≥ 0.

Hence, mf (θ) ∈ M◦(θ).

(i) Consider any feasible deviation (W ′, p′f ) ∈ Df (mf , θ). Suppose W ′ ⊆ W\W f (θ). By

feasibility, every w ∈ W ′ finds the deviation individually rational, so

ṽw(f,W
′\{w}, θ) + p′fw ≥ 0.

This implies

ũf (W
′, θ)−

∑
w∈W ′

p′fw ≤ ũf (W
′, θ) +

∑
w∈W ′

ṽw(f,W
′\{w}, θ) (3)

= χ(f,W ′, θ)

≤ max
W⊆W\W f (θ),|W |≤qf

χ(f,W, θ) (4)

= uf (θ),

where (3) follows from W ′ ⊆ W\W f (θ), and (4) follows from the definition of W f (θ).

Suppose instead W ′ ⊈ W\W f (θ). Fix w ∈ W ′∩W f (θ). By the construction of mf (θ),

vw(mf (θ), θ) ≥ bf (θ). For the deviation to be feasible, w must obtain a payoff weakly
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higher than in mf (θ) :

ṽw(f,W
′\{w}, θ) + p′fw ≥ bf (θ);

meanwhile, every w′ ∈ W ′\{w} needs to find the deviation individually rational:

ṽw′(f,W ′\{w′}, θ) + p′fw′ ≥ 0.

Then

ũf (W
′, θ)−

∑
w′∈W ′

p′fw′ = ũf (W
′, θ)− p′fw −

∑
w′∈W ′,w′ ̸=w

p′fw′

≤ ũf (W
′, θ) +

∑
w∈W ′

ṽw(f,W
′\{w}, θ)− bf (θ)

= χ(f,W ′, θ)− uf (θ) + uf (θ)

≤ uf (θ).

We have shown that for any W ′,

uf ([mf , (f,W
′, p′f )], θ) ≤ uf (θ).

Hence,

sup
(W ′,p′f )∈Df (mf ,θ)

uf ([mf , (f,W
′, p′f )], θ) ≤ uf (θ).

By the definition of uf (θ), the above holds with equality.

(ii) For every f ∈ F and θ ∈ Θ,

uf (mf (θ), θ) = ũf (W
f
f (θ), θ)−

∑
w∈W f

f (θ)

pf
fw
(θ)

= ũf (W
f
f (θ), θ)− ũf (W

f
f (θ), θ) + uf (θ)− Bf

= uf (θ)− Bf (5)
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≤ ũf (W
f
f (θ), θ) +

∑
w∈W f

f (θ)

ṽi(f,W
f
f (θ)\{w}, θ)−

∣∣∣W f
f (θ)

∣∣∣ bf (θ) (6)

≤ ũf (W
f
f (θ), θ) +

∑
w∈W f

f (θ)

ṽi(f,W
f
f (θ)\{w}, θ)− bf (θ) (7)

= χ(f,W f
f (θ), θ)− uf (θ) + uf (θ)

≤ uf (θ),

where (6) follows from the definition of Bf , and (7) follows from
∣∣∣W f

f (θ)
∣∣∣ ≥ 1.

(iii) By (5), for every f ∈ F and θ ∈ Θ,

uf (mf (θ), θ) = uf (θ)− Bf .

Therefore,

Eπ[uf (mf (θ), θ)] = u∗
f − Bf ,

which means

uf (θ)− uf (mf (θ), θ) = u∗
f − Eπ[uf (mf (θ), θ)].

Lemma 6. For every u ∈ U∗, there exist vectors {uf}f∈F ⊆ U∗ such that for all distinct

f, f ′ ∈ F ,

uf
f < uf and uf

f < uf ′

f .

Proof of Lemma 6. Take any distinct f, f ′ ∈ F . If f pays higher wages to its employees,

f is worse off while f ′ is indifferent. U∗ satisfies the NEU condition (Abreu et al. 1994), and

{uf}f∈F can be obtained via a similar construction. The detailed arguments are as follows.

