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Abstract

Complementarities and peer effects are common in matching markets, yet incorporating

them often leads to the nonexistence of stable matchings. We observe that matching is

often an ongoing process rather than a static allocation, where long-lived firms interact

over time with short-lived workers. We show that when wages are flexible and firms are

sufficiently patient, a dynamically stable solution always exists in many-to-one matching

markets—even with complementarities and peer effects. Flexible wages are crucial to our

result, as they not only facilitate surplus extraction when firms cooperate in no-poaching

agreements but also enhance the threat of punishment through bidding wars.
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1 Introduction

Two-sided many-to-one matching models with monetary transfers are crucial for understanding

a variety of transactional environments, including auctions, labor markets, and housing

markets. In their seminal work, Kelso and Crawford (1982) established the existence of stable

matchings, provided that firms’ production technologies satisfy gross substitutability (no

workers serve as complementary inputs in a firm’s production) and workers’ preferences do

not exhibit peer effects (workers ignore their colleagues’ identities and characteristics).

However, complementarities and peer effects are present in many important matching

markets. In industries such as manufacturing, healthcare, and software development, it is

common for tasks to require the collaboration of workers with complementary skills. In

labor markets such as academia and startups, colleagues are an important consideration

when choosing where to work. Although recent literature has obtained positive existence

results by modeling large markets or considering alternative assumptions on preferences,

accommodating arbitrary production technologies and peer effects has been challenging.

In this paper, we propose an approach that does not rely on restrictions on market size,

technologies, or preferences. We consider matching as an ongoing process in which long-lived

players on one side of the market interact over time with short-lived players or objects on

the other side. This dynamic is salient in many matching environments: Long-lived sellers

can serve a sequence of short-lived buyers, firms can hire a new batch of interns in every

recruitment season, and brokers can purchase newly issued securities in every trading cycle.

To fix ideas, we focus on labor markets with long-lived firms and short-lived workers. We find

that, in the presence of complementarities and peer effects that destabilize static matchings,

stability can be maintained through (tacit) no-poaching agreements among long-lived firms.

Such agreements allow firms to eliminate wage competition and extract surplus from workers,

and are enforced by the threat of bidding wars in the event of noncompliance. The key idea

is that dynamic incentives can act as both carrots and sticks to deter firms’ deviations. We

provide an illustrative example at the end of this section.

The driving force behind our result is wage flexibility, which not only enables firms to

extract surplus from workers when colluding in a no-poaching agreement, but also enhances
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their ability to punish defectors through bidding wars. In fact, as we illustrate with a

counterexample in Section 4.1, our existence result does not extend to a rigid-wage environment

with peer effects and complementarities. This observation aligns with the tendency of markets

experiencing chaos and “unraveling” to be those with wage rigidity, such as the markets for

medical interns prior to the National Resident Matching Program (Roth 1984) and for federal

judicial law clerks (Avery, Jolls, Posner and Roth 2001).1

No-poaching agreements appear in many labor markets and have attracted intense antitrust

scrutiny (Krueger and Ashenfelter 2022). While specific practices and implementations vary,

no-poaching agreements are, in essence, market-sharing arrangements in which firms avoid

competing for each other’s workers to suppress wages.2 For example, in U.S. v. Adobe Systems

Inc., et al., tech companies are alleged to have established such agreements informally via

emails among CEOs and HR officers. A similar phenomenon occurs in college admissions,

where universities reduce competition by avoiding “poaching” each other’s students with

better financial aid offers. Despite antitrust exemptions under the Improving America’s

Schools Act of 1994, there has been a surge in antitrust cases that scrutinize universities’

collusive practices in setting financial aid. Notably, in Henry, et al. v. Brown University, et al.,

universities are alleged to have colluded to use a common aid formula to “eliminate financial

aid as a locus of competition.” Likewise, Hansen et al. v. Northwestern University, et al.

scrutinizes universities for taking “concerted action” to reach an “agreed pricing strategy”

that reduces aid to students with divorced parents.3 Our findings add a new perspective to

this debate: While such agreements are inherently anti-competitive, they may play a vital

role in sustaining market stability, especially in environments lacking static stable matchings

due to significant complementarities and peer effects.

From a technical standpoint, our setting differs from standard repeated noncooperative

games since our stage game is a cooperative game. In standard repeated games, the non-

cooperative stage game is guaranteed to have a Nash equilibrium: Playing the same Nash

1Medical residents are compensated primarily through educational opportunities and prospects for ad-
vancement, with monetary compensation close to the binding minimum wage. Law clerks receive compensation
mainly in the form of prestige, with wages determined by government pay scales (United States Courts 2024).

2Importantly, no-poaching agreements differ from noncompete clauses, in which firms directly contract
with workers to restrict their employment options.

3Similarly, in Seaman v. Duke University and Binotti v. Duke University, disputes centered on coordinated
baseline wages by university and hospital administrators.
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equilibrium at every history delivers a subgame perfect Nash equilibrium. In our setting,

by contrast, since the cooperative stage game may not have a stable outcome, the existence

of a dynamically stable matching process cannot be guaranteed simply by forming a static

stable matching at every history. We establish existence by explicitly constructing a dynamic

matching process. We do this in three steps. First, we define and characterize the analog of

“minmax payoffs” in the cooperative stage game. We then use a folk-theorem-like construction

to show that payoff profiles above these minmax payoffs can be sustained in a dynamically

stable matching process when firms are sufficiently patient. Finally, we show that in a

no-poaching agreement implemented through a random serial dictatorship, each firm obtains

random payoffs that first-order stochastically dominate their respective minmax payoffs.4

An Example. Two long-lived firms f1 and f2 each offer two internship positions every

period. Each firm treats workers as complements: It generates a revenue of $6 only when

both of its vacancies are filled and is unproductive otherwise. On the other side of the market,

every period, three new identical workers w1, w2, and w3 look for positions. For simplicity,

assume that workers’ payoffs are equal to the wages they receive. If the matching market

in every period is treated as an isolated one-shot interaction, no static matching is stable:

In any static matching, at most one firm is productive, and for both firms to break even,

there must be one worker earning zero and another worker earning no more than $3. The

unproductive firm can then form a blocking coalition with these two workers.

Instead of static matchings, consider the following history-dependent matching process

(illustrated in Figure 1). In each period, the market is in one of four possible states: two

wage-suppressing collusion states C1 and C2 and two punishment states P1 and P2. Each

collusion state has a dominant firm, f1 in C1 and f2 in C2, and each punishment state has a

punished firm, f1 in P1 and f2 in P2. The market starts at and remains in state C1 until a

firm deviates. Whenever a firm deviates, the market transitions to the punishment state for

that firm and remains there for four periods; if a firm deviates during a punishment phase,

4In a random serial dictatorship, an ordering of firms is randomly drawn, and firms take turns to hire
their favorite set of workers from the remaining pool. This arrangement entails a no-poaching agreement, as
firms agree not to poach any workers hired by firms with higher priorities according to the ordering. An
example of serial dictatorship in labor markets is the new player drafts in major North American professional
sports (e.g., NBA, NFL, NHL, and MLB).
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then the process transitions to the punishment phase for that firm. After this punishment

phase, the market enters the collusion state in which the non-deviating firm assumes the role

of the dominant firm and stays there until a firm deviates.

C1
(4, 2)

C2
(2, 4)

P1
(0,−6)

P2
(−6, 0)

4× ×4

Figure 1. A stable matching process. The first number in parentheses
is the stage-game payoff of firm f1, and the second number is that
of firm f2. Solid arrows represent transitions when no firm deviates,
dashed arrows that point to P1 (in red) represent transitions to P1
after firm f1’s deviations, and dashed arrows that point to P2 (in blue)
represent transitions to P2 after firm f2’s deviations.

At the beginning of every period in collusion states C1 and C2, a biased coin toss

determines which firm secures the hiring rights for the current period. The dominant firm

wins with a probability of 2/3, and the nondominant firm wins with a probability of 1/3. The

firm that wins the coin toss hires two workers at zero wage, while the losing firm temporarily

shuts down. Therefore, the dominant firm obtains $4 on average, while the other obtains $2.

Notice that the collusion states feature a no-poaching agreement: In each period, the non-

hiring firm refrains from soliciting workers from the other firm, thus forgoing an immediate

gain in the current period. In punishment states P1 and P2, the firm being punished shuts

down, while the punishing firm hires two workers each at a wage of $6. Figure 1 depicts firms’

payoffs in each state.

To see that this matching process is dynamically stable, we use a one-shot deviation

principle (Lemma 3), which establishes dynamic stability by checking two requirements at

every history: (1) no worker wishes to unilaterally leave her matched firm to be unemployed
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and (2) no firm has a profitable one-shot deviation with a group of workers who also find

this deviation profitable. Note that the first requirement is satisfied in every state of the

matching process since all workers are weakly better off than being unemployed. We next

verify that the second requirement is also met in every state.

In punishment states, any deviation by the punished firm improves neither its current

stage-game payoff nor its continuation value. The punishing firm can gain a profit in the

current period by deviating, but by doing so it would forgo the advantage of being the

dominant firm in future collusive periods. As a result, for high values of δ, the punishing

firm does not find one-shot deviations profitable.

In collusion states, regardless of which firm has the hiring rights for the period, the

dominant firm finds no profitable one-shot deviations when δ is high: Any deviation would

lead to the loss of its position as the dominant firm and thus a lower long-run payoff. The

nondominant firm also has no incentive to deviate: Even though it could potentially obtain a

current-period gain of $6 by poaching workers from the winning firm, this would be followed

by a net loss of $2 for each of the next four periods (it gets $0 from shutting down, compared

with $2 in the collusive state). When firms are patient, the loss outweighs the potential gain,

so the nondominant firm also has no profitable one-shot deviations.

Let us briefly discuss two features of our example. The coin tosses in the collusion

states are public randomization devices that convexify players’ payoffs. Public randomization

simplifies our exposition but is not essential to our results, since we can also convexify payoffs

using sequences of play. As noted earlier, our results rely on firms’ ability to flexibly adjust

workers’ wages, which facilitates both extracting surplus in the collusion states and rendering

workers unavailable to deviators in the punishment states.

Related Literature. The literature on static job matching has guaranteed the existence of

stable matching by (i) imposing restrictions on preferences (Hatfield and Milgrom 2005; Sun

and Yang 2006; Echenique and Yenmez 2007; Hatfield and Kojima 2008; Pycia 2012; Hatfield,

Kominers, Nichifor, Ostrovsky and Westkamp 2013; Rostek and Yoder 2020; Kojima, Sun

and Yu 2020, 2024; Pycia and Yenmez 2023); (ii) studying large markets (Kojima, Pathak

and Roth 2013; Ashlagi, Braverman and Hassidim 2014; Azevedo and Hatfield 2018; Che,

Kim and Kojima 2019); (iii) making minimal adjustments to quotas (Nguyen and Vohra
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2018); or (iv) considering strategically consistent beliefs (Rostek and Yoder 2024).5 In this

paper, we propose a different approach based on firms’ dynamic incentives.

Our paper also contributes to the literature on dynamic matching. Prior studies by Corbae,

Temzelides and Wright (2003), Kurino (2020), and Doval (2022) have explored dynamic

matching as a complete contingent plan with a focus on one-to-one matching. Both Corbae

et al. (2003) and Doval (2022) impose a perfection requirement, which we also adopt in our

analysis. However, Corbae et al. (2003) examine a setting in which all players are long-lived

and matchings can be revised over time, focusing on implications for monetary economics.

Doval (2022) considers a setting with arrivals, where matchings are one-time and irrevocable.6

In contrast, we study a setting in which each long-lived firm repeatedly matches with multiple

short-lived workers in every period. Another approach is to study dynamic matching not as

a contingent plan but as a path of realized matchings. Damiano and Lam (2005) consider

blocking plans by coalitions subject to a coalition-proofness requirement (Bernheim, Peleg and

Whinston 1987). Kadam and Kotowski (2018a,b) examine pairwise stability in a framework

that allows for complex preferences that are not necessarily time-separable; in the same

environment, Kotowski (2024) considers a notion of stability that combines a perfection

requirement with conservative conjectures about the future.

The works most closely related to this paper are Ali and Liu (2020) and Liu (2023), both of

which consider repeated games with moves by coalitions. Ali and Liu (2020) examine repeated

games where all players are long-lived, and the stage game can be either a cooperative game

or a normal-form game. They study dynamic contingent plans that are immune to blocking

coalitions in this general setting. Liu (2023) considers dynamic matching with long-lived

firms and short-lived workers, which is similar to our setting. However, Liu (2023) focuses on

matching without transfers, which significantly constrains the scope of dynamic punishments

and rewards. In Section 4.1 we present an example with peer effects in which dynamic

incentives fail to ensure stability in the absence of transfers. Liu (2023) relies on assumptions

on payoffs (i.e., gross substitutability and no peer effects) to guarantee the existence of

5Relatedly, Echenique and Yenmez (2007) consider matching with peer effects and propose an algorithm
that finds all static stable matchings whenever they exist.

6Du and Livne (2016) study a similar problem without transfers, while Altınok (2020) extends this
approach to many-to-one matching.
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static stable matchings in the stage game, and to characterize when the limited scope of

dynamic incentives can or cannot overcome the constraints of the Rural Hospital Theorem.

By contrast, our paper studies matching markets with transfers, which substantially expand

the scope of dynamic enforcement. One main contribution of the current paper is therefore

to shed light on the stabilizing role of dynamic incentives in matching markets with transfers,

especially when static stability breaks down due to nonstandard preferences.

