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different measures can generate different conclusions. We provide an ax-
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cation substantially changed between the 1950s and the 1970s cohorts.
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I. Introduction

The study of sorting in the marriage market has recently attracted re-
newed attention. The degree of homogamy inmarriage—defined as peo-
ple’s tendency tomarry their own—has important consequences for fam-
ily inequalities and intergenerational transmission of human capital.
Therefore, it is surprising that various studies on this topichavenot reached
a consensus on the evolution of homogamy in recent years and even on
howbest tomeasurehomogamy (e.g., Fernández andRogerson2001;Mare
and Schwartz 2005; Greenwood et al. 2014; Siow 2015; Chiappori, Salanié,
and Weiss 2017; Eika, Mogstad, and Zafar 2019; Ciscato and Weber 2020;
Gihleb and Lang 2020; Hou et al. 2022).
The goal of this paper is to understand why different approaches to the

same problem, using similar or even the same data, can reach opposite
conclusions and, more generally, to clarify the theoretical issues underly-
ing the choice of a particular measure of assortativeness. Our analysis con-
siders two populations—men and women—sorting inmarriage according
to a characteristic, such as education.Whenever themarginal distributions
change—for example, women’s average education increases—matching
patterns will change. The main problem faced by any measure of assor-
tativeness is to disentangle the mechanical effects of such variations in
themarginal distributions from deeper changes in thematching structure
itself, for instance, originating from changes in the gain generated by as-
sortativeness along that characteristic. The latter represents what one
would call changes in the assortativeness. Existing studies propose various
measures—indexes and rankings—to capture the assortativeness and the
changes therein. They measure assortativeness in different ways and may
therefore generate divergent conclusions.
Rather than starting with specificmeasures and justifying themwith se-

lected desirable properties they satisfy, we take an axiomatic approach: we
start with a set of properties that themeasures should satisfy and establish
how appropriate the measures are for capturing changes in assortative
matching through the lenses of these properties.
We consider three sets of basic axioms: (1) axioms of invariance to

specify when two matching patterns are equally assortative, (2) axioms
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of monotonicity to specify when one matching pattern is more assortative
than another, and (3) axioms of homogamy to specify matching patterns
that are most assortative.1 Namely, invariance axioms are scale invariance
(invariance to scaling themarket), side invariance (invariance to swapping
sides), and type invariance (invariance to swapping types). The two notions
ofmonotonicity we consider are (1)marginal monotonicity, ranking two sets
of matches of the same marginal distributions, and (2) diagonal and off-
diagonal monotonicity (assortativeness increases whenmore like typesmatch
and decreases when more unlike types match). Finally, we introduce two
definitions of the most assortative matching: full homogamy (every pair in
the market is homogamous) and maximum homogamy (the maximum
number of homogamous pairs is achieved in themarket, although not ev-
ery pair is necessarily homogamous).
While some commonly usedmeasures, such as the likelihood ratio, fail

to satisfy one or more of the basic axioms, the odds ratio (the ratio of col-
lege and noncollege individuals’ odds to match with the same type and
with a different type), the normalized trace (the proportion of like types),
and theminimum distance (the combination of sorting patterns under ran-
dom matching and maximum positive assortative matching that best fits
the empirical observation) satisfy all basic axioms. Since these are genu-
inely different measures rather than monotonic transformations of each
other, they may point in opposite directions when used to investigate
changes in assortativeness between two matching patterns. Their differ-
ences are empirically relevant. We show estimates of changing marital
sorting patterns in the United States where one finds instances of these
measures reaching opposite conclusions. To distinguish some of these
measures, we additionally define a set of characterization axioms.
In two-type markets, the complete ranking induced by the odds ratio is

the unique one that satisfies the basic axioms plus marginal independence
(Edwards 1963; theorem 1). Under marginal independence, only the
odds of marrying different types of spouses matter for the measure of
assortativeness, not the marginal distributions of the types. All indexes
that aremonotonic transformations of the odds ratio (e.g., Yule’sQ, Yule’s
Y, and log odds ratio) provide the same assortativeness ordering. We also
provide a structural economic interpretationof the odds ratio: it estimates
the average gain per couple from assortative matching compared with
nonassortative matching within the Choo and Siow (2006) transferable
utilities matching framework.
We also define decomposability axioms: the assortativeness measure for

any matching in a market is a weighted average or weighted sum of the
measures for thematching patterns in the submarkets decomposed from

