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Abstract

This paper justifies the persistence and prevalence of the equal-sharing norm from an evo-

lutionary perspective. While equal sharing is perceived as less efficient than market-based

alternatives, we demonstrate that it fosters long-term efficiency by promoting more produc-

tive types. In our framework, agents differentiated by productivity form partnerships endoge-

nously. Although equal sharing may lead to less efficient outcomes in the short term, it pro-

motes the growth of productive types, thereby enhancing long-term efficiency. Conversely,

unequal-sharing norms can introduce inefficiencies and hinder growth over time. Our findings

provide an evolutionary rationale for the observed coexistence of equal sharing and market-

based norms.
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1 Introduction

The equal-sharing norm advocates for the equitable distribution of resources among individuals. It
has deep roots in human history and continues to influence contemporary societal structures. For
example, the ancient principle of equal sharing in partnership law, as documented in the Institutes

of Justinian since 533 CE, remains widely adopted by modern law firms (Smith, 2001). Equal
sharing of loyalties among band members is a common practice, even among the most renowned
bands (Polcz, 2023). Kibbutz has been a vibrant Israeli community that promotes equality of
resource allocation among community members (Abramitzky, 2008, 2011, 2018).

While equal sharing offers appealing benefits, such as fostering fairness and reinforcing group
cohesion, it is inherently inflexible. Market-based approaches, which allow for compensation to
vary based on different factors, are often seen as more efficient and adaptable to changing con-
ditions. Despite this, equal sharing remains a common practice in certain areas of the market
economy. This raises the question—what underlying mechanisms sustain the persistence of equal
sharing, even when more flexible alternatives are available? In this paper, we present an evolution-
ary explanation.

We model a heterogeneous population of agents who endogenously form partnerships; the
output of each partnership depends on the productivity of the matched agents. The division of this
output is governed by societal sharing norms.

We analyze three types of sharing norms. First, the market-sharing norm allows agents to
split output based on their market opportunities, as in a perfectly transferable utility (TU) matching
market. Second, the equal-sharing norm requires matched pairs to divide output equally. Third,
we consider unequal-sharing norms, such as those that allocate a larger (or smaller) share to the
more senior agent. Unlike the market-sharing norm, equal-sharing and unequal-sharing norms lack
flexibility, causing the matching market to operate as a nontransferable utility (NTU) one.

In our model, there are three tiers of evolution: matching, productivity, and sharing norm,
respectively. At the behavioral level, agents within a population engage in a repeated re-matching
process, which immediately results in a stable matching. At the type level, the distribution of
types evolves more slowly, driven by the payoffs earned through matching, and converges to a
stable distribution. Finally, at the societal level, sharing norms evolve at the slowest rate, shaped
by competition among multiple populations with different sharing norms, based on their societal
performances.

We find that while the equal-sharing norm may not produce as efficient stable matchings as the
market-sharing norm at the behavioral level, both lead to efficiency at the level of type evolution.
Hence, both ultimately favor the selection of the distribution of agent types that generates the
highest partnership outputs. In contrast, unequal-sharing norms introduce inefficiencies at the type
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evolution stage. As a result, over time, unequal-sharing norms are outperformed, but both the
market-sharing norm and the equal-sharing norm persist and can coexist in the long run.

To the best of our knowledge, no paper has considered a three-tier evolutionary model with
the evolution of matching, productivity, and sharing norm. Previous papers allow the evolution
of productive types/cultural traits/preferences, given a rapid matching process and a fixed sharing
rule over time (e.g., Wu and Zhang, 2021; Hiller, Wu, and Zhang, 2023; Wang and Wu, 2025).

In our model, partnership formation happens in a one-sided pairwise matching market (i.e.,
roommate market) with a continuum of agents in every period. Although many standard results
from the parallel two-sided matching settings—e.g., equivalence of socially efficient and stable
matchings, convexity of stable payoffs (Shapley and Shubik, 1972; Gretsky, Ostroy, and Zame,
1992)—extend to our one-sided setting, there is no paper that explicitly states and proves these
results.1 To this end, we provide results in more detail and prove them rigorously, which may serve
as a reference for subsequent papers that model the evolution of behavior, productivity, culture,
and/or preferences in one-sided matching markets. In addition, it should be noted that although
we model explicitly the formation of two-member teams, the main result of the long-run efficiency
of the equal-sharing norm would go through if we considered the formation of multiple-member
teams.

The only other work we are aware of that provides evolutionary justifications for the equal-
sharing norm is the book of Skyrms (2014). In his model, a population of agents is randomly
matched to play a dollar division game. The population consists of three types of agents: super-
greedy agents who demand at least 2/3, fair-minded agents who demand at least 1/2, and super-
modest agents who demand at least 1/3. The author demonstrates that, under replicator dynamics,
a homogeneous population of fair-minded agents as well as a polymorphic population with equal
proportions of super-greedy and super-modest agents are both asymptotically stable. However, the
basin of attraction for the fair-minded population is significantly larger than that of the polymorphic
population. The intuition is straightforward. Super-greedy agents secure 2/3 only when paired
with super-modest agents and receive nothing otherwise. Super-modest agents can always reach
an agreement with any opponent, but they consistently receive the smallest share. Fair-minded
agents, by contrast, typically secure 1/2, especially when there is a sufficient number of fair-minded
or super-modest agents in the population.

Our model differs from Skyrms (2014) in several key aspects. First, agents in our model exhibit
heterogeneity in their productivity, rather than heterogeneity in demand rules. Second, partnerships
in our model emerge endogenously, as opposed to being formed through random encounters, and

1A few papers—Azevedo, Weyl, and White (2013); Chiappori, Salanié, and Galichon (2019); Carmona and Lao-
hakunakorn (2024)—provide existence results in similar roommate matching settings, but do not discuss properties
such as convexity and compactness of the set of stable payoffs that are crucial to our evolutionary existence results.
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this is key to the long-run efficiency of the equal-sharing norm in our evolutionary setting. Third,
the selection of sharing norms occurs at the societal level, rather than at the individual level, and is
driven by the economic performance associated with each sharing norm.

The rest of the paper is organized as follows. Section 2 studies the market-sharing norm.
Section 3 studies alternative fixed-proportion sharing norms, i.e., equal and unequal-sharing norms.
Section 4 studies the evolution of sharing norms, and Section 5 concludes. The appendix collects
omitted proofs.

2 The Market-Sharing Norm

2.1 Population and Matching

Consider a unit mass of agents. Each agent is characterized by a trait i ∈ N = {1, 2, ..., n}.
Let xi ∈ [0, 1] denote the mass of trait-i agents, for any i ∈ N , and

∑n
i=1 xi = 1. Let

x = (x1, x2, ..., xn) denote the population state. In this paper, we use R+ to refer to the set
of nonnegative real numbers and R++ to refer to the set of strictly positive real numbers. Let
X = {x ∈ Rn

+|
∑n

i=1 xi = 1} denote the set of population states; it is an (n − 1)-simplex ∆n−1.
Let X++ = int(X) = {x ∈ Rn

++|
∑n

i=1 xi = 1} denote the interior of X , i.e., the set of population
states such that there is a positive mass of each type.