Our approach is also related to several important papers on classic repeated games.

Specifically, our model involves long-run firms playing against short-run workers, making it

closely related to the folk theorems for repeated games with long-run and short-run players

(Fudenberg, Kreps and Maskin 1990; Fudenberg and Levine 1994). However, we consider

deviations by coalitions consisting of both long-run and short-run players. The coalition

deviations in our paper are also related to Rubinstein (1980), who considers strong perfect

equilibria, which require that players’ continuation strategies form a strong Nash equilibrium

(Aumann 1959) in the continuation game following every history. The key difference is that,

at every history, a strong perfect equilibrium considers coalitions that are arbitrary subsets of

the finite set of long-lived players. In our model, after any given history, we consider coalitions

consisting of one long-lived player (a firm) and infinite generations of future workers.

The rest of the paper is organized as follows. Section 2 introduces the model. Section 3

describes the main results and their proofs. Section 4 discusses crucial assumptions of the

model. Section 5 concludes. Appendix A collects omitted proofs.

2 Model

Players. At the beginning of every period t = 0, 1, 2, . . ., a new generation of workers enters

the market to match with a fixed set of long-lived firms. Let F denote the finite set of firms.

Matching is many-to-one: In every period, each firm f ∈ F has qf ∈ Z++ hiring slots to fill.

Workers are short-lived: They remain in the market for only one period. For expositional

convenience, we use the same notation W to denote the finite set of workers in every period.

A finite set Θ describes the set of states of the world. In each period, a state θ ∈ Θ is

randomly drawn from a distribution π ∈ ∆(Θ) and then publicly observed. The state space Θ
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is quite general and can encompass both common and individual shocks faced by the players.7

It is important to note that while we introduce random θ to mirror real-world markets, our

results do not depend on this randomness. In fact, all results hold in the special case when π

is a degenerate distribution.

Each firm f has a stage-game revenue function ũf : 2W ×Θ → R defined over subsets of

workers and states. We normalize the revenue of staying unmatched, ũf (∅, θ), to 0 for every

θ ∈ Θ. Note that for each state, we do not require firms’ revenue functions to satisfy the

gross substitutes condition. Firms share a common discount factor δ and evaluate a sequence

of flow utilities through exponential discounting.

Each worker cares about both her employer and her colleagues, which we will refer to

collectively as her work environment. Let Φw = (F × 2W\{w}) ∪ {(∅, ∅)} denote the set of

possible work environments of worker w, where (∅, ∅) represents staying unmatched. Each

worker w has a payoff function ṽw : Φw × Θ → R over work environments and states. For

every worker w ∈ W and state θ ∈ Θ, ṽw(∅, ∅, θ) is normalized to 0.

Stage-Game Matching. The outcome in every period is a static many-to-one matching

among the firms and workers. Formally, a stage-game matching m = (ϕ, p) is described by an

assignment ϕ and a wage vector p. In particular, ϕ is a mapping defined on the set F ∪W

such that (i) for every w ∈ W, ϕ(w) ∈ Φw; (ii) for every f ∈ F , ϕ(f) ⊆ W and |ϕ(f)| ≤ qf ;

and (iii) for every w ∈ W and every f ∈ F , w ∈ ϕ(f) if and only if ϕ(w) = (f, ϕ(f)\{w}).

The wage vector p = (pfw) ∈ R|F|×|W| describes the transfers from firms to workers. We

assume that any nonzero transfer occurs only between a firm and its own employees: pfw = 0

for every w /∈ ϕ(f).8

7For example, one can let Θ0 denote the set of economy-wide shocks, Θf the set of productivity levels of
firm f , and Θw the set of qualities of worker w; the state space can then be constructed as a product set
Θ ≡ Θ0×

∏
f∈F Θf ×

∏
w∈W Θw. In addition, our model can also accommodate fluctuations in the number of

workers across periods by introducing states with unavailable workers, so that matching with any unavailable
worker renders all matched players strictly worse off (before transfers) than staying unmatched.

8Allowing transfers among firms expands the set of feasible outcomes without changing firms’ minmax
payoffs, and as our results indicate, this would expand the set of self-enforced outcomes as δ → 1. Hence,
by only allowing transfers between firms and their employees, we show that this more restrictive form of
transfers suffices to guarantee the existence of self-enforced outcomes. Another reason we choose to model
only transfers between firms and employees is that this also aligns with the model of Kelso and Crawford
(1982), which our paper generalizes.
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Players have quasilinear utilities: For every stage-game matching m = (ϕ, p) and state θ,

uf (m, θ) ≡ ũf (ϕ(f), θ)−
∑
w′∈W

pfw′ and vw(m, θ) ≡ ṽw(ϕ(w), θ) +
∑
f ′∈F

pf ′w

are the stage-game payoffs received by firm f and worker w, respectively. Note that although

the expression for vw above sums over wage payments from all firms, by assumption, at most

one of these payments can be positive. While we adopt quasilinear utility for tractability,

the key driving force is wage flexibility, and our results extend as long as players’ payoffs are

monotone and unbounded in wages (see the discussion in Section 4.1).

A static stable matching is immune to three kinds of deviation: (i) a unilateral deviation

by a firm f to fire all its employees; (ii) a unilateral deviation by a worker w, who leaves her

employer and remains unmatched; and (iii) a coalitional deviation (f,W, pf ) ∈ F ×2W ×R|W|

with |W | ≤ qf and pfw = 0 for every w /∈ W , where firm f and workers W match at wages

specified in pf and abandon any other pre-existing match partners. A deviation is profitable if

all participants strictly prefer the deviating matching to the original matching.9 A stage-game

matching is individually rational if no unilateral deviations are profitable, and is stable if

none of the three kinds of deviations above are profitable.

When studying the stability of static matchings, there is no need to specify how other

players will be matched after a deviation by a coalition. However, in our dynamic setting,

players’ future behavior is influenced by past histories, so to study the stability of matching

processes, we need to specify the realized stage-game outcome after a deviation. To this end,

we adopt the following assumption.

Assumption 1. Let [m, (f̂ , Ŵ , p̂f̂ )] ∈ M denote the stage-game matching that is realized after

coalitional deviation (f̂ , Ŵ , p̂f̂ ) from stage-game matching m = (ϕ, p), and let (ϕ′, p′) denote

the assignment and wages in [m, (f̂ , Ŵ , p̂f̂)]. We assume that the assignment ϕ′ satisfies

ϕ′(f̂) = Ŵ and ϕ′(f) = ϕ(f)\Ŵ for all f ̸= f̂ ; furthermore, we assume that the wages satisfy

p′
f̂
= p̂f̂ , while p′fw = pfw for all f ̸= f̂ and w ∈ ϕ′(f).

Assumption 1 says that in the stage-game matching that results from a coalitional

9In our model with transfers, this formulation of profitable deviations is equivalent to the one that requires
all participants be weakly better off, with at least one member in the coalition becoming strictly better off.
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deviation, the deviators are matched together, players abandoned by the deviators remain

unmatched, and those untouched by the deviation remain matched with their original partners.

The sole purpose of this assumption is to ensure “perfect monitoring”: When a matching m is

blocked by a coalition (f,W ′, p′f ), the firm in the deviating coalition is identifiable. Lemma 4

formally proves this identifiability property from Assumption 1. Any alternative assumption

that delivers the same identifiability property will not change our results.10

Repeated Matching. To convexify players’ stage-game payoffs, we employ a public

randomization device on the unit interval Γ = [0, 1] endowed with the Lebesgue measure.

The use of public randomization streamlines our proofs, but our results do not depend on

it.11

The timing in each period is as follows. First, a new cohort of workers arrives. A state of

the world θ ∈ Θ is drawn according to the distribution π, and a public randomization γ ∈ Γ is

realized. All players observe the realized (θ, γ), and a stage-game matching is recommended

for them based on (θ, γ). Players then decide whether to deviate from this recommendation,

which determines the outcome of the stage game.

A t-period ex ante history h = (θτ , γτ ,mτ )
t−1
τ=0 specifies a sequence of past realizations of

the state, the public randomization device, and the stage-game matching up to period t− 1.12

We write Ht for the set of all t-period ex ante histories, with H0 = {∅} being the singleton

set comprising the null history. Let H ≡
⋃∞

t=0Ht be the set of all ex ante histories. Moreover,

let Ht ≡ Ht ×Θ× Γ denote the set of t-period ex post histories, and H ≡ H×Θ× Γ the set

of all ex post histories.

A matching process µ : H → M specifies a stage-game matching for every ex post history.

It represents a shared understanding among players regarding how past histories impact

future employment. For every ex post history h ∈ H, we let µ(f |h) ∈ 2W × R|W| denote the

10Similar assumptions appear in Mauleon, Vannetelbosch and Vergote (2011) and Liu (2023). As an
example, an alternative to Assumption 1 is to suppose that if m is blocked by (f,W ′, p′f ), any firm that loses
workers to f fires all its remaining workers, whereas all firms untouched by this coalition retain their original
hiring decisions. One can easily verify that identifiability still holds under this specification.

11For example, we could follow arguments in Sorin (1986) and Fudenberg and Maskin (1991) to convexify
players’ payoffs using sequences of play instead.

12Note that this assumes observable wages. However, since workers are short-lived and none of the
self-enforcing matching processes constructed in this paper make use of information about wages, the existence
result continues to hold even if wages are unobservable.
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matching partners of firm f and the wages it pays in the stage-game matching µ(h).

Let H∞ = (Θ× Γ×M)∞ be the set of outcomes h∞ of the repeated matching game. Let

mt(h∞) denote the stage-game matching in the t-th period of h∞. Following every t-period

(ex ante or ex post) history ĥ ∈ H ∪H, let

Uf (ĥ |µ) ≡ (1− δ)Eµ

[ ∞∑
τ=t

δτ−tuf (mτ (h∞), θτ )
∣∣∣ ĥ ]

denote the continuation payoff firm f obtains from the matching process µ following ĥ, where

the expectation is taken with respect to the measure over H∞ induced by µ conditional on ĥ.

Deviation Plan. We make two observations that allow us to tractably analyze firms’

deviations in the repeated game. Recall that there are three kinds of deviations within a

period. We first observe that a unilateral deviation by firm f to fire all its employees is

equivalent to a deviation by the coalition consisting of f and an empty set of workers. It is

therefore without loss to focus on two kinds of deviation: (i) unilateral deviations by workers

and (ii) deviations by coalitions consisting of a firm and a (possibly empty) set of workers in

the stage game.

Our second observation is that as a long-lived player, a firm can participate in a sequence

of deviations by forming coalitions with workers across periods. Each of these coalitions must

be immediately profitable for the participating short-lived workers but not necessarily for the

firm, since the firm cares about the profit it collects from the entire sequence.

Motivated by this second observation, we define a deviation plan for firm f as a complete

contingent plan that specifies, at every ex post history, a set of workers to recruit and their

wage offers. Formally, a deviation plan for firm f is a pair (d : H → 2W , η : H → R|W|) such

that |d(h)| ≤ qf for all h, and ηw(h) ̸= 0 only if w ∈ d(h) for all h. Together with the original

matching process, a deviation plan generates a distribution over the outcomes of the game

H∞. Given a matching process µ and f ’s deviation plan (d, η), the manipulated matching

process, denoted by [µ, (f, d, η)] : H → M , is a matching process defined by

[
µ, (f, d, η)

]
(h) ≡

[
µ(h),

(
f, d(h), η(h)

)]
∀h ∈ H.

11



Firm f ’s deviation plan (d, η) from µ is feasible if at every ex post history h = (h, θ, γ)

such that (d(h), η(h)) ̸= µ(f |h),

vw

([
µ, (f, d, η)

]
(h), θ

)
> vw

(
µ(h), θ

)
∀w ∈ d(h).

That is, workers participate in the deviation only if they find the new stage-game matching

strictly better than the recommendation from µ. Lastly, the deviation plan (d, η) is profitable

if there exists an ex post history h such that Uf

(
h
∣∣ [µ, (f, d, η)]) > Uf (h|µ).

Self-Enforcing Matching Process. The two observations above motivate our notion of

dynamic stability.

Definition 1. Matching process µ is self-enforcing if (i) vw(µ(h), θ) ≥ 0 for every w ∈ W at

every ex post history h ∈ H and (ii) no firm has a feasible and profitable deviation plan.

The first requirement guards against deviations by a single worker in any generation,

and the second guards against deviations by firms. These requirements are imposed on the

matching process at all ex post histories, including those that are off path. This restriction

on all ex post histories embeds a form of sequential rationality in the same way as subgame

perfection does in a repeated noncooperative game. It is also worth noting that Definition 1

focuses on stability against coalitions consisting of a single firm and multiple workers: This

criterion is stronger than pairwise stability but weaker than group stability (Roth and

Sotomayor 1990, p. 130), which requires immunity to blocking by arbitrary subsets of players.

In dynamic environments, these stability notions are not equivalent.13 Nevertheless, in

one-period settings, Definition 1 coincides with the definition of core allocation in Kelso and

Crawford (1982), so our definition can be viewed as its dynamic generalization.