Fix stage matching m = (ϕ, p) and type profile θ. For every f ∈ F , define a matching

mf = (ϕf , pf ) by ϕf = ϕ, and

pff ′w =

pf ′w + 1 if f ′ = f and w ∈ ϕf ,

pf ′w otherwise.
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Clearly, vw(m
f , θ) = vw(m, θ) for every w ∈ W\ϕf , and vw(m

f , θ) > vw(m, θ) for every

w ∈ ϕf , so mf is individually rational for all workers whenever m is—i.e., m ∈ M◦(θ) implies

mf ∈ M◦(θ). Moreover, by the construction of {mf}f∈F , we have uf (m
f , θ) ≤ uf (m, θ) for

every f ∈ F , with the inequality being strict if ϕ(f) 6= ∅. In the following, we write

ζf : m 7→ mf .

For an arbitrary vector u ∈ U∗, there exists a collection (λ(θ))θ∈Θ, where λ(θ) ∈ ∆(M◦(θ))

for every θ ∈ Θ, such that uf = Eπ[Eλ(θ)[uf (m, θ)]] > u∗
f for every f . For every firm f ∈ F ,

define

uf = ϵEπ[Eλ(θ)[u(ζ
f (m), θ)]] + (1− ϵ)u.

First observe that because uf > u∗
f ≥ 0, there exist θ ∈ Θ and m = (ϕ, p) ∈ M◦(θ)

such that λ(θ)[m] > 0 and ϕ(f) 6= ∅; by the construction of {ζf (m)}f∈F , uf (ζ
f (m), θ) <

uf (m, θ) = uf (ζ
f ′
(m), θ), so uf

f < uf and uf
f < uf ′

f if ϵ > 0. Second, every uf can be written

as

uf = Eπ[Eλf (θ)[uf (m, θ)]],

where

λf (θ) = ϵλ(θ) ◦ (ζf )−1 + (1− ϵ)λ(θ) f ∈ F . (8)

Note that the support of every λf (θ) is also bounded. Finally, for small enough ϵ > 0,

uf
f > u∗

f . Therefore, there must exist {uf}f∈F ⊆ U∗ such that for all distinct f, f ′ ∈ F ,

uf
f < uf and uf

f < uf ′

f .

Proof of Proposition 1. (i) Fix u ∈ U∗. Let (λ(θ))θ∈Θ be a tuple of lotteries such that

λ(θ) ∈ ∆(M◦(θ)) ∀θ ∈ Θ, and u = Eπ[Eλ(θ)[u(m, θ)]]. Let {mf (θ)}θ∈Θ,f∈F be the minmax

stage matchings constructed in Lemma 5. By Lemma 5(ii),

uf (mf (θ), θ) ≤ uf (θ) ∀(f, θ) ∈ F ×Θ. (9)
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By Lemma 6, there exist {uf}f∈F ⊆ U∗ such that for all distinct f, f ′ ∈ F ,

uf
f < uf and uf

f < uf ′

f .

For every f ∈ F , let (λf (θ))θ∈Θ be the tuple of lotteries that satisfies λf (θ) ∈ ∆(M◦(θ)) ∀θ ∈

Θ, and uf = Eπ[Eλf (θ)[u(m, θ)]]. By Carathéodory’s theorem, it is without loss to assume

every λf (θ) has bounded support. Define

Zf (θ) ≡ inf
m∈supp(λf (θ))

uf (m, θ). (10)

At any θ, let uf (θ) denote a firm f ’s maximum payoff from any matching in M◦(θ) as

defined in (2). Note that uf (θ) is an upper bound for the payoff f can obtain in any feasible

deviation from matchings in M◦(θ). Let L be an integer greater than

max
f∈F , θ∈Θ

uf (θ)− Zf (θ)

uf
f − u∗

f

.

Consider a matching process with the following three phases:

(I) If past realizations from λ(·) were followed: Match according to λ(·);

(II) If f deviates: For the next L periods, match according to mf (·);

(III) If mf (·) was followed for L periods: Match according to the realization from λf (·) until

a firm deviates.

Note that if firm f ′ deviates from (II) or (III), the process restarts (II) with f replaced by

f ′. All deviations by individual workers are ignored.