Agents can find partners to form pairs; they can also choose not to: If an agent remains un-
matched, she receives a payoff of 0. If a trait-i agent and a trait-j agent are matched, they jointly
produce a strictly positive payoff of f(i, j). Let f : N2 → R++ denote the production function.
Assume that f is symmetric: f(i, j) = f(j, i) for any i, j ∈ N .

Let µij(x) ≥ 0 denote the mass of (i, j) pairs given the population state x. We have
µij(x) = µji(x). Since each (i, i) pair contains two trait-i agents, and each (i, j) pair with i ̸= j

contains one trait-i agent, we have 2µii(x) +
∑

j ̸=i µij(x) ≤ xi. Let µ(x) be an n× n matrix that
denotes the aggregate matching (Echenique et al., 2013), whose (i, j) entry is µij(x). Note that the
notion of aggregate matching is defined on the population level as opposed to the more familiar
individual level. We adopt the stability concept in two-sided TU (transferable utility) matching
market (Shapley and Shubik, 1972; Becker, 1973; Gretsky, Ostroy, and Zame, 1992) to our setting
of one-sided matching market with a continuum of agents to characterize the stable outcome of the
partnership formation process.

Definition 1 A stable outcome is described by a stable matching µ∗(x) and a vector of stable
payoffs w∗(x) = (w∗

1(x), w
∗
2(x), ..., w

∗
n(x)) ∈ Rn, such that

(i) (individual rationality) each person gets at least as much as staying unmatched: w∗
i (x) ≥ 0

for any i ∈ N ;
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(ii) (surplus efficiency) each pair exactly divides the surplus: w∗
i (x) + w∗

j (x) = f(i, j) if

µ∗
ij(x) > 0, for any i, j ∈ N ; and

(iii) (no blocking pair) no pair can get a sum that is strictly more than the sum of their current

payoffs: w∗
i (x) + w∗

j (x) ≥ f(i, j) for any i, j ∈ N .

Let us note some implications of the definition. First, since an agent gets a payoff of zero if she
remains unmatched and would produce a strictly positive surplus with any other agent, all agents
are matched in any stable matching. Second, in the definition, all agents with the same trait have
the same stable payoff. This is not an assumption, but would be implied by the definition, namely,
by the no-blocking-pair condition: If two agents with the same trait have different payoffs, then
there is room for a blocking pair to emerge.

Lemma 1 A stable outcome exists.

We show in the proof of Lemma 1 that just as in a two-sided matching market (Gretsky, Os-
troy, and Zame, 1992), a matching is stable if and only if it is socially efficient. Hence, we can
characterize a stable matching by the solution to the maximization problem of the total payoff:

max
µ(x)

∑
i∈N

∑
j≤i

µij(x)f(i, j) such that 2µii(x) +
∑
j ̸=i

µij(x) ≤ xi for all i ∈ N.

When the solution to the maximization problem is unique, it must be the unique stable matching.
We will assume that the stable matching is always unique in the subsequent analysis.2 Let W ∗(x)

be the collection of stable payoff vectors w∗(x) that support the unique stable matching µ∗(x).
As an example, consider the setting with two types, N = {1, 2}. First, suppose 2f(1, 2) <

f(1, 1) + f(2, 2). The unique stable outcome involves positive assortative matching—µ∗
ii = xi/2

for i ∈ N—and equal split—w∗
i (xi) = f(i, i)/2 for i ∈ N . Next, suppose instead 2f(1, 2) >

f(1, 1) + f(2, 2). The stable outcome involves negative assortative matching. When x1 < 1/2,
the unique stable matching is given by µ∗

12(x) = x1 and µ∗
22(x) = x2 − x1, and the unique stable

payoff vector is given by w∗(x) = (f(1, 2) − f(2, 2)/2, f(2, 2)/2). When x1 > 1/2, the unique
stable matching is given by µ∗

12(x) = x2 and µ∗
11(x) = x1−x2, and the unique stable payoff vector

is given by w∗(x) = (f(1, 1)/2, f(1, 2)− f(1, 1)/2). When x1 = 1/2, the unique stable matching
µ∗(x) is given by µ∗

12(x) = 1/2, and any payoff vector w∗(x) such that f(i, i)/2 ≤ w∗
i (x) ≤

f(1, 2)− f(j, j)/2 for i ∈ {1, 2} and j ̸= i, and w∗
1(x) + w∗

2(x) = f(1, 2) is stable.

2A sufficient condition to ensure unique stable outcome is f(i, j)+f(i′, j′) ̸= f(i, i′)+f(j, j′) for any i, i′, j, j′ ∈
N such that {i, i′} ∩ {j, j′} = ∅.
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2.2 The Evolution of Traits

The distribution of traits evolves over time, guided by the payoffs associated with different traits.
We assume that the process of forming partnerships reaches a stable outcome much more rapidly
than the evolution of traits. Thus, when the distribution of traits shifts, the stable outcome swiftly
adapts.3

We consider the replicator dynamic to describe the evolution of traits. The replicator dynamic
can be derived from a biological growth model (Taylor and Jonker, 1978), an intergenerational cul-
tural transmission model (Bisin and Verdier, 2001), or learning models based on imitation (Sand-
holm, 2010). Let w∗(x) =

∑
j∈N xjw

∗
j (x) denote the average payoff in a stable outcome. Note

that since there is a unit mass of agents, the average payoff equals the total payoff: w∗(x) =∑
i∈N

∑
j≤i µ

∗
ij(x)f(i, j). Since the unique stable matching µ∗(x) must maximize the total payoff,

w∗(x) does not vary across w∗(x) ∈ W ∗(x). Let w∗(x) = (w∗(x), w∗(x), ..., w∗(x)) ∈ Rn be the
n-dimensional vector in which each of the n entries equals w∗(x). The replicator dynamic is given
by a differential inclusion:4

ẋ ∈ V RDI(x) ≡ {x · [w∗(x)− w∗(x)] |w∗(x) ∈ W ∗(x)} . (RDI)

Hence, the fraction of agents who carry a trait that is associated with an above-average payoff
grows and vice versa.

The dynamic described in (RDI) is a differential inclusion because of the possible indetermi-
nacy of stable payoff vectors. When there are multiple stable payoff vectors, the path the dynamic
takes depends on the realized stable payoff vector. For example, at x, if the realized stable payoff
vector is w∗(x), then the growth rate of trait i is given by ẋi = xi · [w∗

i (x)−w∗(x)] for any i ∈ N ,
which takes the standard form of the replicator dynamic.