3 Results

Minmax Payoffs. We begin by defining firms’ minmax payoffs. For every realized state

13In Section 4.3, we discuss the conceptual and practical challenges posed by multi-firm deviation plans
and assess the extent to which our results extend to settings that allow for such deviations.
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θ ∈ Θ, let

M◦(θ) ≡ {m ∈ M : vw(m, θ) ≥ 0 for all w ∈ W}

denote the set of stage-game matchings that are individually rational for workers. From

Definition 1, a self-enforcing matching process can only recommend stage-game matchings in

M◦(θ). Moreover, for every firm f ∈ F and recommended stage-game matching m = (ϕ, p),

let

Df (m, θ) ≡

(W ′, p′f ) :
|W ′| ≤ qf , p

′
fw = 0 if w /∈ W ′, and

ṽw(f,W
′, θ) + p′fw > vw(m, θ) for every w ∈ W ′


denote the set of feasible stage-game deviations for f at state θ. Similar to the definition of

feasible deviation plans, a deviation in the stage-game matching is feasible if (i) the deviating

firm does not exceed its quota in hiring, and (ii) any worker involved should be strictly

incentivized compared to the recommended stage-game matching. Firm f ’s minmax payoff is

its payoff from “best responding” to the worst recommendation.

Definition 2. Firm f ’s minmax payoff at state θ is

uf (θ) ≡ inf
m∈M◦(θ)

sup
(W ′,p′f )∈Df (m,θ)

uf ([m, (f,W ′, p′f )], θ).

To characterize this minmax payoff, let

s(f,W, θ) ≡ ũf (W, θ) +
∑
w∈W

ṽw(f,W\{w}, θ)

denote the total surplus of coalition (f,W ) at state θ. The following lemma characterizes

each firm’s minmax payoff.

Lemma 1. Let Q ≡
∑

f ′∈F qf ′ represent the sum of all firms’ hiring quotas. For every firm

f and state θ, f ’s minimax payoff satisfies

uf (θ) = min
W ′⊆W,|W ′|≤Q

max
W⊆W\W ′,|W |≤qf

s(f,W, θ). (1)

Lemma 1 states that a firm’s minmax payoff equals the maximum surplus it can generate

after Q =
∑

f ′∈F qf ′ workers have been removed from the market in an adversarial manner.
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The intuition is as follows. To punish f , other firms can offer high wages to
∑

f ′ ̸=f qf ′ workers,

which renders them unattractive as potential partners for f . In addition, the employees of

f demand high punitive wages from f . Since current employees require consent to join a

deviation, if f blocks, it would be better off abandoning all current employees and looking

for cheaper workers elsewhere. Altogether, this excludes
∑

f ′ qf ′ workers from f ’s potential

match pool in case of a deviation. Instead, f will select its partners from the remaining

workers and extract all the matching surplus by offering those workers zero payoff.

The following example illustrates Lemma 1 while also highlighting an important feature

of the minmax stage: Because of the way punishment works in our matching environment,

the minmaxed player might have to temporarily receive a stage-game payoff that is even

lower than their minmax payoff. Nonetheless, dynamic incentives ensure that the player is

still willing to accept this lower payoff, as shown later in Proposition 1.

Example 1. Consider an economy with a singleton state space Θ = {θ0}. Since preferences

are identical across periods, we omit the dependence on θ0 from our notation for brevity.

There is a single firm f , and three workers W = {w1, w2, w3} enter the market in each period.

The firm can hire at most two workers, and each hired worker generates a revenue of $2.

Workers care only about wages. According to Lemma 1, f ’s minmax payoff is uf = 2: The

total hiring capacity is Q = 2, and the maximum surplus f can generate with the remaining

worker is 2.

This minmax payoff is secured by the minmax matching mf : Two workers (say, w1 and

w2) match with f while each demanding a punitive wage of 2 from f . This makes them “too

expensive” to be included in f ’s blocking coalition. Consequently, if f were to deviate from

mf , its best response would be to abandon {w1, w2} and instead hire w3 at a wage of 0, which

yields the minmax payoff uf = 2 for f .

Note that the minmax payoff describes what a firm can obtain from its most profitable

feasible deviation, rather than from implementing the minmax matching. In this example, f ’s

payoff from the minmax matching, uf (mf ) = 0, is lower than its actual minmax payoff uf = 2.

This contrasts with standard normal-form games, where the minmaxed player receives exactly

the minmax payoff from the minmaxing action profile. The reason for this key difference is

that, in our cooperative stage game, the minmax matching is implemented collectively by all
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firms in the game, including the firm being minmaxed. This can be seen from Equation (1),

where all firms’ hiring quotas are used in the minmax matchings.

Characterization. We first introduce some notation. For every matching m ∈ M◦(θ) and

state θ ∈ Θ, let u(m, θ) ≡ (uf(m, θ))f∈F denote firms’ payoff profile under matching m at

state θ. For every θ ∈ Θ, let

U(θ) ≡ co
( {

u ∈ RF : u = u(m, θ) for some m ∈ M◦(θ)
} )

denote the convex hull of these payoff profiles. In addition, define

U∗ ≡
{∑

θ∈Θ

π(θ)u(θ) : u(θ) ∈ U(θ) for every θ ∈ Θ
}
.

Finally, for every firm f , let

u∗
f ≡ Eπ[uf (θ)]

denote its expected minmax payoff over states of the world. The next result characterizes

the continuation payoffs from self-enforcing matching processes.

Proposition 1. (i) If u ∈ U∗ satisfies uf > u∗
f for all f ∈ F , then there is a δ ∈ (0, 1) such

that for every δ ∈ (δ, 1), there exists a self-enforcing matching process with firms’ continuation

payoffs u at the beginning of period 0. (ii) Suppose µ is a self-enforcing matching process for

a given δ ∈ (0, 1). For every ex ante history h ∈ H, firms’ continuation payoff profile satisfies(
Uf (h |µ)

)
f∈F ∈ U∗ and Uf (h |µ) ≥ u∗

f for every f ∈ F .

To prove statement (ii), note that given realized state θ, by the definition of minmax

payoffs, every firm f can secure the minmax payoff uf (θ) by deviating with workers. Taking

expectation over the distribution of states delivers the result.

To prove statement (i), we first show that U∗ satisfies the NEU condition (Abreu, Dutta

and Smith 1994), which requires that firms’ payoffs are not completely aligned with each other.

For every payoff profile u∗ ∈ U∗ that is strictly above every firm’s average minmax payoff,

this misalignment in payoffs allows us to perturb u∗ in different directions, constructing

firm-specific payoff profiles that serve as punishments for deviating firms. Building on a
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construction similar to the one used in the folk theorem for repeated games with perfect

monitoring (Fudenberg and Maskin 1986), any firm that deviates is minmaxed for a finite

number of periods to offset the gains from deviation, before permanently transitioning to its

firm-specific punishment.

The cooperative stage game gives rise to a technical difficulty in the minmax phase that

is not present in standard folk theorems. As illustrated in Example 1, when a firm f is being

minmaxed, it may be necessary for f to accept a stage-game payoff from the minmax matching

mf (θ) that is even lower than its minmax payoff uf (θ). If the gap between uf (mf (θ), θ) and

uf (θ) is constant across all realizations of θ, firm f can be compensated through continuation

value to refrain from deviating from mf(θ) and obtaining uf(θ). However, if π ∈ ∆(Θ) is

non-degenerate, this can create incentives for f to deviate from mf (θ) when the realized gap

is larger than its ex ante expectation. We tackle this by calibrating wages in the minmax

matchings mf (θ) so that this gap is equalized across all realizations of θ. For further details,

see Lemma 5(iii); we also provide an illustrative example of this construction in Appendix A.3.

Proposition 1, however, does not guarantee the existence of self-enforcing matching

processes. In fact, statement (i) would be vacuously true if there is no feasible payoff profile

u ∈ U∗ that satisfies uf > u∗
f for all f ∈ F . Note that this is not a concern for noncooperative

games, but in two-sided matching environments, such scenarios can indeed arise, for example,

when the market has no wages or there are matching externalities. We provide detailed

illustrations of these possibilities in Section 4.

Proving the existence of a self-enforcing matching process therefore amounts to showing

the existence of u ∈ U∗ that satisfies uf > u∗
f for all f ∈ F . We will show that such a payoff

profile can arise from a random serial dictatorship among the firms.

Existence. Let a bijection o : F → {1, . . . , |F|} denote an ordering of all firms where o(f)

represents the ranking of firm f . Write O for the set of all such orderings. In the serial

dictatorship corresponding to an ordering o ∈ O, firms choose workers sequentially based on

the ordering o while setting all of their matched workers’ payoffs to zero, thereby capturing

the entire matching surplus.
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Definition 3 (Serial Dictatorship). Given state θ ∈ Θ and ordering o ∈ O, the stage-game

matching induced by serial dictatorship, m̂(θ, o), is the output of the following procedure.

Initialize W#
0 ≡ ∅. For every step i = 1, . . . , |F|, denote f̂i ≡ o−1(i), and let

Ŵi ∈ argmax
W⊆W\W#

i−1,|W |≤q
f̂i

s(f̂i,W, θ).

Set ϕ(f̂i) = Ŵi, pf̂iw = −ṽw(f̂i, Ŵi\{w}, θ) for every w ∈ Ŵi, and pf̂iw = 0 for every w /∈ Ŵi;

Update W#
i ≡ W#

i−1 ∪ Ŵi.

In a random serial dictatorship (RSD), firms randomize over O and match according to

m̂(θ, o) based on the realized order o. Formally speaking, at an ex ante history h ∈ H, we

say players match according to the outcomes of an RSD if for each state θ, (i) there is a

partition over the realizations of the public randomization device Γ =
⋃

o∈O Γ(θ, o) consisting

of disjoint measurable sets, and (ii) players follow the matching m̂(θ, o) at the ex post history

(h, θ, γ) when the realization γ ∈ Γ lies in Γ(θ, o). Hence, the probability of m̂(θ, o) being

recommended at h corresponds to the Lebesgue measure of Γ(θ, o).

The example below illustrates how firms match according to the outcomes of an RSD;

in addition, it also shows that the firms’ expected payoff profile from an RSD needs not be

Pareto efficient.

Example 2. Consider two firms F = {f1, f2}, each with quota 2, and four workers W =

{w1, w2, w3, w4}. Suppose the state space is a singleton Θ = {θ0}. Given θ0, firms’ revenue

functions are additive, and for each firm f ∈ F , the revenue generated from a single employee

is given by

w1 w2 w3 w4

f1 6 2 1 1

f2 2 6 1 1

Workers only care about wages. Then, each firm’s expected payoff in the uniform RSD is 5

(where each firm with equal probabilities obtains either (i) workers {w1, w2} yielding payoff 8

or (ii) workers {w3, w4} yielding payoff 2). However, consider the deterministic matching

m̂ where firm f1 matches with workers {w1, w3} and firm f2 matches with workers {w2, w4},
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so each firm ends up with a payoff of 7. The payoff profile generated by the uniform RSD is

Pareto dominated by that from m̂, so RSD does not always yield a Pareto efficient payoff

profile.

We make an assumption to simplify our existence proof. Let

uf (θ) ≡ max
W⊆W,|W |≤qf

s(f,W, θ) (2)

denote firm f ’s maximum feasible payoff at state θ. It is easy to see that uf (θ) ≥ uf (θ) for

every θ ∈ Θ and f ∈ F , since removing Q workers in an adversarial manner reduces f ’s

maximum surplus. For now, we assume that for every firm, this inequality is strict with a

positive probability.

Assumption 2. For every firm f , there exists θ ∈ Θ with π(θ) > 0 such that uf (θ) > uf (θ).

Assumption 2 holds generically, for example, when players’ payoffs in every state θ are

randomly drawn from a continuous distribution. This assumption greatly simplifies the

exposition of Proposition 2 but is not crucial to our results. In Appendix B.1, we show that

our results hold even without this assumption.

The following lemma shows that when firms randomize uniformly over serial dictatorships

at every state (i.e., when the measure of Γ(θ, o) equals 1
|O| for every θ ∈ Θ and o ∈ O),

they can simultaneously obtain payoffs that strictly exceed their expected minmax payoffs.

Figure 2 provides an illustration of this result when the market has only two firms.

Lemma 2. Under Assumption 2, for every firm f ,

1

|O|
∑
o∈O

Eπ

[
uf

(
m̂(θ, o), θ

)]
> u∗

f .

Let us explain the intuition for Lemma 2. If firms randomize uniformly over O for every

realized state θ, then each firm f receives the payoff on the left side. Fix f and θ. In this

RSD, the worst-case scenario for f arises when f is ranked last in o (i.e., o(f) = |F|): By the

time f selects its employees, Q−f ≡
∑

f ′ ̸=f qf ′ workers are already off the market. However,

for f , this worst case under RSD is still weakly more desirable than being minmaxed, in
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Figure 2. Firms’ payoff space. Payoff profiles in the orange region
U∗ (feasible and strictly above firms’ expected minmax payoffs u∗

1 and
u∗
2) can be sustained by Proposition 1. Lemma 2 ensures that region

U∗ is nonempty, which includes a payoff profile generated by an RSD.
Note that the RSD outcome may or may not be Pareto optimal; see
Example 2.

which case f must choose its employees after Q =
∑

f ′ qf ′ workers have been eliminated in an

adversarial manner. Therefore, the distribution of payoffs f obtained under the uniform RSD

first-order stochastically dominates the distribution of its minmax payoffs, so in expectation,

every firm prefers this RSD over being minmaxed.

Combined with Proposition 1, Lemma 2 delivers our existence result below.

Proposition 2. Under Assumption 2, when firms are sufficiently patient, there exists a

self-enforcing matching process in which players match according to the outcome of an RSD

in every period on path.