1 In this paper, we use axioms and properties interchangeably.
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themarket. The normalized trace—the proportion of pairs of like types—is
the unique index, up to positive affine transformation, that satisfies the
basic axioms plus population decomposability, that is, the weight to average
is population size (theorem 2). For comparison, we also provide an axi-
omatic characterization of the aggregate likelihood ratio (used, e.g., in Eika,
Mogstad, and Zafar 2019), the excess likelihood of like types pairing up
relative to the hypothetical likelihood under random matching. It is the
unique measure, up to positive multiplication, that satisfies selected basic
axioms plus random decomposability, that is, the weight to sum is the hypo-
thetical proportion of pairs of like types under random matching (theo-
rem 3).
For markets with more than two types, the indexes such as normalized

trace and likelihood ratio can be extended to provide measures of
assortativeness.2 In practice, there are 14 detailed education categories
in the US census, so robustness to categorization is an additional desired
property: comparisons of assortativeness should be robust to how educa-
tion is categorized into two or several groups. We provide an impossibility
result: no total preorder satisfies marginal monotonicity (the weaker
monotonicity axiom) and robustness to categorization (theorem 4). As
a result, we must resort to partial rankings to evaluate assortativeness of
multitype matching patterns.
The continued attention in the literature to how assortativeness on edu-

cation has evolved in the recent past has been fueled by contradictory find-
ings. We revisit this issue using our axiomatic approach, studying changes
in assortativeness on education in the United States across cohorts born in
the 1950s and 1970s. We contribute to that discussion by arguing that am-
biguity can sometimes be resolved by selecting indexes that have desirable
properties and by studying local (submarket) changes in assortativeness
rather than global ones, which are hard to interpret. The indexes that sat-
isfy our basic axioms consistently show that assortativeness by educationhas
increased at the top of the education distribution but has decreased at the
very topbetween college graduates andpostgraduates.We alsofind that the
type-specific andaggregate likelihood ratios—which fail to satisfy a number
of the basic axioms of invariance, monotonicity, and homogamy—fre-
quently contradict the findings of other indexes and of each other.
The rest of the paper is organized as follows. Section II sets up the

model and discusses special matching patterns and commonly used mea-
sures. Section III lays out the basic axioms. Section IV discusses the axi-
omatic characterization results for the odds ratio, normalized trace, and ag-
gregate likelihood ratio. Section V discusses the structural interpretation

2 They can also be modified to compare markets with singles and one-sided (e.g., homo-
sexual) matches (Zhang 2024).
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of the odds ratio. Section VI discusses the theoretical results with more
than two types. Section VII provides empirical results on marital sorting
in the United States, and section VIII concludes.

II. Model, Matchings, and Measures

A. Model and Objective

Eachman and woman possesses a trait (e.g., college education or any other
observable psychological, biological, or socioeconomic trait). We start with
the setting where a trait is one of two types, for example, v1 and v2. For expo-
sitional ease and alignment with our primary empirical application, we refer
to the two traits as college educated and noncollege educated. Consider the
matching between men and women described by matrix M 5 (a, b, c, d):

M 5

mnw v1 ðcollegeÞ v2 ðnoncollegeÞ
v1 ðcollegeÞ a b

v2 ðnoncollegeÞ c d

:

A cell describes the mass of pairs between a specific combination of
types of men and women. To recover the marginal distribution—that
is, mass of (matched) individuals of a specific gender and type—we
sum a column or a row. For example, there is mass a 1 b of college
men. The marginal distribution for men is then described by (a 1 b,
c 1 d), and that for women is (a 1 c, b 1 d). Assume a full support of
types on both sides of the market: (a 1 b)(a 1 c)(b 1 d)(c 1 d) > 0.
Let jM j ; a 1 b 1 c 1 d denote its population size.
We define positive matching matrices M 5 (a, b, c, d), that is, matrices such

that each of the entries a, b, c, and d is strictly positive.3 We denote them by
M > 0, where bold 0 denotes the zero matrix, the 2 � 2 zero matrix in this
context.
Objective.—Our aim is to define a set of axioms that a measure of assor-

tative matching should reasonably satisfy and to use these to distinguish
among different measures, which often lead to contradictory results. A
measure may be an indexing, a complete ranking, or a partial ranking
of all matching patterns.
Formally, let M 5 R4

1nf0g denote the entire collection of possible
matching patterns in two-type markets. A measure of assortativeness may
be (1) an index I :M→R1; (2) a total preorder (i.e., a complete ranking)
onM, a binary relation that satisfies totality (M ≻2M 0 orM 0 ≻2M) and tran-
sitivity (M ≻2M 0 andM 0 ≻2M 00 implyM ≻2M 00); or (3) a preorder (i.e., a par-
tial or complete ranking) on M, a binary relation that satisfies reflexivity

3 Note that positive matching matrices are distinct from positive definite matrices.
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(M ≻2M) and transitivity.4 Any index is associated with a total preorder, so
studying the ordinal properties of an index is akin to studying the proper-
ties of the total preorder it induces.