We have the following theorem from Sandholm (2010) that provides sufficient conditions for
the existence of solution trajectory.

Theorem 1 (Sandholm, 2010, Theorem 6.A.1) Consider a differential inclusion ẋ ∈ V (x). If V

is nonempty, bounded, convex-valued, and upper-hemicontinuous, then for any initial condition

ξ ∈ Rn, there exists a Carathéodory solution trajectory {xt}t∈[0,T ] to the differential inclusion.

That is, the solution trajectory is Lipschitz continuous, and its derivative ẋt ∈ V (x) at almost all

times t ∈ [0, T ].

The following lemma shows that the replicator dynamic we consider is well-behaved and thus,
3This approach parallels the indirect evolutionary approach that studies preference evolution (Güth and Yaari,

1992; Güth, 1995), where agents’ preferences evolve at a much slower pace compared to their behaviors.
4A differential inclusion is a generalization of a differential equation where the derivative of a function is con-

strained to belong to a set of possible values rather than being determined by a single value.
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combined with Theorem 1, has a solution trajectory in the interior of X . Note that the uniqueness
of the solution trajectory is not guaranteed.

Lemma 2 The correspondence V RDI is nonempty-valued, bounded, convex-valued, and upper-

hemicontinuous in X++.

2.3 Analysis

We now study convergence and stability of the dynamic processes. Convergence informs us where
the dynamic process ends up from all initial conditions, and stability determines whether conver-
gent states of the population are robust against perturbations.

Definition 2 The ξ-limit set ω(ξ) is the set of all population states such that the solution trajectory

{xt}t≥0 starting from x0 = ξ approaches arbitrarily closely infinitely often. Formally,

ω(ξ) :=
{
y ∈ X : ∃{tk}∞k=1 with lim

k→∞
tk = ∞ s.t. x0 = ξ and lim

k→∞
xtk = y

}
.

An element in a ξ-limit set is called a ξ-limit point.

The collection of all limit points is denoted by the set Ω = ∪ξ∈Xω(ξ): It captures the notion of
recurrence of the dynamics. Let A ⊆ X be a closed set, and call O ⊆ X a neighborhood of A if it
is open relative to X and contains A.

Definition 3 Set A ⊂ X , a proper subset of X , is Lyapunov stable if for every neighborhood O of

A, there exists a neighborhood O′ of A such that every solution trajectory {xt}t≥0 that starts in O′

is contained in O, that is, x0 ∈ O′ implies that xt ∈ O for all t ≥ 0. If A is not Lyapunov stable,

we call it Lyapunov unstable.

Intuitively, Lyapunov stability requires that any displacement from A does not lead the process
to go “far” from A at any point in time.

Definition 4 Set A ⊂ X is attracting if there is a neighborhood Y ⊆ X of A such that every

solution trajectory that starts in Y converges to A, that is, ξ ∈ Y implies ω(ξ) ⊆ A. Set A ⊂ X is

globally attracting if it is attracting with Y = X . The set of points ξ ∈ X such that ω(ξ) ⊆ A is

called the basin of attraction of A.

Intuitively, that A is attracting requires that given any displacement from A, the process returns to
A in the limit.
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Definition 5 Set A ⊂ X is asymptotically stable if it is Lyapunov stable and attracting. Set A ⊂ X

is globally asymptotically stable if it is Lyapunov stable and globally attracting.

Intuitively, asymptotic stability of A requires that given any displacement from A, the process
never travels “far” from A and returns to A in the limit. The limiting behavior of deterministic
dynamics can be characterized as follows. We will focus on the case that there exists a unique
match that leads to the highest payoff.

Proposition 1 (i) Suppose there exists a unique i such that f(i, i) = maxk,l f(k, l). The population

state x∗ = ei, the ith standard basis vector, is the unique globally asymptotically stable state under

the replicator dynamic with respect to X\{x|xi = 0}. It is also the efficient state. (ii) Suppose

there exist i and j ̸= i such that f(i, j) = maxk,l f(k, l). The population state x∗ such that

x∗
i = x∗

j = 0.5 is the unique globally asymptotically stable state under the replicator dynamic with

respect to X\{x|xi = 0 or xj = 0 or both}. It is also the efficient state.

Proposition 1 shows that the population states that maximize the average payoff in stable
matching are asymptotically stable. See Appendix A for Theorems 2 and 3 that we use to prove sta-
bility and convergence based on the Lyapunov method. In the first case when there exists a unique
i such that f(i, i) = maxk,l f(k, l), we define LRDI(x) = − log xi. In the second case when there
exist i and j ̸= i such that f(i, j) = maxk,l f(k, l), we define LRDI(x) = −[log(2xi) + log(2xj)].
We will use LRDI(x) as the Lyapunov function for (RDI).

To make Proposition 1 more concrete, consider the setting with two productive types. Without
loss of generality, assume that f(1, 1) > f(2, 2). Hence, the two traits differ in own-match pro-
ductivity. When 2f(1, 2) > f(1, 1) + f(2, 2), we call the payoff structure submodular. There is
always a unique stable matching, in which the mass of cross-trait matching is maximized (negative
assortative matching). When 2f(1, 2) < f(1, 1) + f(2, 2), we call the payoff structure supermod-
ular. There is always a unique stable matching with only own-trait matching (positive assortative
matching).
Case 1. Suppose f(1, 2) > f(1, 1). This immediately implies submodularity. In this case, we
always have a unique stable payoff as long as x1 ̸= 1/2. When x1 < 1/2, w1(x) = f(1, 2) −
f(2, 2)/2 > w2(x) = f(2, 2)/2. When x1 > 1/2, w1(x) = f(1, 1)/2 < w2(x) = f(1, 2) −
f(1, 1)/2. Hence, for (RDI), ẋi > 0 when 0 < x1 < 1/2; ẋi < 0 when x1 > 1/2, which
guarantees the globally asymptotic stability of x∗ = (1/2, 1/2) given any interior initial state.
Case 2. Suppose f(1, 1) > f(1, 2) and 2f(1, 2) > f(1, 1) + f(2, 2). We still have submodularity.
When x1 < 1/2, w1(x) = f(1, 2) − f(2, 2)/2 > w2(x) = f(2, 2)/2. When x1 > 1/2, w1(x) =

f(1, 1)/2 > w2(x) = f(1, 2) − f(1, 1)/2. Hence, for (RDI), ẋi > 0 when x1 > 0, which
guarantees the globally asymptotic stability of x1 = 1 in (0, 1].
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Case 3. Suppose f(1, 1) > f(1, 2) and 2f(1, 2) < f(1, 1) + f(2, 2). In this case, we have
supermodularity. We always have w1(x) = f(1, 1)/2 > w2(x) = f(2, 2)/2. Hence, for (RDI),
ẋi > 0 when x1 > 0, which guarantees the globally asymptotic stability of x1 = 1 in (0, 1].