To understand the intuition of this result, consider the uniform RSD. For every state

θ and every ordering o, matching m̂(θ, o) is in M◦(θ), meaning that randomization over O

places firms’ payoff profile in U(θ). Taking the expectation over θ, we know that firms’ payoff

profile from the uniform RSD is in U∗. Furthermore, according to Lemma 2, each firm’s

payoff is strictly higher than its average minmax payoff. Proposition 1(i) then delivers the

result: A self-enforcing matching process exists where firms’ continuation payoffs on path are

determined by the uniform RSD.

19



We highlight that matching according to the outcomes of an RSD can be viewed as a

specific form of no-poaching agreement, where firms collude to suppress wages and extract

surplus from workers. In an RSD, once an ordering has been established, each firm refrains

from soliciting workers already employed by firms with higher priority, even if it is feasible

and profitable to do so. This arrangement eliminates wage competition and facilitates surplus

extraction from workers. Of course, RSDs are not the only kind of no-poaching agreements;

firms can achieve similar effects by, for example, committing to offer predetermined wages

without engaging in competitive bidding—as seen in cases involving financial aid in college

admissions that we discussed earlier. Our result demonstrates that the uniform RSD, as

a specific form of no-poaching agreement, always gives rise to a payoff profile that can be

sustained dynamically, even in markets that exhibit complementarities and peer effects.

4 Discussions

In this section, we examine three aspects of the model that are important to our analysis.

First, we show that flexible wages and the absence of externalities are necessary for our

existence result, and we provide counterexamples illustrating the failure of existence when

these conditions are violated. Finally, we discuss our focus on deviation plans by single firms,

and explore how our results can be extended to accommodate multi-firm deviation plans.

4.1 Role of Transfers

Our results hinge on wage flexibility in two key respects: (1) it allows firms to extract surplus

from workers in an RSD, and (2) it ensures that, when a firm f faces a minmax punishment,

sufficiently high wages price out certain workers regardless of mutual preferences, yielding

the minmax payoffs in Lemma 1. Note that quasilinearity is not required to fulfill these

roles—only that monetary preferences are monotone and unbounded. By contrast, without

wage flexibility, firms’ ability to extract surplus and enforce punishments is severely limited.

In particular, when minmaxing a firm f , rival firms can no longer simply price specific workers

out of f ’s choice set; instead, the set of workers available to f is determined by workers’

preferences, which generally raises firms’ minmax payoffs and may preclude the existence of
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a self-enforcing matching process.

To illustrate potential nonexistence without wage flexibility, consider wages fixed at 0.

Let W = {w1, w2, w3} and F = {f1, f2}, each with quota 2. A firm’s stage-game payoff is 2 if

it hires two workers and 1 if it hires one, regardless of identities. On the other hand, workers’

preferences are determined by their colleagues: w1 prefers to work with w2, w2 prefers w3, and

w3 prefers w1. Moreover, having any coworker is strictly better than working alone or being

unemployed. Workers may possess strict preferences for firms, but this aspect is dominated

by their preferences for coworkers.

In this example, the minmax payoff of each firm is exactly 2. To see this, note that each

firm can secure a deviating payoff of 2 in the stage game by hiring an unemployed worker w

together with the worker w′ who prefers w. This is true regardless of the other firm’s hiring

decision, so the minmax payoff must be at least 2. On the other hand, since the maximum

payoff in a stage game is 2, the minmax payoff cannot exceed this value.

As a result, any self-enforcing matching process must deliver to each firm a continuation

payoff weakly higher than 2. For if not, the firm would have a feasible and profitable deviation

plan such that at every ex post history, it deviates from the stage-game matching by securing

a stage-game payoff of 2. However, there is no feasible way to generate a payoff weakly higher

than 2 for every firm in the stage-game matching even with a randomizing device. Hence, no

self-enforcing matching process exists for any value of δ in this no-transfers setting. Figure 3

illustrates this non-existence issue.

In a no-transfers setting with neither complementarities nor peer effects, Liu (2023)

provides a formal characterization of minmax payoffs and an analog of Proposition 1. Even

with complementarities and peer effects, as long as there is no random θ, it is straightforward

to extend Liu (2023)’s characterization of minmax, and the analog of Proposition 1 will

hold—that is, any feasible payoff profile that strictly dominates these minmax payoffs will be

sustainable when δ → 1, and any self-enforcing matching process must generate payoff profiles

that weakly dominate these minmaxes. In this sense, the nonexistence issue illustrated in the

example above arises because without transfers, the minmaxes are too high, so the feasible

and weakly individually rational payoff set is empty.

However, extending Proposition 1 to the general environment with random θ, comple-
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Figure 3. Matching without transfers. The blue region includes the
set of firm payoffs that can be achieved via public randomization. The
green lines represent the firms’ minmax payoffs. There is no feasible
payoff vector such that both firms are weakly better off than receiving
the minmax payoffs.

mentarities, and peer effects remains challenging in the rigid-wage setting. The difficulty

arises because we do not currently have a method to address the complications arising from

minmaxing players, as highlighted after Proposition 1, without the flexibility provided by

adjustable wages. We leave it as an open question for future research.

4.2 Externalities

In our setting, we assume that firms are exclusively concerned with the identities and

types of their own employees, while workers only care about their own work environments.

However, in a more general setting, players’ payoffs may be contingent on the entire matching

assignment, including the hiring decisions of other firms. If players are affected by externalities

only through the assignment but not wages set by other firms, the analogs of Lemma 1

(characterization of minmax payoffs) and Proposition 1 (characterization of equilibrium

payoffs) still hold.14 However, it may not be feasible to provide all firms with payoffs weakly

higher than their corresponding minmaxes, and therefore a self-enforcing matching process

no longer exists by the necessary conditions in Proposition 1(ii). We provide an example

below to illustrate this nonexistence issue.

14In the analog of Lemma 1, the minimization would be taken over all assignments ϕ instead of W ′, and
the surplus function s would depend on the entire assignment ϕ.
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Figure 4. Matching with externalities. The blue region includes the
set of firm payoffs that can be achieved via public randomization. The
green lines represent the firms’ minmax payoffs. There is no feasible
payoff vector such that both firms are weakly better off than receiving
the minmax payoffs.

Consider a matching market with flexible wages in which each firm’s stage-game payoff

depends on the assignments of other firms. Suppose there are three workers W = {w1, w2, w3}

and two firms F = {f1, f2}. Each firm can only hire one worker. The workers are indifferent

between being unemployed and working for any firm at a payment of 0. Firm f1 obtains a

stage-game payoff of 2 if it hires the same number of workers as firm f2 does and a stage-game

payoff of 0 otherwise. On the other hand, firm f2 gets 2 if the two firms hire different numbers

of workers and 0 otherwise.

In this example, each firm can ensure a deviating payoff arbitrarily close to 2 regardless

of the other firm’s hiring decisions: For example, firm f1 can always turn to the unemployed

worker and offer an infinitesimal wage if f2 has an employee, and it can choose not to hire

and shut down if f2 does the same. Therefore, the minmax payoffs of both firms should be

equal to 2. However, there is no feasible way to generate a payoff of 2 for both firms in the

stage-game matching, because either they hire the same number of workers or they do not.

In other words, the frontier of the feasible payoff set has an intercept of 2 and a slope of −1;

see Figure 4 for an illustration. Hence, no self-enforcing matching process exists for any value

of δ with the presence of matching externalities.

To understand the intuition behind this nonexistence issue, consider Lemma 2, which is a
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crucial piece that leads to our existence result. In a serial dictatorship without externalities,

a firm’s payoff is monotonic with respect to its priority ranking. When the firm holds the

highest priority, it can secure its maximum payoff in the stage game; when the firm is last to

hire, its payoff becomes weakly lower but cannot be worse than its minmax. However, in

the presence of externalities, this monotonicity in a serial dictatorship no longer holds. For

instance, in our example, each firm can achieve a strictly higher payoff if it makes its choice

after the other firm. As a result, a random serial dictatorship may not produce a payoff

profile that strictly dominates the minmax payoffs for all firms, and we cannot apply the

sufficient conditions in Proposition 1(i) to establish existence.

4.3 Deviations by Multiple Firms

Our notion of dynamic stability requires immunity to deviation plans conceived by individual

firms. As discussed after Definition 1, this mirrors classic stability concepts in static settings,

which likewise focus on immunity to single-firm coalitions. In static settings, the rationale is

often that larger coalitions are harder to organize due to the coordination required among

multiple firms. In dynamic settings, an additional concern is that multi-firm deviation plans

may themselves be vulnerable to further deviations and thus may not constitute credible

deviations in the first place.

Apart from these philosophical considerations, there are two practical challenges when

assessing multi-firm deviations. One difficulty in evaluating multi-firm deviation plans is

the lack of a one-shot deviation principle: for coalitions consisting of multiple firms, ruling

out profitable one-shot deviations alone does not rule out the possibility of a profitable

deviation plan, which complicates verifying stability. The second challenge lies in specifying

an appropriate observability assumption for intertemporal coordination. For instance, consider

firms {f1, f2} executing a joint deviation in which f1 blocks in period one and f2 blocks

in period two. Other players may be unable to determine whether f2’s action is part of a

coordinated deviation by {f1, f2} or an independent deviation following f1’s move.

Although it remains open whether our existence result extends to environments where

intertemporal coordination may be unobservable, we are able to show that it continues to hold

if firms’ membership in any blocking plan is common knowledge. Specifically, the assumption
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requires that whenever the realized stage-game matching differs from the recommendation by

the matching process, all firm in the deviation plan are publicly identified and recorded in

the stage-game outcome, regardless of whether they directly took part in the current-period

deviation. Despite the absence of a one-shot deviation principle, we show that under this

observability assumption, the matching process constructed in the proof of Proposition 2 can

be adapted to withstand multi-firm deviation plans.

Online Appendix B.2 contains the formal definitions and proofs, but let us illustrate with

the example in the introduction. Specifically, we modify the matching process in Figure 1

so that if no firm or a single firm blocks, the original transition applies, but if firms {f1, f2}

jointly deviate, then the transition follows the red arrows to P1 so f1 is punished. To overcome

the lack of a one-shot deviation principle for multi-firm deviation plans, we will show that

any profitable multi-firm deviation plan implies a profitable single-firm deviation plan, which

in turn yields a profitable one-shot deviation by that firm. Since the introduction shows that

the process admits no such deviations, this leads to a contradiction.

How can one reduce a profitable multi-firm deviation plan to a profitable single-firm plan?

Suppose {(d1, η1), (d2, η2)} is a profitable multi-firm deviation plan, where each (di, ηi) is a

complete contingent plan specifying the workers and wages that firm i intends to employ. A

key observation is that in the stage game, joint blocking with f2 never enlarges firm f1’s set

of feasible blockings. Hence, we construct an alternative deviation plan (d′1, η
′
1) for firm 1

alone that mimics (d1, η1) but ignores f2’s blocks. Under both plans, f1 is punished whenever

the outcome differs from the one recommended by the process; however, since (d′1, η
′
1) omits

f2’s blocking, f1 is punished less often, yielding a higher payoff for f1. Therefore, (d
′
1, η

′
1) is a

profitable single-firm deviation for f1.

5 Conclusion

In this paper, we propose a new approach of studying stability in matching markets with

complementarities and peer effects, which have traditionally challenged the existence of

static stable outcomes. Our approach treats stability as the result of a dynamic process that

is self-sustained by expectations; importantly, these expectations must also be themselves
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consistent with stability.

We leverage the repeated interactions of long-lived firms to discipline these market

participants and sustain stability over time. As a result, we can define notions such as

minmax payoffs and feasible payoff sets that are analogous to those from standard repeated

games. However, in our model firms and workers play in a cooperative game every period.

This difference makes the nonissue of equilibrium existence in noncooperative setting more

challenging in our cooperative setting. We prove the existence of a stable matching process

by explicitly constructing a feasible payoff profile through random serial dictatorship where

firms take turns to receive their more favorable outcome. This can be interpreted as a form of

no-poaching agreement, which is prevalent and subject to intense legal debates in real-world

contexts.

From a theoretical standpoint, the existence of self-enforcing matching processes reconciles

the lack of static stable matching and absence of complete chaos in many matching markets.

From a practical point of view, the sustainability of outcomes through no-poaching agreements

adds a new dimension to the ongoing debate regarding their anti-trust implications. While

no-poaching agreements are generally regarded as anti-competitive, our analysis suggests

they may play a crucial role in preserving market stability.

An interesting open question for future research is the comparative statics in the minimum

amount of patience needed to sustain stable a self-enforcing matching process. In addition, it

would be interesting to see if such a dynamic approach would help solve the nonexistence of

stable outcomes in roommate problems or networks with externalities.
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A Appendix

A.1 Intermediate Results

Proof of Lemma 1. Fix f ∈ F , θ ∈ Θ, and stage-game matching m = (ϕ, p) ∈ M◦(θ).

Denote the set of employed workers by Wm ≡ {w ∈ W : ϕ(w) ̸= (∅, ∅)}. Hence, |Wm| ≤ Q.

Hiring from W\Wm at infinitesimal wages is always a feasible deviation for f , which means

sup
(W ′,p′f )∈Df (m,θ)

uf ([m, (f,W ′, p′f )], θ) ≥ max
W ′⊆W\Wm,|W ′|≤qf

s(f,W ′, θ)

≥ min
W⊆W,|W |=|Wm|

max
W ′⊆W\W,|W ′|≤qf

s(f,W ′, θ)

≥ min
W⊆W,|W |≤Q

max
W ′⊆W\W,|W ′|≤qf

s(f,W ′, θ).