B. Special Matching Patterns

Fully and maximally assortative matching.—When a person is matched with
a partner of the same type with probability one, that is, b 5 c 5 0, we call
such a matching fully positive assortative. However, fully positive assortative
matching is feasible only when men and women have the same distribu-
tion of education. More generally, we call a matching maximally positive assor-
tative if there is a maximummass of pairs of like types, holding marginal
distributions fixed: bc 5 0 (i.e., b 5 0, c 5 0, or both). Say that all individ-
uals on the short side of the educated category (men in our case) marry
an educated partner (i.e., b 5 0) but not every educated individual on the
long side (women) does so (i.e., c > 0); intuitively, the only reason that
we observe mixed couples is the lack of educated men. Every market has
a unique maximally positive assortative matching.
In the 2 � 2 case, we can analogously define fully negative assortative

matching as one in which all individuals are matched with a partner of a
different type with probability 1, that is, a 5 d 5 0, and maximally negative
assortative (or, equivalently, minimally positive assortative) matching as one
in which there is a maximal mass of pairs of unlike types (or, equivalently,
in 2 � 2 markets, minimal mass of pairs of like types), that is, ad 5 0.
Note that fully (positive or negative) assortative matching is maximally

assortative, but maximally assortative matching is not necessarily fully as-
sortative. Most—not all—of the preorders in use have maximally positive
assortative matching matrices as maximum elements of M.
Positive and negative assortative matching.—One way of defining positive

andnegative assortativematching is to comparewith the randommatching
benchmark. We say that matchingM is a positive assortative matching (PAM)
if the mass of couples with equal education (the diagonal of matrix M) is
strictly larger than what would obtain under random matching. Under ran-
dom matching, the mass of couples in which both spouses are college edu-
cated is jM j � ½(a 1 b)(a 1 c)=jM j2�. Then we have PAM if and only if

a a 1 b 1 c 1 dð Þ > a 1 bð Þ a 1 cð Þ, (1)

or, equivalently,

ad > bc: (2)

4 We consider preorders rather than orders (which satisfy the additional condition of
antisymmetry: M ≻2M 0 and M 0 ≻2M imply M 5 M 0) because there may be equally assorta-
tive matching patterns.
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This inequality also implies that more noncollege individuals marry each
other than would be predicted by random matching.5 In other words,
PAM arises when extra forces generatemorematches between equally ed-
ucated people than would happen for random reasons.Negative assortative
matching (NAM) in two-type markets can be analogously defined: ad < bc.

C. Existing Measures and Their Differences

1. Existing Measures

We now review some of the most commonly used measures in the litera-
ture. Many are measuring the extent to which the left-hand side is larger
than the right-hand side in equations (1) and (2).
Odds ratios.—The odds ratio is probably the most widely used index:6

IO Mð Þ 5
ad

bc
if  b ≠ 0 and c ≠ 0,

1∞ if  bc 5 0:

8<
:

The index ranges from 0 to1∞. A fewmonotonic transformations of the
odds ratio are used in the literature. They all yield the same preorder of
assortativeness.Log odds ratio is Io(M) ; ln IO(M). Yule’s Q , or coefficient of
association (Yule 1900), is IQ(M) ; (IO(M) 2 1)=(IO(M)1 1). This is 11
when PAM,21 when NAM, and 0 when random matching (uncorrelated).
Yule’s Y, or coefficient of colligation (Yule 1912), is IY (M) ; (

ffiffiffiffiffiffiffiffiffiffiffiffiffi
IO(M)

p
2 1)=

(
ffiffiffiffiffiffiffiffiffiffiffiffiffi
IO(M)

p
1 1).