To summarize this two-type example, while supermodularity guarantees that trait 1, the more
productive trait, prevails through evolution, submodularity does not guarantee the coexistence of
both traits. Only when cross-trait match leads to the highest production can both traits coexist.
These results confirm Proposition 1, the population state that maximizes the average payoff in
stable matching is the long-run prediction of the evolutionary process. When f(1, 2) is the highest,
x = (1/2, 1/2) maximizes the average payoff. When f(1, 1) is the highest, x = (1, 0) maximizes
the average payoff.

3 Sharing Norms and Efficiency

In this section, rather than letting agents determine surplus division endogenously within the mar-
ket, we introduce exogenous sharing norms that specify how the surplus is distributed in each
match. These norms reflect the cultural conventions that governed resource allocation in society
before the emergence of free markets.

Let uij denote a type-i agent’s payoff from her match with a type-j agent. uij + uji = f(i, j).
We adopt the stability concept in two-sided NTU (nontransferable utility) matching market (Gale
and Shapley, 1962) to our setting of one-sided matching markets with a continuum of agents to
characterize the stable matching of the partnership formation process.

Definition 6 A stable matching µ∗(x) satisfies

(i) (individual rationality) each person gets at least as much as staying unmatched: uij ≥ 0 for

any i, j ∈ N such that µ∗
ij(x) > 0;

(ii) (no blocking pair) no pair of persons can both be strictly better off than what they have in

their current matches: uij ≤ uik or uji ≤ ujl for any i, j, k, l ∈ N such that µ∗
ik(x) > 0 and

µ∗
jl(x) > 0.

Carmona and Laohakunakorn (2024) prove the existence of stable matching. For x and µ∗(x),
let u∗

i (x) denote the average payoff of all type-i agents. Let u∗(x) = (u∗
1(x), u

∗
2(x), ..., u

∗
n(x)) ∈ Rn

denote the vector of average payoffs. Let u∗(x) denote the average payoff in the entire population.
Let u∗(x) = (u∗(x), u∗(x), ..., u∗(x)) ∈ Rn. The evolution of traits is still dictated by the replicator
dynamic. But now it is given by a differential equation:

ẋ = V RDE(x) ≡ {x · [u∗(x)− u∗(x)]} . (RDE)
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Theorem 4 in Appendix A establishes asymptotic stability for (RDE).

3.1 Equal-Sharing Norm

First, suppose two agents in a pair equally split the payoff they jointly produce. That is, uij =

f(i, j)/2. In the remaining analysis, we will assume that f(i, j) ̸= f(i, l), for any i and any j ̸= l

(see footnote 2). Without loss of generality, assume f(1, 1) > f(i, i) for any i ̸= 1.

Proposition 2 (i) Suppose f(1, 1) = maxk,l f(k, l). Then x∗ = e1, where e1 is the first standard

basis vector, is globally asymptotically stable under (RDE) with respect to X\{x|x1 = 0}. It is

also the efficient state. (ii) Suppose there exist i and j such that i ̸= j and f(i, j) = maxk,l f(k, l).

Then x∗ such that x∗
i = x∗

j = 1/2 is globally asymptotically stable under (RDE) with respect to

X\{x|xi = 0 or xj = 0 or both}. It is also the efficient state.

Similar to the analysis for the market-sharing norm, here we will focus on two cases. In the
first case when a single type (type 1) is the most productive in terms of production, we define
LRDE(x) = − log x1. In the second case where there exist i and j such that i ̸= j and f(i, j) =

maxk,l f(k, l), we define LRDE(x) = −[log(2xi) + log(2xj)]. Proposition 2 will use LRDE(x) as
the Lyapunov function for (RDE).

Note that LRDE(x) is identical to LRDI(x), which we use to prove stability for (RDI) in Section
2.3. Although they are the same, they function differently in the two settings due to the inherent
differences between TU and NTU matching. Specifically, when a pair of types (including poten-
tially the same type) are most productive when matched, these types will pair with each other to the
greatest extent possible under NTU matching, as in the equal-sharing norm setting. This results
in their average payoff being higher than the population average—an essential condition for the
Lyapunov method to apply. However, under TU matching, as in the market-sharing norm setting,
these types may not necessarily pair with each other to the greatest extent possible. Nevertheless,
the no-blocking-pair condition under TU matching still ensures that the average payoff for these
types exceeds the population average.

To illustrate, we consider settings with three types. Suppose f(1, 1) > f(1, 2), f(1, 1) >

f(1, 3), f(2, 2) > f(1, 2), f(2, 2) < f(2, 3), f(3, 3) < f(1, 3), and f(3, 3) > f(2, 3). This
payoff structure leads to PAM and the globally attracting and stable state x∗ = (1, 0, 0). Figure 1a
provides a graphic illustration of (RDE).

Alternatively, suppose f(1, 1) < f(1, 2) < f(1, 3), f(2, 2) < f(1, 2) < f(2, 3), and f(3, 3) <

f(1, 3) < f(2, 3). Suppose the initial state x0 = (x0
1, x

0
2, x

0
3) = (0.3, 0.5, 0.2). The unique stable

matching is characterized by µ12 = 0.3, µ23 = 0.2. Then the payoffs under stable matching are
u∗
1(x

0) = f(1, 2)/2, u∗
2(x

0) = 0.6 · [f(1, 2)/2] + 0.4 · [f(2, 3)/2], and u∗
3(x

0) = f(2, 3)/2. The
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average payoff is u∗(x0) = 0.6 · [f(1, 2)/2]+0.4 · [f(2, 3)/2]. Hence, under the replicator dynamic,
ẋ1 = x0

1 · [u∗
1(x

0) − u∗(x)] < 0, ẋ2 = x0
2 · [u∗

2(x
0) − u∗(x)] = 0, ẋ3 = x0

3 · [u∗
3(x

0) − u∗(x)] > 0.
Hence, x1 shrinks, x2 stagnates, and x3 grows. Therefore, limt→∞ xt = (0, 0.5, 0.5). Figure 1b
provides a graphic illustration of (RDE).

Figure 1: Comparison of replicator dynamics under PAM and Non-PAM.

(a) Replicator dynamic under PAM. (b) Replicator dynamic under Non-PAM.

Note: Panel (a) illustrates the replicator dynamics when f(1, 1) = 6, f(1, 2) = 1, f(1, 3) = 5,
f(2, 2) = 2, f(2, 3) = 3, and f(3, 3) = 4. Panel (b) illustrates the replicator dynamics when
f(1, 1) = 1, f(1, 2) = 3, f(1, 3) = 5, f(2, 2) = 2, f(2, 3) = 6, and f(3, 3) = 4.

In sum, under the equal-sharing norm, efficiency is always achieved through evolution for any
payoff structure f .