By Lemma 4, for any stage matching that can result from a firm’s deviation, we can

uniquely identify the firm, so the transition above is well-defined. All stage matchings in

this matching process are individually rational for workers. It remains to check that no firm

has profitable one-shot deviations.
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(I) f has no profitable one-shot deviation if

(1− δ)uf (m, θ) + δuf ≥ (1− δ)uf (θ) + δ(1− δL)
∑
θ′∈Θ

π[θ′]uf (mf (θ
′), θ′) + δL+1uf

f .

Since uf > uf
f by construction, f has no profitable one-shot deviation for δ high enough.

(II) Consider two cases.

Case a: f ′ 6= f . Without deviation, f ′ gets

(1− δ)uf ′(mf (θ), θ) + δ(1− δL−τ−1)
∑
θ′∈Θ

π[θ′]uf ′(mf (θ
′), θ′) + δL−τuf

f ′ . (11)

By deviating, f ′ gets less than

(1− δ)uf ′(θ) + δ(1− δL)
∑
θ′∈Θ

π[θ′]uf ′(mf ′(θ′), θ′) + δL+1uf ′

f ′ . (12)

As δ → 1, (11) converges to uf
f ′ and (12) to uf ′

f ′ . Because uf
f ′ > uf ′

f ′ by construction, no

one-shot deviation is profitable for high δ.

Case b: f ′ = f . Without deviation, f gets

(1− δ)uf (mf (θ), θ) + δ(1− δL−τ−1)
∑
θ′∈Θ

π[θ′]uf (mf (θ
′), θ′) + δL−τuf

f . (13)

With deviation, f gets less than

(1− δ)uf (θ) + δ(1− δL)
∑
θ′∈Θ

π[θ′]uf (mf (θ
′), θ′) + δL+1uf

f . (14)

Since
∑

θ′∈Θ π[θ′]uf (mf (θ
′), θ′) ≤ u∗

f < uf
f , expression (13) is increasing in τ . Hence it suffices

to prove the case when τ = 0. When τ = 0,

[
uf (mf (θ), θ)− uf (θ)

]
− δL

∑
θ′∈Θ

π[θ′]uf (mf (θ
′), θ′) + δLuf

f ≥ 0. (15)
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By Lemma 5(iii),

uf (mf (θ), θ)− uf (θ) =
∑
θ′∈Θ

π[θ′]uf (mf (θ
′), θ′)− u∗

f . (16)

Substituting (16) into (15) yields

(1− δL)
∑
θ′∈Θ

π[θ′]uf (mf (θ
′), θ′) + δLuf

f ≥ u∗
f .

By construction, uf
f > u∗

f , so the inequality holds for δ high enough.

(III) Consider two cases.

Case a: f ′ 6= f . The argument for (I) holds analogously here, once we replace f with f ′

and uf with uf
f ′ .

Case b: f ′ = f . There is no profitable one-shot deviation for f ′ if

(1− δ)uf ′(m, θ) + δuf ′

f ′ ≥ (1− δ)uf ′(θ) + δ(1− δL)
∑
θ′∈Θ

π[θ′]uf ′(mf ′(θ′), θ′) + δL+1uf ′

f ′ .

This is equivalent to

δ
1− δL

1− δ

[
uf ′

f ′ −
∑
θ′∈Θ

π[θ′]uf ′(mf ′(θ′), θ′)

]
≥ uf ′(θ)− uf ′(m, θ).

Because 1−δL

1−δ
→ L as δ → 1, the LHS converges to

L

[
uf ′

f ′ −
∑
θ′∈Θ

π[θ′]uf ′(mf ′(θ′), θ′)

]

>
uf ′(θ)− Zf ′(θ)

uf ′

f ′ − u∗
f ′

[
uf ′

f ′ −
∑
θ′∈Θ

π[θ′]uf ′(mf ′(θ′), θ′)

]
(17)

≥ uf ′(θ)− uf ′(m, θ), (18)

where (17) follows from the definition of L, and (18) follows from (9), (10), and m ∈

supp(λf (θ)). Thus, no deviation is profitable for δ high enough.
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Proof of Proposition 1(ii). By definition, every firm f can secure uf (θ) by deviating

with workers. Taking expectation over θ delivers the result. It suffices to show that for any

self-enforcing matching process µ,

Uf (h |µ) ≥ (1− δ)uf (θ) + δu∗
f ∀f ∈ F , h ∈ H.