Likelihood ratios.—Type-specific likelihood ratio, used by Eika, Mogstad, and
Zafar (2019), for instance, measures marital sorting between men and
women of the same type by the ratio of the actual probability of matching
relative to what would occur at random:7

IL1(M) ;
observed matches v1v1

random matching baseline
5

a

Mj j =
a 1 b

Mj j
a 1 c

Mj j

5
a(a 1 b 1 c 1 d)

(a 1 b)(a 1 c)
:

5 Mathematically, d > (d 1 b)(d 1 c)=jM j ⇔ d(a 1 b 1 c 1 d) > (d 1 b)(d 1 c) ⇔d(a 1
b) > b(d 1 c) ⇔ ad > bc. The inequality ad > bc also implies a 1 d > ½(a 1 b)(a 1 c)1
(d 1 b)(d 1 c)�=(a 1 b 1 c 1 d).

6 The odds ratio is popular in the demographic literature, as it can be directly derived
from the log-linear approach (see, e.g., Mare 2001; Mare and Schwartz 2005; Bouchet-Valat
(2014). In economics, it was used by Siow (2015; local odds ratio), Chiappori, Salanié, and
Weiss (2017), Chiappori et al. (2020), and Ciscato and Weber (2020), among many others.

7 Ciscato, Galichon, and Goussé (2020) call this the homogamy rate. It is used to study
sorting on career ambition (Almar et al. 2023) and on childhood family income percentile
(Binder et al. 2023).
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The likelihood ratio for population type v1 compares the realized mass
of college-college pairs with the benchmark of the hypothetical mass of
such pairs under random matching. The likelihood ratio for population
type v2 is analogously defined:

IL2(M) ;
observed matches v2v2

random matching baseline
5

d

Mj j
�

d 1 b

Mj j
d 1 c

Mj j

5
d(a 1 b 1 c 1 d)

(d 1 b)(d 1 c)
:

One issue with the type-dependent likelihood ratio is that it requires the
choice of a type as a benchmark; in other words, it fails type invariance,
which we will define later on. Our empirical results show that the likeli-
hood ratios based on different types yield opposite conclusions on the
direction of change in educational homogamy in the United States.
The aggregate likelihood ratio is a weighted average of the type-specific

likelihood ratios, in which the weight on each type-specific likelihood ra-
tio is the expected mass of pairs of like types under random matching:

IL(M)5
(a 1 b)(a 1 c)

(a 1 b)(a 1 c)1(d 1 b)(d 1 c)
IL1(M)

1
(d 1 b)(d 1 c)

(a 1 b)(a 1 c)1(d 1 b)(d 1 c)
IL2(M)

5
observed matches v1v1 and v2v2
random matching baseline

5
a 1 d

Mj j
�

a 1 b

Mj j
a 1 c

Mj j 1
d 1 b

Mj j
d 1 c

Mj j
� �

:

Simplified, this is the ratio between the observed mass of couples of all
like types and the counterfactual mass of pairs if individuals were to match
randomly.
Normalized trace.—A simple index that turns out to have nice properties

is what we call the normalized trace.8 It equals 1 if the matching is maxi-
mum PAM, equals 0 if the matching is minimum PAM, and equals the
proportion of like types in the market otherwise:

Itr(M) 5

1 if  bc 5 0,

a 1 d

a 1 b 1 c 1 d
∈ (0, 1) if  abcd ≠ 0,

0 if  ad 5 0:

8>>><
>>>:

8 Using the normalized trace, Cheremukhin, Restrepo-Echavarria, and Tutino (2024)
study marital sorting in the United States, and Li (2024) and Li and Derdenger (2024) study
matching between students and colleges.
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Minimum distance.—In the minimum distance approach of Fernández
and Rogerson (2001), Abbott et al. (2019), and Wu and Zhang (2021),
one constructs the convex combination of two extreme cases—random
matching and maximum PAM—that minimizes the distance with the
matching under consideration and defines the weight of the maximum
PAM component as the index. It coincides with the perfect random nor-
malization of Liu and Lu (2006) and Shen (2020) in two-type markets
and is equal to

IMD Mð Þ 5 ad 2 bc

(a 1 min b, cf g)(d 1 min b, cf g) :

Correlation.—Another natural index is the correlation between wife’s
and husband’s education, each considered as a Bernoulli random vari-
able taking the value v1 with probability (a 1 b)=jM j ((a 1 c)=jM j) and
v2 with probability (c 1 d)=jM j ((b 1 d)=jM j):

ICorr Mð Þ 5 ad 2 bcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a 1 bð Þ c 1 dð Þ a 1 cð Þ b 1 dð Þp :

This has been used in various contributions (e.g., Greenwood, Guner,
and Knowles 2003; Greenwood et al. 2014) either explicitly or through
a linear regression framework. In our 2 � 2 case, the correlation index
also coincides with Spearman’s rank correlation, which exploits the nat-
ural ranking of education levels (i.e., college > noncollege). Equivalently,
one can consider x2(M) 5 ½ICorr(M)�2.