3.2 Unequal-Sharing Norms

Now suppose the society has a universal sharing norm that features an unequal division of joint
production. Let αij ∈ (0, 1) denote the share of joint production a type-i agent gets when matched
with a type-j agent.

Assume that the universally unequal-sharing norm takes the following form: αii = 0.5 for any
i and αij > 0.5 if i < j. The society is hierarchical in this case, where types represent seniority
and a more senior agent can get a larger share when matched with a more junior agent. Assume
f(k, k) = maxi f(i, i), which indicates that type-k is the most productive in terms of matching
with its own type. We allow k ̸= 1 to maintain generality and avoid assuming that the most senior
type is also the most productive in own-type matching.

11



For illustration, consider the following examples.
Suppose there are two types 1 and 2. The payoff structure satisfies that f(1, 1) = 6, f(2, 2) = 8

and f(1, 2) = 10, and the sharing norm satisfies that α12 = 0.9 and α21 = 0.1. In this case,
u11 = 3, u22 = 4, u12 = 9, u21 = 1, which induces PAM, so the evolutionary dynamic is simply
driven by the comparison of u11 and u22, which leads to a unique stable state (0, 1). However, this
state is not efficient, because the society can achieve a higher average payoff in the state (0.5, 0.5).

Suppose there are two types 1 and 2. The payoff structure satisfies that f(1, 1) = 6, f(2, 2) = 7

and f(1, 2) = 10, and the sharing norm satisfies that α12 = 0.6 and α21 = 0.4. In this case,
u11 = 3, u22 = 3.5, u12 = 6, u21 = 4, which induces NAM. To determine the stable state(s), we
compare the average payoffs of the type-1 and type-2 agents. When x1 ≤ 0.5,

u∗
1(x) = u12 = 6 > F2(x) =

x1

x2

u21 +
x2 − x1

x2

u22 = 4
x1

x2

+ 3.5
x2 − x1

x2

.

Hence, no state is stable in this region. When x1 > 0.5,

u∗
1(x) =

x1 − x2

x1

u11 +
x2

x1

u12 = 3
x1 − x2

x1

+ 6
x2

x1

, u∗
2(x) = u21 = 4.

Hence, there exists a unique stable state (3/4, 1/4). However, this state is not efficient, as the
society can achieve a higher average payoff in the state (0.5, 0.5).

The examples demonstrate that universally unequal-sharing norms can lead to inefficiency
through evolution. We have the following general result.

Proposition 3 For any universally unequal-sharing norm, there exists a payoff structure f that

leads to an asymptotically stable state that is inefficient.

4 The Evolution of Sharing Norms

Suppose that on top of the evolution of traits, there is another layer of evolution on sharing norms.
Let s denote a sharing norm and let S denote the space for sharing norms. There are many popu-
lations, and each population is equipped with a different sharing norm. Let x∗(s) denote a stable
state in the evolution of types in the population with sharing norm s and let X∗(s) denote the set
of stable states.

Definition 7 A sharing norm s is evolutionary stable against s′ if for every payoff structure f ,

u∗(x∗(s)) ≥ u∗((x∗(s′)) for any x∗(s) ∈ X∗(s) and x∗(s′) ∈ X∗(s′); and for some payoff struc-

ture f , u∗(x∗(s)) > u∗((x∗(s′)) for some x∗(s) ∈ X∗(s) and x∗(s′) ∈ X∗(s′).
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We are essentially considering a three-speed dynamic model. At the behavioral level, agents
within each population engage in a repeated re-matching process, which quickly converges to a
stable matching. At the trait level, the distribution of traits evolves relatively more slowly and
converges to a stable distribution. At the societal sharing norm level, the sharing norms evolve the
slowest. According to our previous analysis, the equal-sharing norm and the market-sharing norm
are robust in selection on the society level, as they always induce the efficient distribution of traits.

Proposition 4 The equal-sharing norm and the market-sharing norm are both evolutionarily sta-

ble against any non-equal-sharing norms.

This result rationalizes why the equal-sharing norm survives and prevails alongside the market-
based norm.

5 Conclusions

This paper offers an evolutionary perspective on the resilience of the equal-sharing norm and chal-
lenges the assumption that market-based approaches are inherently superior. Through a three-tier
evolutionary framework, we demonstrate how equal sharing, despite its rigidity, fosters efficient
type evolution and promotes long-term productivity. Our findings suggest that the equal-sharing
norm, far from being an outdated relic, continues to thrive alongside market mechanisms due to its
capacity to shape stable and productive populations.

By extending the existing literature to incorporate endogenous partnership formation and the
gradual evolution of societal norms, our model highlights the interplay between economic per-
formance and social norms. The results underscore the importance of considering multi-level
evolutionary processes when analyzing social and economic institutions.

The current model focuses solely on pairwise matching, resulting in a stable distribution of
preferences that is either monomorphic or bimorphic. A natural extension would be to consider
team formation, and we anticipate that our results would generalize naturally to any fixed team
size. It would also be an intriguing direction to explore more general coalition formation settings.
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A Omitted Proofs

Proof of Lemma 1. We define an outcome (µ,w) as the specification of a feasible roommate
matching µ and an associated vector of payoffs (wi)i∈N , with wi denoting the payoff of each
individual of type i. These payoffs have to be feasible: The sum of payoffs across the population
has to be equal to the total output under the matching µ. The set of feasible one-sided matchings is

M1(x) =

{
µ = (µij)

∣∣∣∣ 2µii +
∑
j ̸=i

µij ≤ xi ∀i ∈ N and µij = µji ∀i, j ∈ N

}
.

The total surplus created by one-sided matching µ is

w∗(µ) =
∑
i∈N

µiif(i, i) +
∑
i∈N

 ∑
j∈N\{i}

µij

2
f(i, j)

 =
∑
i∈N

µiif(i, i) +
∑

j∈N\{i}

µij

2
f(i, j)

 .

The maximum of the aggregate surplus over the set of feasible one-sided matchings M1(x) is

P1(x) = max
µ∈M1(x)

w∗(µ). (P1)

Explicitly, this one-sided primal program is

P1(x) = max
µ

w∗(µ)

subject to 2µii +
∑

j∈N\{i}

µij ≤ xi ∀i ∈ N, (feasibility)

µij = µji ∀i, j ∈ N. (symmetry)

Define the following one-sided dual program:

D2(x) = min
w=(wi)i∈N ,A=(Aij)i,j∈N

∑
i∈N

xiwi (D1)

subject to wi ≥ 0 ∀i ∈ N (individual rationality)

wi + wj ≥ f(i, j) + Aij ∀i, j ∈ N, (no blocking pair)

Aij = −Aji ∀i, j ∈ N. (anti-symmetry)

Consider an associated two-sided matching problem. Denote the set of feasible two-sided
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matchings by

M2(x, x) =

{
ν = (νij)

∣∣∣∣∑
j∈N

νij ≤ xi ∀i ∈ N and
∑
i∈N

νij ≤ xj ∀j ∈ N

}
,

and the total surplus of a two-sided matching ν by

w∗
2(ν) =

∑
i,j∈N

νijf(i, j).