Suppose by contradiction that Uf (h |µ) < (1− δ)uf (θ) + δu∗
f for some f ∈ F and h ∈ H.

We will show that firm f has a feasible profitable deviation plan from µ, so µ cannot be

self-enforcing.

Consider the following deviation plan (d, η) from µ: For all ex post histories that precede

h, the deviation plan is consistent with the matching process µ. For any h′ = (h
′
, θ′, s′) ∈ H

that succeeds h (including h itself),

d(h′) = argmax
A⊆W\

⋃
f ′∈F µ(f ′|h′)

χ(f, A, θ′).

If d(h′) 6= ∅, then

ηw(h
′) =

−ṽw(f, d(h
′)) + 1

2|d(h′)|

[
(1− δ)uf (θ) + δu∗

f − Uf (h |µ)
]

if w ∈ d(h′);

0 otherwise.

If d(h′) = ∅, define

ηw(h
′) = 0 ∀w ∈ W .

Note that by construction, χ(f, d(h′), θ′) ≥ uf (θ
′) because

⋃
f ′∈F µ(f ′|h) ≤ Q.

We first verify that deviation plan (d, η) is feasible. At any history h′ that succeeds h,

any w ∈ d(h′) is unmatched under µ(h′) by construction, which means vw(µ(h
′), θ′) = 0.

Meanwhile, according to the deviation plan,

ṽw(f, d(h
′)) + ηw(h

′)

= ṽw(f, d(h
′))− ṽw(f, d(h

′)) +
1

2 |d(h′)|
[
(1− δ)uf (θ) + δu∗

f − Uf (h |µ)
]

=
1

2 |d(h′)|
[
(1− δ)uf (θ) + δu∗

f − Uf (h |µ)
]
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> 0.

So at every possible history h′, every worker in d(h′) finds herself strictly better off by joining

the deviation, which ensures the feasibility of (d, η).

To see that (d, η) is profitable, observe that at every history h′ after h, firm f ’s stage-game

payoff from the manipulated static matching [µ(h′), (f, d(h′), η(h′))] is

ũf (d(h
′), θ′)−

∑
w∈d(h′)

ηw(h
′)

= ũf (d(h
′), θ′) +

∑
w∈d(h′))

ṽw(f, d(h
′))− 1

2

[
(1− δ)uf (θ) + δu∗

f − Uf (h |µ)
]

≥ uf (θ
′)− 1

2

[
(1− δ)uf (θ) + δu∗

f − Uf (h |µ)
]
.

Since this is true for every history h′ after h, f ’s total discounted payoff at ex post history

h from the deviation plan is

Uf (h | [µ, (f, d, η)]) = (1− δ)uf (θ) + δu∗
f −

1

2

[
(1− δ)uf (θ) + δu∗

f − Uf (h |µ)
]

=
1

2

[
(1− δ)uf (θ) + δu∗

f + Uf (h |µ)
]

>
1

2
[(Uf (h |µ) + Uf (h |µ)]

= Uf (h |µ).

Hence, deviation plan (d, η) is both feasible and profitable for firm f , which contradicts the

self-enforcement of µ. Hence, Uf (h |µ) ≥ (1− δ)uf (θ) + δu∗
f ∀f ∈ F , h ∈ H.

A.2.2 Proof of Lemma 2

For every f ∈ F , let Γ(f) = {γ ∈ Γ : γ(f) = 1} denote the set of orderings in which f is

ranked first. Recall that for every γ ∈ Γ and θ ∈ Θ, matching m̂(θ, γ) is produced by serial

dictatorship (Definition 3). It is straightforward that

uf (m̂(θ, γ)) = uf (θ). (19)
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Additionally, in serial dictatorship, for each m̂(θ, γ) and f ∈ F ,

uf (m̂(θ, γ)) = uf (Ŵγ(f)) = max
W ′⊆W\∪1≤i<γ(f)Ŵi,|W ′|≤qf

χ(f,W ′, θ).