Taking infimum over m ∈ M◦(θ) on the LHS yields

uf (θ) ≥ min
W⊆W,|W |≤Q

max
W ′⊆W\W,|W ′|≤qf

s(f,W ′, θ).

For the other direction, take any W ⊆ W with |W | ≤ Q. We can always construct a

stage-game matching m̂ = (ϕ̂, p̂) ∈ M◦(θ) such that (i) ϕ̂ assigns all workers in W to firms,

and (ii) all workers in W receive sufficiently high wages so that f never finds it profitable to

deviate with any workers in W . Therefore,

max
W ′⊆W\W,|W ′|≤qf

s(f,W ′, θ) = sup
(W ′,p′f )∈Df (m̂,θ)

uf ([m̂, (f,W ′, p′f )], θ)

≥ inf
m∈M◦(θ)

sup
(W ′,p′f )∈Df (m,θ)

uf ([m, (f,W ′, p′f )], θ) = uf (θ).

Minimizing over W on the LHS yields the other direction.

Lemma 3. Deviation plan (d, η) is a one-shot deviation from matching process µ if there is

a unique ex post history ĥ where [µ, (f, d, η)](ĥ) ̸= µ(ĥ). Matching process µ is self-enforcing

if and only if (i) vw(µ(h), θ) ≥ 0 for every w ∈ W at every h ∈ H; and (ii) no firm has a
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feasible and profitable one-shot deviation.

Proof. Standard arguments (Blackwell 1965) suffice. We include them for completeness.

Suppose one-shot deviation plan (d, η) from matching process µ for firm f is feasible and

profitable. Since stage-game payoffs are bounded for firm f and there is discounting, the

standard one-shot deviation principle for individual decision-making (Blackwell 1965) implies

that there exists an ex post history ĥ = (ĥ, θ̂, γ̂) such that

(1− δ)

ũf (df (ĥ), θ̂)−
∑

w∈d(ĥ)

ηw(ĥ)

+ δUf

([
µ(ĥ), (f, d(ĥ), η(ĥ))

] ∣∣µ) > Uf (ĥ |µ).

Consider deviation plan (d′f , η
′
f ) that satisfies

[µ, (f, d′f , η
′
f )](h) =

[µ, (f, d, η)](h) if h = ĥ,

µ(h) otherwise.

Then (d′f , η
′
f ) is a profitable one-shot deviation plan for firm f .

Lemma 4. For any stage-game matching m, [m, (f1,Wf1 , pf1)] = [m, (f2,Wf2 , pf2)] ̸= m

implies f1 = f2.

Proof. Let m = (ϕ, p), [m, (f1,W
′
f1
, p′f1)] = (ϕ, p), and [m, (f2,W

′
f2
, p′f2)] = (ϕ̂, p̂). Toward

contradiction, suppose f1 ̸= f2, but [m, (f1,W
′
f1
, p′f1)] = [m, (f2,W

′
f2
, p′f2)] ̸= m. Then ϕ = ϕ̂

and pf = p̂f for every f ∈ F . Each of the three cases to consider yields a contradiction.

1. Suppose W ′
f1

= ϕ(f1) and W ′
f2

= ϕ(f2). Since [m, (f1,W
′
f1
, p′f1)] ̸= m, we have p′f1 ̸= pf1 .

Then pf1 = p′f1 ̸= pf1 = p̂f1 , a contradiction.

2. Suppose W ′
f1

⊆ ϕ(f1) and W ′
f2

⊆ ϕ(f2) but, without loss of generality, W
′
f1

̸= ϕ(f1).

We have ϕ(f1) = W ′
f1

̸= ϕ(f1) = ϕ̂(f1), so ϕ ̸= ϕ̂, a contradiction.

3. Suppose, without loss of generality, W ′
f1

⊈ ϕ(f1). Let w′ ∈ W ′
f1
\ϕ(f1). We have

ϕ(w′) = f1, whereas ϕ̂(w
′) ∈ {ϕ(w′), f2}. Since w′ /∈ ϕ(f1) and f1 ̸= f2, f1 /∈ {ϕ(w′), f2}.

Hence, ϕ ̸= ϕ̂, a contradiction.

Therefore, [m, (f1,Wf1 , pf1)] = [m, (f2,Wf2 , pf2)] ̸= m implies f1 = f2.
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A.2 Omitted Proofs for Section 3

A.2.1 Proof of Proposition 1

Lemma 5. For each θ ∈ Θ, there exist stage-game matchings
{
mf(θ)

}
f∈F ⊆ M◦(θ) such

that ∀f ∈ F ,

(i) sup(W ′,p′f )∈Df (mf ,θ)
uf ([mf (θ), (f,W

′, p′f )], θ) = uf (θ);

(ii) uf (mf (θ), θ) ≤ uf (θ);

(iii) uf (θ)− uf (mf (θ), θ) = u∗
f − Eπ[uf (mf (θ), θ)].

In this lemma, each mf (θ) is a minmax matching for firm f . Part (i) says that firm f ’s

best deviation from mf(θ) yields a payoff at most uf(θ), i.e., its minmax payoff at state θ.

Part (ii) requires that firm f receives a payoff no more than uf (θ) from following mf (θ). Part

(iii) ensures that gains from the best deviations are equalized across states.

Proof of Lemma 5. Fix θ ∈ Θ. For every f ∈ F , let

W f (θ) ∈ argmin
W⊆W,|W |≤Q

max
W ′⊆W\W,|W ′|≤qf

s(f,W ′, θ).

Firm f can obtain its minmax payoff by extracting surplus from its favorite workers not in

W f (θ), so each W f (θ) is a set of workers to eliminate to minmax firm f .

For every f ∈ F , let
{
W f ′

f (θ)
}
f ′∈F be a partition of W f(θ) such that

∣∣∣W f
f (θ)

∣∣∣ ≥ 1 and∣∣∣W f ′

f (θ)
∣∣∣ ≤ qf ′ for every f ′ ∈ F . Intuitively, each firm f ′ is matched with workers in W f ′

f (θ),

so all firms collectively take away W f (θ) =
⋃

f ′∈F W f ′

f (θ) to minmax firm f . Let

Bf ≡ max
θ∈Θ

max
w∈W f

f (θ)

∣∣∣W f
f (θ)

∣∣∣ [uf (θ)− uf (θ)− ṽw
(
f,W f

f (θ)\{w}, θ
)]

+ uf (θ)− ũf (W
f
f (θ), θ).

Each firm f ’s payments must satisfy the following conditions: (i) no other firm benefits from

deviating with the workers hired by f , (ii) f receives a payoff lower than its minmax value,

and (iii) the gains from deviations are equalized across states. The scalar Bf is introduced to

help construct these payments for firm f .
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For every θ ∈ Θ, define stage-game matching mf(θ) = (ϕf(θ), pf(θ)), where ϕf(θ)(f ′) =

W f ′

f (θ), and

pf
f ′w

(θ) =



Bf−uf (θ)+ũf (W
f
f (θ),θ)

|W f
f (θ)|

if f ′ = f and w ∈ W f
f (θ),

uf (θ)− uf (θ)− ṽw
(
f ′,W f ′

f (θ)\{w}, θ
)

if f ′ ̸= f and w ∈ W f ′

f (θ) ̸= ∅,

0 otherwise.

For any θ ∈ Θ, if w ∈ W f
f (θ),

vw(mf (θ), θ) = ṽw
(
f,W f

f (θ)\{w}, θ
)
+

Bf − uf (θ) + ũf (W
f
f (θ), θ)∣∣∣W f

f (θ)
∣∣∣ ≥ uf (θ)− uf (θ)

by the definition of Bf . If w ∈ W f ′

f (θ) and f ′ ̸= f , vw(mf(θ), θ) = uf(θ) − uf(θ). Since

uf (θ)− uf (θ) ≥ 0, we have mf (θ) ∈ M◦(θ).

(i) Consider any feasible deviation (W ′, p′f) ∈ Df(mf , θ). Suppose W ′ ⊆ W\W f(θ). By

feasibility, every w ∈ W ′ finds the deviation individually rational, so ṽw(f,W
′\{w}, θ)+

p′fw ≥ 0. This implies

ũf (W
′, θ)−

∑
w∈W ′

p′fw ≤ ũf (W
′, θ) +

∑
w∈W ′

ṽw(f,W
′\{w}, θ) (3)

= s(f,W ′, θ)

≤ max
W⊆W\W f (θ),|W |≤qf

s(f,W, θ) (4)

= uf (θ),

where (3) follows from W ′ ⊆ W\W f(θ), and (4) follows from the definition of W f(θ).

Suppose instead W ′ ⊈ W\W f (θ). Fix w ∈ W ′ ∩W f (θ). By the construction of mf (θ),

vw(mf (θ), θ) ≥ uf (θ)− uf (θ). For the deviation to be feasible, w must obtain a payoff

weakly higher than in mf (θ): ṽw(f,W
′\{w}, θ)+p′fw ≥ uf (θ)−uf (θ); meanwhile, every

w′ ∈ W ′\{w} needs to find the deviation individually rational: ṽw′(f,W ′\{w′}, θ) +
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p′fw′ ≥ 0. Then

ũf (W
′, θ)−

∑
w′∈W ′

p′fw′ = ũf (W
′, θ)−

∑
w′∈W ′,w′ ̸=w

p′fw′ − p′fw

≤ ũf (W
′, θ) +

∑
w∈W ′

ṽw(f,W
′\{w}, θ)− (uf (θ)− uf (θ))

= s(f,W ′, θ)− uf (θ) + uf (θ) ≤ uf (θ).

We have shown that for any W ′, uf ([mf , (f,W
′, p′f )], θ) ≤ uf (θ). Hence,

sup
(W ′,p′f )∈Df (mf ,θ)

uf ([mf , (f,W
′, p′f )], θ) ≤ uf (θ).

By the definition of uf (θ), the above holds with equality.

(ii) For every f ∈ F and θ ∈ Θ,

uf (mf (θ), θ) = ũf (W
f
f (θ), θ)−

∑
w∈W f

f (θ)

pf
fw
(θ)

= ũf (W
f
f (θ), θ)−

[
Bf − uf (θ) + ũf (W

f
f (θ), θ)

]
= uf (θ)−Bf (5)

≤ ũf (W
f
f (θ), θ) +

∑
w∈W f

f (θ)

ṽi(f,W
f
f (θ)\{w}, θ)− (uf (θ)− uf (θ)) (6)

= s(f,W f
f (θ), θ)− uf (θ) + uf (θ) ≤ uf (θ),

where (6) follows from the definition of Bf and the fact that
∣∣∣W f

f (θ)
∣∣∣ ≥ 1.

(iii) By (5), uf (mf (θ), θ) = uf (θ)−Bf for all f ∈ F and θ ∈ Θ. Therefore, Eπ[uf (mf (θ), θ)] =

u∗
f −Bf , which means uf (θ)− uf (mf (θ), θ) = u∗

f − Eπ[uf (mf (θ), θ)].

Lemma 6. For every u ∈ U∗ such that uf > u∗
f for all f ∈ F , there exist vectors {uf}f∈F ⊆

U∗ such that for every f ∈ F , u∗
f < uf

f < uf . Moreover, if |F| ≥ 2, then for all distinct

f, f ′ ∈ F , uf
f < uf ′

f .
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Proof of Lemma 6. This lemma states that U∗ satisfies the NEU condition (Abreu et al.

1994). The intuition is straightforward: Consider any stage-game matching m. If we modify

the matching by requiring firm f to pay higher wages to its employees, f becomes strictly

worse off, while all other firms f ′ ̸= f retain their previous payoffs. This logic allows us to

construct uf from u for each f ∈ F . The detailed arguments are as follows.

Fix stage-game matching m = (ϕ, p) and state θ. For every f ∈ F , define a matching

mf = (ϕf , pf ) by ϕf = ϕ, and

pff ′w =

pf ′w + 1 if f ′ = f and w ∈ ϕf ,

pf ′w otherwise.

Clearly, vw(m
f , θ) = vw(m, θ) for every w ∈ W\ϕf , and vw(m

f , θ) > vw(m, θ) for every

w ∈ ϕf , so mf is individually rational for all workers whenever m is—i.e., m ∈ M◦(θ) implies

mf ∈ M◦(θ). Moreover, by the construction of {mf}f∈F , we have uf(m
f , θ) ≤ uf(m, θ)

for every f ∈ F , with the inequality being strict if ϕ(f) ̸= ∅. In the following, we write

ζf : m 7→ mf , which is a mapping that “pushes” every matching m to a new one that makes

firm f worse off while keeping all other firms indifferent.

For an arbitrary vector u ∈ U∗, there exists a collection (λ(θ))θ∈Θ, where λ(θ) ∈ ∆(M◦(θ))

for every θ ∈ Θ, such that uf = Eπ[Eλ(θ)[uf(m, θ)]] > u∗
f for every f . Now for every firm

f ∈ F , we perturb the payoff profile u using the mapping ζf and a small positive number ϵ

by letting uf = ϵEπ[Eλ(θ)[u(ζ
f (m), θ)]] + (1− ϵ)u.

First observe that because uf > u∗
f ≥ 0, there exist θ ∈ Θ and m = (ϕ, p) ∈ M◦(θ) such

that λ(θ)[m] > 0 and ϕ(f) ̸= ∅; by the construction of {ζf (m)}f∈F , uf (ζ
f (m), θ) < uf (m, θ),

so uf
f < uf . Moreover, if |F| ≥ 2 and f ′ ̸= f , we have uf

f < uf ′

f since uf (m, θ) = uf (ζ
f ′
(m), θ).