A stable outcome in the two-sided matching setting is defined analogously: (ν, u, v) is a two-sided
stable outcome that consists of a feasible two-sided matching ν = (νij)i,j∈N and two-sided payoff
vectors u = (ui)i∈N and v = (vj)j∈N if (i) (individual rationality) ui ≥ 0 for any i ∈ N and
vj ≥ 0 for any j ∈ N , (ii) (no blocking pair) ui + vj ≥ f(i, j) for any i, j ∈ N , and (iii) (surplus
efficiency) ui + vj = f(i, j) if νij > 0.

The two-sided surplus maximization problem of population state (x/2, x/2)—the two-sided
primal program—associated with the one-sided primal program (P1) of population state x is

P2(x/2, x/2) = max
ν∈M2(x/2,x/2)

w∗
2(ν). (P2)

Explicitly,

P2(x/2, x/2) = max
ν

w∗
2(ν)

subject to
∑
j∈N

νij ≤ xi∀i ∈ N and
∑
i∈N

νij ≤ xj∀j ∈ N. (feasibility)

Note that the symmetry constraints in the one-sided primal program are absent in the two-sided
primal program. The two-sided dual program is

D2(x/2, x/2) = min
u,v

∑
i∈N

1

2
xiui +

∑
j∈N

1

2
xjvj (D2)

subject to ui ≥ 0 ∀i ∈ N and vj ≥ 0 ∀j ∈ N, (individual rationality)

ui + vj ≥ f(i, j) ∀i, j ∈ N. (no blocking pair)

By Shapley and Shubik (1972) and Gretsky, Ostroy, and Zame (1992), there exist two-sided stable
matchings ν and they coincide with the solution of the two-sided primal program (P2). More-
over, the associated payoffs (u, v) solve the two-sided dual program (D2). Finally, for any stable
matching ν, νij > 0 implies ui + vj = f(i, j), νi0 > 0 implies ui = 0, and ν0j implies vj = 0.
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Note that the values of the one-sided primal program with population state x ∈ X++ and the
associated two-sided primal program with population state (x/2, x/2) coincide:

P1(x) = P2(x/2, x/2).

Consider a matching µ ∈ M1(x). Define ν such that νij = µij/2 if i ̸= j and νii = µii. For
any i ∈ N , ∑

j∈N

νij = νii +
∑
j ̸=i

νij = µii +
∑
j ̸=i

µij/2 ≤ xi/2,

and ∑
j∈N

νji = νii +
∑
j ̸=i

νji = µii +
∑
j ̸=i

µji/2 ≤ xi/2,

so ν ∈ M2(x/2, x/2), as the feasibility constraint for ν ∈ M2(x/2, x/2) is satisfied.

w∗(µ) =
∑
i∈N

µiif(i, i) +
∑
i∈N

 ∑
j∈N\{i}

µij

2
f(i, j)

 =
∑
i∈N

[∑
j∈N

νijf(i, j)

]
= w∗

2(ν).

Hence, ν, a feasible two-sided matching in (x/2, x/2), achieves the maximum surplus of one-sided
matching under population state x (achieved by the optimal solution µ). We have

P1(x) ≤ P2(x/2, x/2). (1)

Conversely, let (νij) maximize aggregate surplus over M2(x/2, x/2). By the symmetry of f ,
(νji) is also a maximizer. Since (P2) is a linear program, ν ′

ij = (νij + νji)/2 also maximizes it.
Define µ such that µ′

ij = 2ν ′
ij if i ̸= j and µ′

ii = ν ′
ii. Then for any i ∈ N ,

2µ′
ii +

∑
j ̸=i

µ′
ij = 2νii +

∑
j ̸=i

(νij + νji) =
∑
j∈N

νij +
∑
j∈N

νji ≤ xi,

where
∑

j∈N νij ≤ xi/2 and
∑

j∈N νji ≤ xi/2 follow from the feasibility constraints of ν ∈
M2(x/2, x/2). Hence, µ′ ∈ M1(x). The aggregate surplus under one-sided matching µ′ is

∑
i∈N

µ′
iif(i, i) +

∑
i∈N

[∑
j ̸=i

µ′
ij

2
f(i, j)

]
=

∑
i∈N

ν ′
iif(i, i) +

∑
i∈N

[∑
j ̸=i

ν ′
ijf(i, j)

]
=

∑
i∈N

∑
j∈N

ν ′
ijf(i, j).

Hence, µ′, a feasible one-sided matching in population state x, achieves the maximal two-sided
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surplus in population state (x/2, x/2) (achieved by the optimal solution ν ′). Hence,

P1(x) ≥ P2(x/2, x/2). (2)

Combining (1) and (2), we have P1(x) = P2(x/2, x/2).
We have the following results: (i) There exist stable roommate outcomes. (ii) Stable roommate

matchings solve the one-sided primal problem (P1), i.e., achieve the maximal aggregate surplus.
(iii) Stable one-sided payoffs w = (wi)i∈N solve the one-sided dual program (D1).

(i) By the claim, the values of one-sided primal program (P1) P1(x) and two-sided primal
program (P2) P2(x/2, x/2) coincide. Let ν = (νij) denote a solution of the two-sided primal
program. By the duality result of Shapley and Shubik (1972) and Gretsky, Ostroy, and Zame
(1992), there exist two-sided stable payoff vectors (ui) and (vj) that solve the two-sided dual
program (D2) D2(x/2, x/2), namely, such that ui ≥ 0 for any i ∈ N , vj ≥ 0 for any j ∈ N ,
ui + vj ≥ f(i, j) for any i, j ∈ N , and ui + vj = f(i, j) whenever νij > 0.

Define µij = νij + νji when i ̸= j, µii = νii, and wi = (ui + vi)/2 for any i ∈ N . We have
wi ≥ 0, wi + wj ≥ f(i, j), wi + wj = f(i, j) whenever µij > 0, and

∑
i∈N

xiwi =
1

2

[∑
i∈N

xiui +
∑
i∈N

xivi

]
= P2(x/2, x/2) = P1(x) = w∗(µ).

Hence, (µ,w) is a one-sided stable outcome.
(ii) Conversely, assume that µ is a stable one-sided matching. Then, by definition, there exists

a one-sided payoff vector w = (wi)i∈N such that (i) wi ≥ 0 for any i ∈ N , (ii) wi + wj ≥ f(i, j)

for any i, j ∈ N , and (iii)
∑

i∈N xiwi =
∑

i∈N µiif(i, i) +
∑

i∈N
∑

j∈N\{i}
µij

2
f(i, j).