Since every γ ∈ Γ satisfies
∣∣∣∪1≤i<γ(f)Ŵi

∣∣∣ ≤ Q,

uf (m̂(θ, γ)) ≥ min
W⊆W,|W |≤Q

max
W ′⊆W\W,|W ′|≤qf

χ(f,W ′, θ) = uf (θ) ∀θ ∈ Θ, f ∈ F , γ ∈ Γ. (20)

For every f ∈ F ,

1

|Γ|
∑
γ∈Γ

Eπ

[
uf

(
m̂(θ, γ), θ

)]
=

∑
θ∈Θ

π(θ)
∑
γ∈Γ

1

|Γ|

[
uf

(
m̂(θ, γ), θ

)]
>

∑
θ∈Θ

π(θ) uf (θ) = u∗
f ′ ,

where the strict inequality follows from (19), (20), and Assumption 2.

A.3 Omitted Proofs for Section 4.1

A.3.1 Proof of Proposition 1∗

For part (i), let (λ(θ))θ∈Θ be the tuple of lotteries such that λ(θ) ∈ ∆(M◦(θ)) for every

θ ∈ Θ, and u = Eπ[Eλ(θ)[u(m, θ)]]. There are three cases to consider.

Case 1: R = ∅. If a firm f receives uf = u∗
f on average, it is necessary that this firm receives

the highest possible payoff uf (θ) at every realization of θ. This in turn implies that, for each

θ, λ(θ) only assigns positive probability to stage matchings that are stable in a static sense.

Therefore, a matching process that recommends according to (λ(θ))θ∈Θ in every period is

self-enforcing.

Case 2: |R| = 1. Let f denote the single firm in R, and let (mf (θ))θ∈Θ be the matchings

that give f the most severe punishment by f itself, while all other firms receive the highest

possible payoff uf (θ). Consider the following matching process:

(I) Match according to λ(·) if λ(·) was followed in the last period or mf (·) was followed

for L periods;

(II) If firm f deviates from (I), match according to mf (·) for L periods.
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If firm f deviates from (II), restart (II).

It is easy to check that when L is sufficiently large, firm f has no incentive to deviate in

either phase, since δ → 1. All other firms have no incentive to deviate, since they already

receive maximum stage payoff in every period.

Case 3: |R| ≥ 2. The proof for this case essentially follows the one for Proposition 1 with

proper adjustments.

For part (ii), by construction, any firm f ∈ P1 can secure a stage payoff uf (θ) by deviation

at every θ regardless of the stage matching. Taking expectation yields Uf (h |µ) = u∗
f for

every f ∈ P1.

Suppose Uf ′(h |µ) = u∗
f ′ for every f ′ ∈

⋃n
k=1 Pk with n < N . Then all firms in

⋃n
k=1 Pk

offer zero wages to their employees. By construction, each firm f ∈ Pn+1 can secure a stage

payoff uf (θ) by deviation at every θ regardless of how firms in F\
⋃n

k=1 Pk are matched in

each period. Taking expectation yields Uf (h |µ) = u∗
f for every f ∈ Pn+1. By induction, the

equality holds for all f ∈ F\R.

By definition of the effective minmax payoff, every firm f ∈ R can secure uf (R, θ) in each

period by deviating with workers. Taking expectation over θ yields Uf (h |µ) ≥ u∗
f (R) for

these firms. Rigorous proof can be adapted from that of Proposition 1(ii) in Appendix A.2.1.

A.3.2 Proof of Lemma 2∗

The proof of the first statement follows that of Lemma 2.

For the second statement, take any f ∈ Pn, n = 1, 2, . . . , N . By definition, for every

γ ∈ ΓP , we have
∣∣∣W#

γ(f)

∣∣∣ < Q(F\
⋃n−1

k=0 Pk). This means

uf

(
m̂(θ, γ), θ

)
= max

W⊆W\W#
γ(f)

,|W |≤qf

χ(f,W, θ)

≥ min
W ′⊆W,|W ′|≤Q(F\

⋃n−1
k=0 Pk)

max
W⊆W\W ′,|W |≤qf

χ(f,W, θ)

= uf (θ), ∀θ ∈ Θ,

where the last equality comes from the definition of Pn. Taking expectation over Θ gives

Eπ

[
uf

(
m̂(θ, γ), θ

)]
= u∗

f , which suffices for the second statement to hold.
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