Second, every uf can be written as uf = Eπ[Eλf (θ)[uf (m, θ)]], where

λf (θ) = ϵλ(θ) ◦ (ζf )−1 + (1− ϵ)λ(θ) f ∈ F . (7)

Note that the support of every λf(θ) is also bounded. Finally, for small enough ϵ > 0,

uf
f > u∗

f . Therefore, there must exist {uf}f∈F ⊆ U∗ such that u∗
f < uf

f < uf for all f ∈ F ,
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and for every distinct f ′ ̸= f , we have uf
f < uf ′

f .

Proof of Proposition 1(i). Fix u ∈ U∗. We first consider the more general case where

|F| ≥ 2. Let (λ(θ))θ∈Θ be a tuple of lotteries such that λ(θ) ∈ ∆(M◦(θ)) for every θ ∈ Θ, and

u = Eπ[Eλ(θ)[u(m, θ)]]. Let {mf (θ)}θ∈Θ,f∈F be the minmax stage-game matchings constructed

in Lemma 5. By Lemma 5(ii),

uf (mf (θ), θ) ≤ uf (θ) ∀(f, θ) ∈ F ×Θ. (8)

By Lemma 6, there exist {uf}f∈F ⊆ U∗ such that uf
f < uf and uf

f < uf ′

f for all distinct f, f ′ ∈

F . For every f ∈ F , let (λf (θ))θ∈Θ be the tuple of lotteries that satisfies λf (θ) ∈ ∆(M◦(θ))

for every θ ∈ Θ, and uf = Eπ[Eλf (θ)[u(m, θ)]]. By Carathéodory’s theorem, it is without loss

to assume every λf (θ) has bounded support. Define

Zf (θ) ≡ inf
m∈supp(λf (θ))

uf (m, θ). (9)

At any θ, let uf(θ) denote a firm f ’s maximum payoff from any matching in M◦(θ) as

defined in (2). Note that uf (θ) is an upper bound for the payoff f can obtain in any feasible

deviation from matchings in M◦(θ). Let L be an integer greater than

max
f∈F , θ∈Θ

uf (θ)− Zf (θ)

uf
f − u∗

f

.

Consider a matching process with the following three phases:

(I) If past realizations from λ(·) were followed: Match according to λ(·);

(II) If f deviates: For the next L periods, match according to mf (·);

(III) If mf (·) was followed for L periods: Match according to the realization from λf (·) until

a firm deviates.

Note that if firm f ′ deviates from (II) or (III), the process restarts (II) with f replaced by f ′.

All deviations by individual workers are ignored.
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By Lemma 4, for any stage-game matching that can result from a firm’s deviation, we can

uniquely identify the firm, so the transition above is well-defined. All stage-game matchings

in this matching process are individually rational for workers. It remains to check that no

firm has profitable one-shot deviations.

(I) f has no profitable one-shot deviation if

(1− δ)uf (m, θ) + δuf ≥ (1− δ)uf (θ) + δ(1− δL)
∑
θ′∈Θ

π(θ′)uf (mf (θ
′), θ′) + δL+1uf

f .

Since uf > uf
f by construction, f has no profitable one-shot deviation for δ high enough.

(II) Consider two cases.

Case a: f ′ ̸= f . Without deviation, f ′ gets

(1− δ)uf ′(mf (θ), θ) + δ(1− δL−τ−1)
∑
θ′∈Θ

π(θ′)uf ′(mf (θ
′), θ′) + δL−τuf

f ′ . (10)

By deviating, f ′ gets less than

(1− δ)uf ′(θ) + δ(1− δL)
∑
θ′∈Θ

π(θ′)uf ′(mf ′(θ′), θ′) + δL+1uf ′

f ′ . (11)

As δ → 1, (10) converges to uf
f ′ and (11) to uf ′

f ′ . Because uf
f ′ > uf ′

f ′ by construction, no

one-shot deviation is profitable for high δ.

Case b: f ′ = f . Without deviation, f gets

(1− δ)uf (mf (θ), θ) + δ(1− δL−τ−1)
∑
θ′∈Θ

π(θ′)uf (mf (θ
′), θ′) + δL−τuf

f . (12)

With deviation, f gets less than

(1− δ)uf (θ) + δ(1− δL)
∑
θ′∈Θ

π(θ′)uf (mf (θ
′), θ′) + δL+1uf

f . (13)

Since
∑

θ′∈Θ π(θ′)uf(mf(θ
′), θ′) ≤ u∗

f < uf
f , expression (12) is increasing in τ . Hence, it

suffices to prove that expression (12) is weakly greater than expression (13) when τ = 0.
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When τ = 0, subtracting (13) from (12) yields

(1− δ)
[
uf (mf (θ), θ)− uf (θ)

]
− (1− δ)δL

∑
θ′∈Θ

π(θ′)uf (mf (θ
′), θ′) + (1− δ)δLuf

f .

Multiplying the expression above by the positive factor 1
1−δ

, it suffices to establish the

following inequality

[
uf (mf (θ), θ)− uf (θ)

]
− δL

∑
θ′∈Θ

π(θ′)uf (mf (θ
′), θ′) + δLuf

f ≥ 0. (14)

By Lemma 5(iii),

uf (mf (θ), θ)− uf (θ) =
∑
θ′∈Θ

π(θ′)uf (mf (θ
′), θ′)− u∗

f . (15)

Substituting (15) into (14), we need to show that

(1− δL)
∑
θ′∈Θ

π(θ′)uf (mf (θ
′), θ′) + δLuf

f ≥ u∗
f .

By construction, uf
f > u∗

f , so the inequality holds for δ high enough.

(III) Consider two cases.

Case a: f ′ ̸= f . The argument for (I) holds analogously here, once we replace f with f ′

and uf with uf
f ′ .

Case b: f ′ = f . There is no profitable one-shot deviation for f ′ if

(1− δ)uf ′(m, θ) + δuf ′

f ′ ≥ (1− δ)uf ′(θ) + δ(1− δL)
∑
θ′∈Θ

π(θ′)uf ′(mf ′(θ′), θ′) + δL+1uf ′

f ′ .

This is equivalent to

δ
1− δL

1− δ

[
uf ′

f ′ −
∑
θ′∈Θ

π(θ′)uf ′(mf ′(θ′), θ′)

]
≥ uf ′(θ)− uf ′(m, θ).
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Because 1−δL

1−δ
→ L as δ → 1, the LHS converges to

L

[
uf ′

f ′ −
∑
θ′∈Θ

π(θ′)uf ′(mf ′(θ′), θ′)

]

>
uf ′(θ)− Zf ′(θ)

uf ′

f ′ − u∗
f ′

[
uf ′

f ′ −
∑
θ′∈Θ

π(θ′)uf ′(mf ′(θ′), θ′)

]
(16)

≥ uf ′(θ)− uf ′(m, θ), (17)

where (16) follows from the definition of L, and (17) follows from (8), (9), andm ∈ supp(λf (θ)).

Thus, no deviation is profitable for δ high enough.

We have proved the statement for the case |F| ≥ 2. When F = {f}, we do not have a

distinct f ′ ̸= f such that uf
f < uf ′

f . However, this condition is only used when showing that

no profitable and feasible deviation exists for firms other than f from the matching process

constructed in the general case. Therefore, the same proof is valid for the case |F| = 1.

Before proceeding with the proof of part (ii) of Proposition 1, we first establish a lemma

that follows from the assumption of flexible wages.

Lemma 7. Fix a matching process µ. Firm f has a feasible and profitable deviation plan

if and only if f has a profitable deviation plan (d, η) such that at every ex post history

h = (h, θ, γ),

vw

([
µ, (f, d, η)

]
(h), θ

)
≥ vw

(
µ(h), θ

)
∀w ∈ d(h).

Proof of Lemma 7. The “only if” part is trivial. To prove the “if” part, we only need to

construct from (d, η) a deviation plan (d′, η′) for firm f that is both feasible and profitable.

Since (d, η) is profitable, there exists an ex post history h′ such that Uf

(
h′
∣∣ [µ, (f, d, η)]) >

Uf (h
′|µ). We now construct the deviation plan (d′, η′) as follows: For any ex post history h,

let d′(h) = d(h) and, when d(h) ̸= ∅,

η′w(h) = ηw(h) +
1

2 |d′(h)|
[
Uf

(
h′ ∣∣ [µ, (f, d, η)])− Uf (h

′|µ)
]

∀w ∈ d′(h).

The deviation plan (d′, η′) is feasible because for every ex post history h = (h, θ, γ) and every
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w ∈ d′(h),

vw

([
µ, (f, d′, η′)

]
(h), θ

)
> vw

([
µ, (f, d, η)

]
(h), θ

)
≥ vw

(
µ(h), θ

)
.

To see that the deviation plan (d′, η′) is also profitable, note that at ex post history h′, the

continuation payoff of firm f from the manipulated matching process satisfies

Uf

(
h′ ∣∣ [µ, (f, d′, η′)]) ≥ Uf

(
h′ ∣∣ [µ, (f, d, η)])− 1

2

[
Uf

(
h′ ∣∣ [µ, (f, d, η)])− Uf (h

′|µ)
]

=
1

2

[
Uf

(
h′ ∣∣ [µ, (f, d, η)])+ Uf (h

′|µ)
]
>

1

2
[Uf (h

′|µ) + Uf (h
′|µ)] = Uf (h

′|µ),

where the strict inequality comes from the fact that Uf

(
h′
∣∣ [µ, (f, d, η)]) > Uf (h

′|µ).

Proof of Proposition 1(ii). By the definition of self-enforcing matching process, at

every ex post history h = (h, θ, γ), all workers must receive weakly positive payoffs, i.e.,

vw(µ(h), θ) ≥ 0 for every w ∈ W . This means µ(h) ∈ M◦(θ). Taking expectations over γ and

θ, we have
(
Uf (h |µ)

)
f∈F ∈ U∗ for any ex ante history h ∈ H.

For each f ∈ F , the intuition for Uf(h |µ) ≥ u∗
f is straightforward: By definition, every

firm f can obtain uf(θ) by deviating with certain workers. Taking an expectation over θ

implies that each firm f can secure a continuation payoff of u∗
f at every ex ante history.

More rigorously, suppose by contradiction that µ is self-enforcing and Uf (h |µ) < u∗
f for

some f ∈ F and ex ante history h. Consider the following deviation plan (d, η) from µ: For

all ex post histories that precede h, the deviation plan is consistent with the matching process

µ. For any h′ = (h
′
, θ′, γ′) ∈ H that succeeds h , let

d(h′) = argmax
A⊆W\

⋃
f ′∈F µ(f ′|h′)

s(f, A, θ′),

and

ηw(h
′) =

−ṽw(f, d(h
′)) if w ∈ d(h′);

0 otherwise.

Note that by construction, s(f, d(h′), θ′) ≥ uf (θ
′) because

⋃
f ′∈F µ(f ′|h) ≤ Q.
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At any history h′ that succeeds h, any w ∈ d(h′) is unmatched under µ(h′) by construction,

which means vw(µ(h
′), θ′) = 0. Meanwhile, according to the deviation plan,

vw

([
µ, (f, d, η)

]
(h′), θ′

)
= ṽw(f, d(h

′)) + ηw(h
′) = ṽw(f, d(h

′))− ṽw(f, d(h
′)) = 0

for all w ∈ d(h′). So at every ex post history h′, every worker in d(h′) finds herself weakly

better off by joining the deviation.

To see that (d, η) is profitable, observe that at every ex post history h′ that succeeds h,

firm f ’s stage-game payoff from the manipulated static matching is

uf

([
µ, (f, d, η)

]
(h′), θ′

)
= s(f, d(h′), θ′) ≥ uf (θ

′).

Since this is true for every ex post history h′ after h, f ’s continuation payoff at h from the

deviation plan is Uf (h | [µ, (f, d, η)]) ≥ Eπ[uf (θ)] = u∗
f > Uf (h |µ), where the last inequality is

by assumption. Hence, the deviation plan (d, η) is profitable for firm f . In view of Lemma 7,

firm f must have a deviation plan that is both feasible and profitable, which contradicts the

assumption that µ is self-enforcing. Therefore, Uf (h |µ) ≥ u∗
f for all f ∈ F .

A.2.2 Proof of Lemma 2

For every f ∈ F , let O(f) = {o ∈ O : o(f) = 1} denote the set of orderings in which f is

ranked first. Recall that for every o ∈ O and θ ∈ Θ, matching m̂(θ, o) is produced by serial

dictatorship (Definition 3). It is straightforward that

uf (m̂(θ, o), θ) = uf (θ). (18)

Additionally, in serial dictatorship, for each m̂(θ, o) and f ∈ F ,

uf (m̂(θ, o), θ) = ũf (Ŵo(f), θ) +
∑

w∈Ŵo(f)

ṽw(f, Ŵo(f)\{w}, θ)

= max
W ′⊆W\∪1≤i<o(f)Ŵi,|W ′|≤qf

s(f,W ′, θ).
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Since every o ∈ O satisfies
∣∣∣∪1≤i<o(f)Ŵi

∣∣∣ ≤ Q,

uf (m̂(θ, o), θ) ≥ min
W⊆W,|W |≤Q

max
W ′⊆W\W,|W ′|≤qf

s(f,W ′, θ) = uf (θ) ∀θ ∈ Θ, f ∈ F , o ∈ O.