The Lagrangian of (P1) is

L1(µ) =
∑
i∈N

µiif(i, i) +
∑

j∈N\{i}

µij

2
f(i, j)


−wi

2µii +
∑

j∈N\{i}

µij − xi

−
∑
i,j

Aij(µij − µji)−
∑
i,j

Aji(µji − µij),

where wi ≥ 0 for any i ∈ N and Aij ≥ 0 for any i, j ∈ N . For any i, j ∈ N such that i ̸= j,

1

2
f(i, j)− wi − Aij + Aji ≤ 0,

1

2
f(j, i)− wj − Aji + Aij ≤ 0.
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Combining the two, we get f(i, j) ≤ wi + wj for i and j ̸= i. Hence, (w,A = 0) are Lagrangian
multipliers for the one-sided primal program (P1), and the stable µ is an optimal solution of (P1).

(iii) The linear program (D2) is the dual of the primal program (P1). Because the stable match-
ing µ solves (P1) and because of the argument in (ii) above, the stable payoff vector associated
with the stable matching µ solves the dual program (D2).

Hence, there exists a stable matching in the one-sided matching setting with a continuum of
agents. ■

Proof of Lemma 2. First, fix a population state x ∈ X++. The set of stable one-sided payoffs,
W ∗(x), is convex. Fix two stable payoff vectors w♠ ∈ W ∗(x) and w♢ ∈ W ∗(x). Take any
λ ∈ (0, 1). We have (i) λw♠

i + (1 − λ)w♢
i ≥ 0 for any i ∈ N , because w♠

i ≥ 0 and w♢
i ≥ 0 for

any i ∈ N , (ii) [λw♠
i + (1 − λ)w♢

i ] + [λw♠
j + (1 − λ)w♢

j ] ≥ f(i, j) for any i, j ∈ N , because
w♠

i + w♠
j ≥ f(i, j) and w♢

i + w♢
j ≥ f(i, j) ≥ f(i, j).

Second, fix a population state x ∈ X++. The set of stable one-sided payoffs, W ∗(x), is com-
pact. Since W ∗(x) is a set in R|I|, it suffices to show that W ∗(x) is closed and bounded. Each
element of W ∗(x) is bounded due to the surplus function being bounded. The set is also closed,
because all individual rationality and no-blocking-pair constraints are non-strict inequalities.

Third, the correspondence, W : X++ ⇒ R|I|, that specifies the set of stable one-sided payoffs
W ∗(x) for population state x ∈ X++, is upper-hemicontinuous. Proof: W : X++ ⇒ R|I| is upper-
hemicontinuous if and only if xk → x, wk ∈ W (xk), and wk → w imply w ∈ W ∗(x). It suffices
to show that w∗(x) =

∑
i∈N wixi and that w satisfies wi ≥ 0 for any i ∈ N and wi + wj ≥ f(i, j)

for any i, j ∈ N . First, we show that w∗(x) =
∑

i∈N wixi.∣∣∣∣∣∑
i∈N

wixi − w∗(x)

∣∣∣∣∣
=

∣∣∣∣∣∑
i∈N

wixi −
∑
i∈N

wk
i x

k
i + w∗(xk)− w∗(x)

∣∣∣∣∣
≤

∣∣∣∣∣∑
i∈N

wixi −
∑
i∈N

wk
i x

k
i

∣∣∣∣∣+ ∣∣w∗(xk)− w∗(x)
∣∣

≤

∣∣∣∣∣∑
i∈N

wixi −
∑
i∈N

wix
k
i

∣∣∣∣∣+
∣∣∣∣∣∑
i∈N

wix
k
i −

∑
i∈N

wk
i x

k
i

∣∣∣∣∣+ ∣∣w∗(xk)− w∗(x)
∣∣

≤

∣∣∣∣∣∑
i∈N

wixi −
∑
i∈N

wix
k
i

∣∣∣∣∣+ ∣∣∣∣w − wk
∣∣∣∣+ ∣∣w∗(xk)− w∗(x)

∣∣ .
Fix ϵ. Since xk → x, there is a k1(ϵ) such that all k > k1(ϵ),

∣∣∑
i∈N wixi −

∑
i∈N wix

k
i

∣∣ ≤ ϵ/3.
Since wk → w, there is a k2(ϵ) such that for all k > k2(ϵ),

∣∣∣∣w − wk
∣∣∣∣ ≤ ϵ/3. Since xk → x,
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∣∣w∗(xk)− w∗(x)
∣∣ ≤ ϵ/3. Therefore,

∣∣∑
i∈N wixi − w∗(x)

∣∣ ≤ ϵ for any ϵ > 0.
We also need to show that w satisfies the stability conditions. Suppose otherwise: wi + wj <

f(i, j) for a positive measure of (i, j) or wi < 0 for some i ∈ N . Then limk→∞ ∥w − wk∥ > 0, a
contradiction to the assumption that wk → w. ■

Theorem 2 (Sandholm, 2010, Theorem 7.B.2) Let A ⊆ X be closed and let Y ⊆ X be a neigh-

borhood of A. Let L : Y → R+ be Lipschitz continuous with L−1(0) = A. If each solution

{xt}t≥0 of ẋ ∈ V RDI(x) (or ẋ = V RDE(x)) satisfies L̇(xt) ≤ 0 for almost all t ≥ 0, then A is

Lyapunov stable.

Theorem 3 (Sandholm, 2010, Theorem 7.B.4) Let Y ⊂ X be relatively open and inescapable

under (RDI). Let L : Y → R be C1 and satisfy (i) ∂L
∂v
(x) ≡ ∇L(x)′v ≤ 0 for all v ∈

V RDI(x) and x ∈ Y and (ii)
[
0 /∈ V RDI(x) =⇒ ∂L

∂v
(x) < 0

]
for all v ∈ V RDI(x) and x ∈ Y .

Then, for all solutions {xt} of (RDI) with x0 ∈ Y , ω({xt}) ⊆ {x ∈ Y : 0 ∈ V (x)}.

Theorem 2 states that the existence of a Lipschitz continuous Lyapunov function L(x) guaran-
tees that L−1(0), the set of population states that minimize L(x), is Lyapunov stable. Theorem 3
shows that the existence of a C1 Lyapunov function L(x) guarantees the solution trajectories con-
verge to the states that minimize L(x). Theorems 2 and 3 imply the globally asymptotic stability
of the set of population states that minimize L(x) under (RDI).

Proof of Proposition 1. In the first case, LRDI(x) = − log xi is a C1 function. Moreover, for any
x such that xi > 0, and for any v = x · [w∗(x)− w∗(x)], we have

∂LRDI

∂v
(x) = ∇LRDI(x)′v

= −
(

1

xi

)
xi[w

∗
i (x)− w∗(x)]

= −[w∗
i (x)− w∗(x)].