(19)

For every f ∈ F ,

1

|O|
∑
o∈O

Eπ

[
uf

(
m̂(θ, o), θ

)]
=

∑
θ∈Θ

π(θ)
∑
o∈O

1

|O|

[
uf

(
m̂(θ, o), θ

)]
>

∑
θ∈Θ

π(θ)uf (θ) = u∗
f ,

where the strict inequality follows from (18), (19), and Assumption 2.

A.3 Example: How to Minmax

We extend Example 1 to illustrate the complications in minmaxing firms when π ∈ ∆(Θ)

is non-degenerate. As in Example 1, suppose there is a single firm f , and three workers

W = {w1, w2, w3} enter the market in each period. Workers’ payoffs depend solely on their

wages, and the firm can hire at most two workers. However, unlike in Example 1, suppose

the firm’s revenue function depends on the state of the world θ ∈ Θ = {G,B}. If θ = G, each

employee generates a revenue of 2 for the firm; if θ = B, workers are unproductive and the

firm earns 0 revenue regardless of its hiring decision. The two states are equally likely. Using

Lemma 1, the firm’s minmax payoffs in the two states are uf (G) = 2 and uf (B) = 0, so its

expected minmax payoff is u∗
f ≡ Eθ[uf (θ)] = 1. Note also that f ’s highest possible expected

stage-game payoff is 2.

Suppose we aim to sustain a payoff uf ∈ (1, 2] for firm f . If f deviates at any history, it

is minmaxed by the workers for the next L periods, after which the market returns to giving

f the payoff uf . In each of the L minmax periods, suppose that f is minmaxed by some

matching mf(G) if θ = G is realized, and mf(B) if θ = B. Using standard arguments, we

know that out of the L minmax periods, f is most tempted to deviate in the first period, so

we can without loss focus on checking its incentive constraints in the first of these L minmax

periods.

A Naive Way to Minmax. In state G, as explained in Example 1, one natural candidate

for mf (G) is to let f hire two workers, each at a wage of 2, which leads to uf (mf (G), G) = 0.
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This ensures that f ’s best deviation yields its minmax payoff uf(G) = 2. In state B, we

can set mf (B) such that f is shut down and all workers are unemployed. This ensures that

uf (mf (B), B) = uf (B) = 0.

Why f Has Incentive to Deviate. However, simply playing mf(G) in state G and

mf(B) in state B creates an incentive for f to deviate when θ = G. To see why, note that

once θ = G is realized, the benefit to f from deviating from mf (G) is an immediate gain of

uf (G)− uf (mf (G), G) = 2. The cost of this deviation is that the minmax phase restarts, so

in period L + 1, instead of receiving uf ∈ (1, 2], it will receive Eθ[uf(mf(θ), θ)] = 0. Since

δ < 1, the discounted future loss is less than the immediate gain, so the matching process

cannot be self-enforcing.

How to Properly Adjust Minmax Matchings. One way to eliminate f ’s incentive to

deviate in state G is to calibrate the transfers in the minmax matchings mf (G) and mf (B),

so that the firm’s gain from deviation during the minmax phase is equalized across states;

that is,

uf (G)− uf (mf (G), G) = uf (B)− uf (mf (B), B).

To achieve this, we let f hire two workers each at a wage of 2 in mf (G), and one worker at

a wage of 2 in mf(B). The expected stage-game payoff in the minmax phase now becomes

Eθ[uf (mf (θ), θ)] = −1. In this case, the benefit of deviating in either state is equal to its ex

ante expectation

uf (G)− uf (mf (G), G) = uf (B)− uf (mf (B), B) = u∗
f − Eθ[uf (mf (θ), θ)] = 2,

while the cost is a loss of

uf − Eθ[uf (mf (θ), θ)] > 2

in the (L+ 1)-th period following the deviation. Now for any given L, the cost outweighs the

benefit as long as δ is sufficiently close to 1, and f has no incentive to deviate.

A.4 List of Notations

We list our notations in the order as they first appear in the manuscript.
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f ∈ F a firm

qf number of hiring slots of firm f

w ∈ W a worker

θ ∈ Θ a state of the world

π ∈ ∆(Θ) distribution of states of the world

ϕw ∈ Φw work environment of worker w, Φw =
(
F × 2W\w) ∪ {(∅, ∅)}

ũf : 2W ×Θ → R firm f ’s stage-game revenue over workers and states

uf (m, θ) firm f ’s stage-game payoff (net transfers)

ṽw : Φw ×Θ → R worker w’s payoff function over work environments and states

vm(m, θ) worker w’s stage-game payoff (net transfers)

m = (ϕ, p) stage-game matching that consists of assignment ϕ and wage

vector p

γ ∈ Γ = [0, 1] public randomization

h = (θτ , γτ ,mτ )
t−1
τ=0 a t-period ex ante history that specifies a sequence of past real-

izations of the state, public correlation device, and stage-game

matching up to period t− 1

Ht the set of all t-period ex ante histories

H0 = {∅} the singleton set comprising the null history

H ≡ ∪∞
t=0Ht the set of all ex ante histories

Ht ≡ Ht ×Θ× Γ the set of t-period ex post histories

H ≡ H×Θ× Γ the set of all ex post histories

µ : H → M matching process that specifies a stage-game matching for every

ex post history

h∞ an outcome of the repeated matching game

H∞ = (Θ×Γ×M)∞ set of outcomes h∞ of the repeated matching game

Uf (ĥ|µ) the continuation payoff firm f obtains from matching process µ

following history ĥ

M◦(θ) the set of stage-game matchings that are individually rational for

workers at state θ
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(d, η) deviation plan

Df (m, θ) set of feasible stage-game deviations for f at state θ

uf (θ) firm f ’s minmax payoff at state θ

s(f,W, θ) total surplus of coalition (f,W ) at state θ

Q the sum of all firms’ hiring quotas

u(m, θ) firms’ payoff profile under matching m at state θ

U(θ) convex hull of payoff profiles

U∗ convex hull of expected payoffs

u∗
f expected minmax payoff over states of the world

o : F → {1, . . . , |F|} an ordering over firms

O the set of all orderings o

uf (θ) firm f ’s maximum feasible payoff at state θ
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B Online Appendix

B.1 Relaxing Assumption 2

In this section, we explain how the existence result Proposition 2 can be generalized when

Assumption 2 is not satisfied. As an overview, we first generalize Proposition 1 to Proposi-

tion 1∗. Next, we extend Lemma 2 to Lemma 2∗. Combining Lemma 2∗ and Proposition 1∗

allows us to establish the existence result without relying on Assumption 2, as presented in

Proposition 2∗. The proofs are presented at the end of this section.

Suppose Assumption 2 does not hold, so that there exists some firm f such that for every

θ ∈ Θ with π(θ) > 0, we have uf (θ) = uf (θ). In this case, other players’ matching decisions

have no impact on the maximum static payoff firm f can derive, since it can always turn to

the unmatched workers and extract their surpluses. This means that future punishments

cannot affect the matching behavior of f via dynamic incentives, nor does f find it beneficial

to participate in any punishment scheme of other firms. Therefore, we can treat such a firm

as “inactive” in our analysis, assign it the maximum payoff it can receive in every period,

and ignore it for the rest of our analysis. An iteration is needed to identify all such firms

that cannot be incentivized dynamically.

Formally, for a set of firms F ′ ⊆ F , denote by Q(F ′) ≡
∑

f∈F ′ qf the total hiring capacity

of F ′. When all firms in F\F ′ are inactive, the effective minmax payoff of a firm f ∈ F ′ at θ

is

uf (F ′, θ) ≡ min
W ′⊆W,|W ′|≤Q(F ′)

max
W⊆W\W ′,|W |≤qf

s(f,W, θ).

Using a similar argument as in Lemma 1, we can show that this is exactly firm f ’s payoff

from “best responding” to the worst punishment by firms in F ′, while firms in F\F ′ leave

no surplus to their employees. Note that for each θ, the value uf (F ′, θ) weakly increases as

F ′ becomes smaller.

Definition 4. A hierarchical partition P ≡ {P1, . . . ,PN ,R} over firms F is induced by the

following procedure. Initialize P0 ≡ ∅. For n ≥ 1:

• If
{
f ∈ F\

⋃n−1
k=0 Pk : uf(θ) = uf(F\

⋃n−1
k=0 Pk, θ) ∀θ

}
̸= ∅, let this set be Pn. Assign
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n = n+ 1 and continue;

• If
{
f ∈ F\

⋃n−1
k=0 Pk : uf (θ) = uf (F\

⋃n−1
k=0 Pk, θ) ∀θ

}
= ∅, let R = F\

⋃n−1
k=0 Pk and stop.

Intuitively, each Pn consists of firms that cannot be punished in the matching process

without cooperation from those in
⋃n−1

k=0 Pk. If R ≠ ∅, by construction, uf (θ) > uf (R, θ) for

every f ∈ R and θ ∈ Θ. Let

u∗
f ≡ Eπ[uf (θ)] ∀f ∈ F\R,

and

u∗
f (R) ≡ Eπ[uf (R, θ)] ∀f ∈ R.

A generalized version of Proposition 1 can be stated as follows.

Proposition 1∗. (i) If u ∈ U∗ satisfies uf = u∗
f for all f ∈ F\R and uf > u∗

f(R) for all

f ∈ R, then there is a δ ∈ (0, 1) such that for every δ ∈ (δ, 1), there exists a self-enforcing

matching process with firms’ continuation payoffs u at the beginning of period 0. (ii) Suppose

µ is a self-enforcing matching process for a given δ ∈ (0, 1). For every ex ante history

h ∈ H, firms’ continuation payoff profile satisfies
(
Uf(h |µ)

)
f∈F ∈ U∗, Uf(h |µ) = u∗

f for

every f ∈ F\R, and Uf (h |µ) ≥ u∗
f (R) for every f ∈ R.

The following is an immediate corollary of Proposition 1∗. It states that if no firms can

be dynamically incentivized, then a self-enforcing matching process always exists, and all

such processes result in a unique profile of continuation payoffs for the firms.

Corollary 1. Suppose R = ∅. A self-enforcing matching process exists for all 0 ≤ δ < 1;

furthermore, for every self-enforcing matching process, each firm f ’s continuation payoff is

equal to u∗
f at all ex ante histories.

The existence of a self-enforcing matching process in this special case follows from the

observation that, in the proof of Proposition 1∗(i), the condition on δ is invoked only for firms

in R. For the general case of existence, we next define a random serial dictatorship with

respect to the hierarchical partition P = {P1, . . . ,PN ,R}. To do this, we first introduce a
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subset of orderings OP ⊆ O that contains those that (i) give firms in R the highest priorities

and (ii) rank firms in Pn higher than those in Pk if n > k. That is,

OP ≡

o ∈ O :
o(R) = {1, 2, . . . , |R|}, and

if f ∈ Pk, f
′ ∈ Pn, and k < n, then o(f) > o(f ′)

 .

The stage-game matching m̂(θ, o) induced by a serial dictatorship according to o is defined

as in Definition 3. By using a random serial dictatorship restricted to OP , the following

lemma generalizes Lemma 2 and shows that Proposition 1∗(i) is not vacuously true.

Lemma 2∗. For every firm f ∈ R,

1

|OP |
∑
o∈OP

Eπ

[
uf

(
m̂(θ, o), θ

)]
> u∗

f (R).

For every firm f ∈ F\R,

1

|OP |
∑
o∈OP

Eπ

[
uf

(
m̂(θ, o), θ

)]
= u∗

f .

In view of Lemma 2∗ and Proposition 1∗, we can establish Proposition 2 without Assump-

tion 2.

Proposition 2∗. When firms are sufficiently patient, there exists a self-enforcing matching

process in which players match according to the outcome of an RSD in every period on the

path.

B.1.1 Proof of Proposition 1∗

For part (i), let (λ(θ))θ∈Θ be the tuple of lotteries such that λ(θ) ∈ ∆(M◦(θ)) for every θ ∈ Θ,

and u = Eπ[Eλ(θ)[u(m, θ)]]. There are three cases to consider.

Case 1: R = ∅. If a firm f receives uf = u∗
f on average, it is necessary that this firm receives

the highest possible payoff uf (θ) at every realization of θ. This in turn implies that, for each

θ, λ(θ) only assigns positive probability to stage-game matchings that are stable in a static

sense. Therefore, a matching process that recommends according to (λ(θ))θ∈Θ in every period
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is self-enforcing.

Case 2: |R| = 1. Let f denote the single firm in R, and let (mf(θ))θ∈Θ be the matchings

that give f the most severe punishment by f itself, while all other firms receive the highest

possible payoff uf (θ). Consider the following matching process:

(I) Match according to λ(·) if λ(·) was followed in the last period or mf (·) was followed for

L periods;

(II) If firm f deviates from (I), match according to mf (·) for L periods.

If firm f deviates from (II), restart (II).

It is easy to check that when L is sufficiently large, firm f has no incentive to deviate in

either phase, since δ → 1. All other firms have no incentive to deviate, since they already

receive maximum stage-game payoff in every period.

Case 3: |R| ≥ 2. The proof for this case essentially follows the one for Proposition 1 with

proper adjustments.

For part (ii), by construction, any firm f ∈ P1 can secure a stage-game payoff uf(θ)

by deviation at every θ regardless of the stage-game matching. Taking expectation yields

Uf (h |µ) = u∗
f for every f ∈ P1.