By the definition of stable matching, w∗
i (x) ≥ f(i, i)/2. By the fact that f(i, i) = maxk,l f(k, l),

f(i, i)/2 > w∗(x) as long as x ̸= ei. Therefore, we have ∂LRDI

∂v
(x) < 0. At x∗ = ei, the stable

matching is given by µii(ei) = 0.5, where w∗
i (ei) = w∗(ei) = f(1, 1)/2. Hence, V RDI(e1) = {0}.

Also, L−1(0) = {ei}. By Theorems 2 and 3, ei is the globally asymptotically stable state with
respect to X\{x|xi = 0}. In addition, f(i, i) = maxk,l f(k, l) implies that ei is the unique efficient
state.

In the second case, LRDI(x) = −[log(2xi) + log(2xj)] is a C1 function. Moreover, for any x

such that xi > 0 and xj > 0, and for any v = x · [w∗(x)− w∗(x)], we have

∂LRDI

∂v
(x) = ∇LRDI(x)′v
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= −
(

1

xi

)
xi[w

∗
i (x)− w∗(x)]−

(
1

xj

)
xj[w

∗
j (x)− w∗(x)]

= −[(w∗
i (x) + w∗

j (x))− 2w∗(x)].

By the definition of stable matching, w∗
i (x) + w∗

j (x) ≥ f(i, j). By the fact that f(i, j) =

maxk,l f(k, l), we have f(i, j)/2 > w∗(x). Therefore, we have ∂LRDI

∂v
(x) < 0. At x∗ such

that x∗
i = x∗

j = 0.5, the stable matching is given by µij(x
∗) = 0.5, where w∗(x∗) that satisfies

w∗
i (x

∗) = w∗
j (x

∗) = f(i, j)/2 is a possible stable payoff vector. Hence 0 ∈ V RDI(x∗). Also,
L−1(0) = {x∗}. By Theorems 2 and 3, x∗ is the globally asymptotically stable state with respect
to X\{x|xi = 0 or xj = 0 or both}. In addition, f(i, j) = maxk,l f(k, l) implies that x∗ is the
unique efficient state. ■

Theorem 4 (Sandholm, 2010, Corollary 7.B.6) Let A ⊆ X be closed and let Y ⊆ X be a

neighborhood of A. Let L : Y → R be C1 with L−1(0) = A. If L̇(x) < 0 for all x ∈ Y − A,

then A is asymptotically stable under ẋ = V RDE(x). If in addition, Y = X , then A is globally

asymptotically stable under ẋ = V RDE(x).

Theorem 4 shows globally asymptotic stability of the set of population states that minimize
L(x) under (RDE).

Proof of Proposition 2. In the first case, f(1, 1) = maxk,l f(k, l) implies that f(1, 1) > f(1, i)

for any i ̸= 1. Hence, as long as x1 > 0, all i-type agents must match among themselves and
u∗
1(x) = u11 = f(1, 1)/2 is the highest payoff an agent can obtain in the population.

We want to show that LRDE(x) = − log x1 serves as a Lyapunov function for the replicator
dynamic. First, it is a C1 function with LRDE(x∗) = 0. Furthermore, for any xt such that xt

1 > 0,

dLRDE(xt)/dt = ▽LRDE(xt)′ẋt

= −
(

1

xt
1

)
xt
1[u

∗
1(x

t)− u∗(xt)]

= u∗(xt)− u∗
1(x

t)

< 0 as long as xt ̸= e1.

Hence, according to Theorem 4, x∗ is globally asymptotically stable with respect to X\{x|x1 = 0}.
In the second case, f(i, j) = maxk,l f(k, l) implies that f(i, j) > f(i, i) and f(i, j) > f(j, j).

Hence, these two types of agents will match with each other to the greatest extent possible. Without
loss of generality, assume that 0 < x0

i < x0
j . Then all type-i agents are matched with type-j agents,

while the remaining type-j agents match otherwise. In this case, u∗
i (x

0) = uij = f(i, j)/2, which
is the largest payoff an agent can get.
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Let r(t) = xt
i/x

t
j . Observe that under the replicator dynamic, dr(t)

dt
=

xt
i

xt
j
[u∗

i (x
t)−u∗

j(x
t)] > 0 as

long as xt
i < xt

j so that u∗
i (x

t)− u∗
j(x

t) > 0. Also, once xt
i = xt

j , r(t) = 1 and u∗
i (x

t) = u∗
j(x

t) =

f(i, j)/2 because all type-i agents are exactly matched with all type-j agents. Hence, dr(t)
dt

= 0.
In sum, r(t) is a strictly increasing function bounded by 1, implying that limt→∞ r(t) = 1. Define
Y = {x|xi = xj > 0}. This part of the proof shows that the dynamic always converges to Y from
X\{x|xi = 0 or xj = 0 or both}.

Next, we want to show that x∗ is asymptotically stable with respect to Y . LRDE(x) =

−[log(2xj) + log(2xi)] is a C1 function in Y with LRDE(x∗) = 0. In addition,

dLRDE(xt)/dt = ▽LRDE(xt)′ẋt

= −
(

1

2xt
i

)
xt
i

[
u∗
i (x

t)− u∗(xt)
]
−
(

1

2xt
j

)
xt
j

[
u∗
j(x

t)− u∗(xt)
]

= u∗(xt)−
[
u∗
i (x

t) + u∗
j(x

t)
]
/2

= u∗(xt)− f(i, j)/2

< 0 as long as xt ̸= x∗.

Hence, LRDE(x) is a Lyapunov function for the replicator dynamic on Y and once the dynamic
reaches Y , the dynamic converges to x∗ according to Theorem 4. In sum, we can conclude that x∗

is globally asymptotically stable with respect to X\{x|xi = 0 or xj = 0 or both}. ■

Proof of Proposition 3. We will prove by construction. First, let f(i, i) = c for some constant
c > 0, for any i ̸= 1. For any 1 < i < j, let f(i, j) = c + νij , where 0 < νij < c[1/(2αji) − 1].
We must have that for any 1 < i < j,

uji = αji(c+ νij) < ujj = uii = c/2 < uij = αij(c+ νij).

This implies that in any stable matching, no i− j match will be formed.
Next, let f(1, i) = c + ϵi for any i ̸= 1, where 0 < ϵi < c[1/(2αi1) − 1]. Let ϵ = mini ϵi and

let f(1, 1) = c+ ϵ/2. Then we have, for any i ̸= 1,

ui1 = αi1(c+ ϵi) < c/2 = uii < u11 = (c+ ϵ/2)/2 < (c+ ϵi)/2 < α1i(c+ ϵi) = u1i.

This implies that in any stable matching, no (1, i) pair will form. Hence, the unique stable matching
must be PAM and e1 is the globally asymptotically stable state X\{x|x1 = 0}. However, it is not
efficient because f(1, 1) < f(1, i) for any i ̸= 1. ■

Proof of Proposition 4. It is directly implied by Propositions 1, 2 and 3. ■
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