Suppose Uf ′(h |µ) = u∗
f ′ for every f ′ ∈

⋃n
k=1Pk with n < N . Then all firms in

⋃n
k=1 Pk

offer zero wages to their employees. By construction, each firm f ∈ Pn+1 can secure a

stage-game payoff uf(θ) by deviation at every θ regardless of how firms in F\
⋃n

k=1Pk are

matched in each period. Taking expectation yields Uf(h |µ) = u∗
f for every f ∈ Pn+1. By

induction, the equality holds for all f ∈ F\R.

By definition of the effective minmax payoff, every firm f ∈ R can secure uf (R, θ) in each

period by deviating with workers. Taking expectation over θ yields Uf(h |µ) ≥ u∗
f(R) for

these firms. Rigorous proof can be adapted from that of Proposition 1(ii) in Appendix A.2.1.

B.1.2 Proof of Lemma 2∗

The proof of the first statement follows that of Lemma 2.

For the second statement, take any f ∈ Pn, n = 1, 2, . . . , N . By definition, for every
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o ∈ OP , we have
∣∣∣W#

o(f)

∣∣∣ < Q(F\
⋃n−1

k=0 Pk). This means

uf

(
m̂(θ, o), θ

)
= max

W⊆W\W#
o(f)

,|W |≤qf

s(f,W, θ)

≥ min
W ′⊆W,|W ′|≤Q(F\

⋃n−1
k=0 Pk)

max
W⊆W\W ′,|W |≤qf

s(f,W, θ)

= uf (θ), ∀θ ∈ Θ,

where the last equality comes from the definition of Pn. Taking expectation over Θ gives

Eπ

[
uf

(
m̂(θ, o), θ

)]
= u∗

f , which suffices for the second statement to hold.

B.2 Multi-Firm Deviation Plans

We now generalize our model to study deviation plans that involve more than one firm. As

discussed in the main text, we assume that whenever a deviation from the process happens

(i.e., the realized stage-game matching differs from the default specified by the matching

process in some period), the set of firms in the deviation plan can be identified and recorded.

Formally, a t-period ex ante history is defined as h = (θτ , γτ ,mτ , Fτ )
t−1
τ=0, where Fτ ⊆ F records

all the firms in the deviation plan (if any) responsible for the blocking in period τ , while

an empty set ∅ indicates the realized stage-game matching mτ follows the matching process

being studied. As before, Ht denotes the set of all t-period ex ante histories, H ≡
⋃∞

t=0Ht

the set of all ex ante histories, Ht ≡ Ht × Θ × Γ the set of t-period ex post histories, and

H ≡ H×Θ× Γ the set of all ex post histories. A matching process is then µ : H → M .

Recall that a deviation plan by a single firm f is a pair (d : H → 2W , η : H → R|W|)

such that |d(h)| ≤ qf for any h and ηw(h) ̸= 0 only if w ∈ d(h). For a set of firms

F ∈ 2F\{∅}, a joint deviation plan (F, {(df , ηf )}f∈F ) by firms F is a collection of deviation

plans {(df , ηf)}f∈F , such that (i) df(h) ∩ df ′(h) = ∅ for all f ̸= f ′, h ∈ H and (ii) for each

f ∈ F , (df (h), ηf (h)) differs from the pair specified by µ(h) at some h ∈ H. The following is

the multiple-firm counterpart of Assumption 1.

Assumption 3. Let [m, (F, {(Ŵf , p̂f)}f∈F )] ∈ M denote the stage-game matching that is

realized after coalitional deviation (F, {(Ŵf , p̂f )}f∈F ) from stage-game matching m = (ϕ, p),
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and let (ϕ′, p′) denote the assignment and wages in [m, (F, {(Ŵf , p̂f )}f∈F )]. We assume that

the assignment ϕ′ satisfies ϕ′(f) = Ŵf for all f ∈ F and ϕ′(f ′) = ϕ(f ′)\
⋃

f∈F Ŵf for every

f ′ /∈ F ; furthermore, the wages satisfy p′f = p̂f for all f ∈ F , while p′f ′w = pf ′w for every

f ′ /∈ F and w ∈ ϕ′(f ′).

Given a matching process µ and a joint deviation plan (F, {(df , ηf )}f∈F ), the manipulated

matching process, denoted by [µ, (F, {(df , ηf )}f∈F )] : H → M , is a matching process defined

by [
µ, (F, {(df , ηf )}f∈F )

]
(h) ≡

[
µ(h), (F, {(df (h), ηf (h))}f∈F )

]
∀h ∈ H.

The joint deviation plan (F, {(df , ηf )}f∈F ) from µ is feasible if for every f ∈ F , at every

ex post history h =
(
h, θ, γ, F

)
such that df (h) ̸= µ(f |h),

vw

([
µ, (F, {(df , ηf )}f∈F )

]
(h), θ

)
> vw

(
µ(h), θ

)
∀w ∈ df (h). (20)

Remark. Observe that any worker poached in a multi-firm deviation belongs to the blocking

coalition and therefore must be better off than following the recommended stage-game

matching. Therefore, if a firm f can poach workers W when jointly deviating with other

firms from a stage-game matching m, it can use the same wage offers to poach those workers

when it is the only firm that is deviating from m.

Finally, the joint deviation plan (F, {(df , ηf )}f∈F ) is profitable if there exists an ex post

history h such that Uf

(
h
∣∣ [µ, (F, {(df , ηf )}f∈F )]) > Uf (h|µ) for all f ∈ F .

A matching process µ is strongly self-enforcing if (i) vw(µ(h), θ) ≥ 0 for every w ∈ W at

every ex post history h ∈ H and (ii) there does not exist a nonempty set of firms that has a

feasible and profitable joint deviation plan.

Proposition 2′. When firms are sufficiently patient, there exists a strongly self-enforcing

matching process in which players match according to the outcome of an RSD in every period

on path.

Proof. For simplicity, we prove the result under Assumption 2, but it can be easily generalized

using the arguments in Appendix B.1. Fix an indexing of the finite set of firms F by the
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numbers {1, 2, . . . , |F|}. Pick u ∈ U∗. The tuples (λ(θ))θ∈Θ and (λf(θ))θ∈Θ are defined as

in the proof of Proposition 1(i). Recall that {mf(θ)}θ∈Θ,f∈F are the minmax stage-game

matchings constructed in Lemma 5. Consider a matching process µ with the following three

phases:

(I) If past realizations from λ(·) were followed: Match according to λ(·);

(II) If λ(·) was not followed and F is the set of firms responsible for the coalitional deviation,

let f be the firm with the lowest index in F : For the next L periods, match according

to mf (·).

(III) If mf (·) was followed for L periods: Match according to the realization from λf (·) until

a firm deviates.

If there is a deviation from (II) or (III) and F ′ is the set of firms responsible for the coalitional

deviation, restart (II) with f replaced by f ′, the firm with the lowest index in F ′.

Lemma 8. If there exists a feasible and profitable joint deviation plan (F, {(df , ηf )}f∈F ) from

µ, then there exists a feasible and profitable deviation plan (d̂, η̂) of a single firm f̂ when it is

sufficiently patient.

Proof. Denote by ĥ = (h̄, θ, γ) the ex post history such that [µ, F, {(df , ηf)}f∈F ](ĥ) ̸= µ(ĥ)

and Uf

(
ĥ
∣∣ [µ, (F, {(df , ηf )}f∈F )])− Uf (ĥ|µ) > 0 for all f ∈ F ; when there are multiple such

histories, pick an arbitrary one. Suppose ĥ is a t̂-period ex post history. Let f̂ be the firm

with the lowest index in F . Define a deviation plan (d̂, η̂) for firm f̂ as follows:

• At ĥ, make a feasible deviation that leads to m̂ ≡ [µ(ĥ), (f̂ , Ŵ , p̂)] ̸= µ(ĥ) and triggers

phase (II). Note that this can always be achieved by hiring a different group of workers

with sufficiently high wages.

• Let hF = (h̄, (θτ , γτ ,mτ , Fτ )
t−1

τ=t̂
, (θt, γt)) be an ex post history with t > t̂ that satisfies:

1. hF is generated by following the manipulated process [µ, F, {(df , ηf )}f∈F ] from ĥ

given the realizations (θτ , γτ )
t−1

τ=t̂
;
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2. µ(hF ) is either in phase (II)
(
i.e., specifying mf̂(θt)

)
or in phase (III)

(
i.e.,

randomizing according to λf̂ (θt)
)
;

3. f̂ actively carries out a deviation at hF under the joint deviation plan

(F, {(df , ηf )}f∈F )
(
i.e., (df̂ (hF ), ηf̂ (hF )) ̸= µ(f̂ |hF )

)
.

For each t-period ex post history h following ĥ such that (i) the realizations (θτ , γτ )
t−1

τ=t̂

are the same in h and hF , and (ii) µ(h) is in the same phase as µ(hF ), let (d̂(h), η̂(h)) =

(df̂ (hF ), ηf̂ (hF )).

• For any other ex post history h, let (d̂(h), η̂(h)) = µ(f̂ |h).

In words, in the constructed single-firm deviation plan, firm f̂ mimics its own deviating

behavior in the joint deviation plan only when the manipulated process is either in the

punishment phase (II) or in the reward phase (III).

By construction, for every ex post history h such that (d̂(h), η̂(h)) ̸= µ(f̂ |h), there exists

some hF such that µ(h) = µ(hF ) and (d̂(h), η̂(h)) = (df̂ (hF ), ηf̂ (hF )). Since (F, {(df , ηf )}f∈F )

is feasible, we have

vw

([
µ, (f̂ , d̂, η̂)

]
(h), θ

)
= vw

([
µ(hF ), (f̂ , df̂ (hF ), ηf̂ (hF ))

]
, θ

)
= vw

([
µ, (F, {df , ηf}f∈F )

]
(hF ), θ

)
> vw

(
µ(hF ), θ

)
= vw

(
µ(h), θ

)
∀w ∈ df (h).

Therefore, the deviation plan (d̂, η̂) of firm f̂ is feasible.

The processes [µ, (f̂ , d̂, η̂)] and [µ, (F, {(df , ηf )}f∈F )] induce two measures over the set of

outcomes H∞ = (Θ× Γ×M)∞, where we suppress the record of deviating firms F ∈ 2F as

it does not influence continuation payoffs. Note that conditional on each realized sequence of

the state and the public randomization device (θτ , γτ )
t
τ=0, any process must induce a point

mass on some stage-game matching in period t. For t > t̂, fixing the ex post history ĥ and

any sequence (θτ , γτ )
t
τ=t̂+1

, if firm f̂ is matched to different sets of workers or pays different

wage vectors under two manipulated processes, firm f̂ matches according to λf̂ (θt) and the
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realized γt under [µ, (f̂ , d̂, η̂)], while f̂ matches according to mf̂ (θt) or deviates from it under

[µ, (F, {(df , ηf)}f∈F )]. By the fact that uf̂

f̂
> u∗

f̂
and parts (i) and (ii) of Lemma 5, we can

conclude that in every period t > t̂, firm f̂ ’s expected payoff averaged over θt and γt under

[µ, (f̂ , d̂, η̂)] is weakly higher than that under [µ, (F, {(df , ηf )}f∈F )]. Thus, we have

Uf̂

(
ĥ
∣∣ [µ, (f̂ , d̂, η̂)])− Uf̂ (ĥ|µ) =

[
Uf̂

(
ĥ
∣∣ [µ, (f̂ , d̂, η̂)])− Uf̂

(
ĥ
∣∣ [µ, (F, {(df , ηf )}f∈F )])]

+
[
Uf̂

(
ĥ
∣∣ [µ, (F, {(df , ηf )}f∈F )])− Uf̂ (ĥ|µ)

]
≥ (1− δ)

(
uf (m̂, θt̂)− uf

([
µ, (F, {df , ηf}f∈F

)]
(ĥ), θt̂)

)
+
[
Uf̂

(
ĥ
∣∣ [µ, (F, {(df , ηf )}f∈F )])− Uf̂ (ĥ|µ)

]
.

Since Uf̂

(
ĥ
∣∣ [µ, (F, {(df , ηf )}f∈F )])−Uf̂ (ĥ|µ) > 0 due to the profitability of (F, {(df , ηf )}f∈F ),

when δ is sufficiently close to 1, we have Uf̂

(
ĥ
∣∣ [µ, (f̂ , d̂, η̂)])− Uf̂ (ĥ|µ) > 0, which means the

deviation plan (d̂, η̂) is also profitable for firm f̂ .

Intuitively, under µ, whenever a joint deviation plan (F, {(df , ηf )}f∈F ) is formed, the firm

with the lowest index in F is singled out as the “scapegoat” of the coalition. This firm is

punished as if it were the sole deviator, and the punishment scheme restarts if any member of

the group fails to follow the matching process. This construction implies that if the scapegoat

were to unilaterally implement a deviation plan that replicates its own behavior in the joint

deviation, it would be punished less frequently under the manipulated process. As a result,

whenever a feasible and profitable joint deviation plan exists, there also exists an alternative

feasible and profitable single-firm deviation plan that yields a continuation payoff arbitrarily

close to that in the joint deviation, as δ → 1.

Hence, by Lemma 3, it suffices to rule out feasible and profitable one-shot deviations by a

single firm. Since the matching process µ constructed above reduces to the one in the proof

of Proposition 1 when restricted to deviations by a single firm, and we have shown that no

feasible and profitable one-shot deviation exists under such a process, this completes the

proof.
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