2. Measuring Changes in Sorting with Alternative
Measures: An Example

As we show in the empirical section, the various measures can imply op-
posite results with respect to changes in sorting, an issue that has moti-
vated this paper. We provide a graphical illustration of this difference
by comparing the odds ratio and the aggregate likelihood ratio before
we analyze the various measures in relation to a set of axioms.
For the purposes of our example, fix a reference matching, M 5

(0:2, 0:1, 0:1, 0:6), and restrict attention to matching matrices M 0 in
which jM 0j 5 1 and b 5 c 5(1 2 a 2 d)=2. The solid line in figure 1 il-
lustrates what we call the iso-assortative curve of M—the collection of
matrices that are equally assortative asM—under the odds ratio. Similarly,
the dashed line is the iso-assortative curve ofM under the aggregate like-
lihood ratio.
Thus, region 1 (region 4) is the set of matchingmatrices where sorting

is more positive (less positive) assortative thanM according to both mea-
sures. Regions 2 are the set of matrices classified as less assortative thanM
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by the aggregate likelihood ratio but more assortative according to the
odds ratio. Notably, the fully assortative matching matrices—a 5 1 and
d 5 0 or a 5 0 and d 5 1—and the matching matrices close to them
are deemed strictly less assortative thanM under the aggregate likelihood
ratio. Finally, the matrices in region 3 are more assortative thanM under
the aggregate likelihood ratio and less so under the odds ratio. These dif-
ferences reflect the way that each of themeasures accounts for changes in
the marginal distributions.9

9 In general, the iso-assortative curves of a fixed matching matrix can be derived for any
measure, and its upper contour set can be used to compare and contrast any pairs of mea-
sures. In addition, when we relax the restriction of b 5 c, we can construct iso-assortative
surfaces and upper contour sets of M in three-dimensional planes. We illustrate the con-
flicts between aggregate likelihood ratio and odds ratio in the three-dimensional space
in fig. 2 in the appendix (available online).

FIG. 1.—Iso-assortative curves and conflicting rankings. Point M shows a specific match-
ing matrix chosen for this example. The solid line is the iso-assortativeness curve showing
all matching matrices with the same assortativeness as M according to the odds ratio (OR).
The dashed line is the iso-assortative curve for the aggregate likelihood ratio (ALR). The
areas with vertical lines (1 and 4) mark the set of matching matrices (M0) ranked by the OR
and the ALR in the same way with respect to M. The areas with horizontal lines (2 and 3)
mark the set of matching matrices (M0) where the ranking by the OR is different from that
by the ALR.
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III. Axioms of Invariance, Monotonicity,
and Homogamy

We introduce three sets of basic axioms/properties a measure should
satisfy. They describe (1) matching matrices that should be classified as
equally assortative, (2) matching matrices where one must be classified
asmore assortative than the other, and (3)matchingmatrices that should
be classified as most assortative. For generality, whenever possible, we de-
fine axioms that a preorder should satisfy rather than an index.
We say that a total preorder ≽ is induced by index I if for all match-

ing matrices M and M 0, I (M) > I (M 0) ⇔  M ≻M 0 and I (M) 5 I (M 0) ⇔
M ∼ M 0. Two indexes I and I 0 are preorder equivalent if the total preorders
≽I and ≽I 0 that they induce are equivalent. An index is said to satisfy an
axiom if the total preorder induced by the index satisfies it.

A. Invariance Axioms

We start with axioms that define two equally assortative matching matrices.
First, when a matching matrix is scaled up or down by a positive constant
without changing the relative composition, the assortativeness should be
evaluated as unchanged.
Scale Invariance. For all M and l > 0, M ∼ l � M .
Given scale invariance, we can transform M into a contingency table

by dividing each cell by FMF. Next, the assortativeness should not be af-
fected if we change the sides of the market. Effectively, we switch the masses
of high-low (b) and low-high (c) pairs.
Side Invariance. The matching stays equally assortative when sides

are switched:

a b

c d
∼

a c

b d
:

Neither should switching the types affect the assortativeness. Swapping
the labels of the two types is essentially swapping high-high (a) and low-
low (d) pairs and swapping high-low (b) and low-high (c) pairs.
Type Invariance. The matching stays equally assortative when types

are switched:

a b

c d
∼

d c

b a
:

We refer to all three together as invariance axioms. These are basic ax-
ioms that an appropriate measure should satisfy. While type-specific like-
lihood ratio fails type invariance, all aforementioned measures satisfy all
three axioms of invariance (see summary in table 1).
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B. Monotonicity Axioms

Next, we define notions of monotonicity that specify when onematching
matrix is more assortative than another. We define two notions of mono-
tonicity, one based on comparisons of matching matrices with the same
marginal distributions and the other based on comparisons of matching
matrices with different marginals.
We compare positive matching matrices (all entries are positive). They

are the non–maximally assortative matching matrices.
First, consider one notion of monotonicity that compares two match-

ing matrices of the same marginal distributions. Matching matrices that
share the samemarginal distributions as (a, b, c, d) are of the form (a 1 e,
b 2 e, c 2 e, d 1 e), essentially a one-parameter family.
Marginal Monotonicity. For any positive matching matricesM 5

(a, b, c, d) > 0 and M 0 5 (a 0, b 0, c 0, d 0) > 0 with the same marginal dis-
tributions (i.e., a 1 c 5 a 0 1 c 0, a 1 b 5 a 0 1 b 0, d 1 b 5 d 0 1 b 0, and
d 1 c 5 d 0 1 c 0), M ≻M 0 if and only if a > a 0 (equivalently, b < b 0, c < c 0,
or d > d 0).
All aforementioned measures satisfy marginal monotonicity.
Next, we compare matching matrices that differ in marginal distribu-

tions but in a minimal way: by one cell. For matching matrices that are
not maximally assortative, when pairs of like types (i.e., the terms on the
diagonal of the matrix) increase, the matching becomes more assortative.
Diagonal Monotonicity. For any positive matching matrix M > 0

and e > 0,

a 1 e b

c d
≻

a b

c d
 and 

a b

c d 1 e
≻

a b

c d
:

TABLE 1
Do the Measures Satisfy the Invariance, Monotonicity, and Homogamy Axioms?

Invariance
Axioms

Monotonicity
Axioms

Homogamy
Axioms

Scale Side Type Marginal Diagonal
Off-

Diagonal Maximum Full

Odds ratio Yes Yes Yes Yes Yes Yes Yes Yes
Type-specific
likelihood ratio Yes Yes No Yes No Yes No No

Aggregate likelihood
ratio Yes Yes Yes Yes No Yes No No

Normalized trace Yes Yes Yes Yes Yes Yes Yes Yes
Minimum distance Yes Yes Yes Yes Yes Yes Yes Yes
Correlation Yes Yes Yes Yes Yes Yes No Yes
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We analogously define off-diagonal monotonicity: when pairs of unlike
types (i.e., the terms off the diagonal of the matrix) increase, the match-
ing becomes less assortative.
Off-Diagonal Monotonicity. For any positive matching matrix

M > 0 and e > 0,

a b

c d
≻

a b 1 e

c d
 and 

a b

c d
≻

a b

c 1 e d
:

Claim 1. Diagonal and off-diagonal monotonicities imply marginal
monotonicity.
Proof of claim 1. Suppose that positive matrices M 5 (a, b, c, d) and

M 0 5 (a 0, b 0, c 0, d 0) have the same marginal distributions, and suppose
that a > a 0. Because they share the same marginals, a 2 a 0 5 b 0 2 b 5
c 0 2 c 5 d 2 d 0 (derived from a 1 c 5 a 0 1 c 0, a 1 b 5 a 0 1 b 0, d 1 b 5
d 0 1 b 0, and d 1 c 5 d 0 1 c 0). Hence, M 0 can be represented as

M 0 5
a 2 (a 2 a 0) b 1(b 0 2 b)

c 1(c 0 2 c) d 2(d 2 d 0)
5

a 2(a 2 a 0) b 1(a 2 a 0)

c 1(a 2 a 0) d 2(a 2 a 0)
:

Then,

M 0 5
a 2(a 2 a 0) b 1(a 2 a 0)

c 1(a 2 a 0) d 2(a 2 a 0)
≺

a b 1(a 2 a 0)

c 1(a 2 a 0) d
≺

a b

c d
5 M ,

where the first ≺ follows from diagonal monotonicity and the second ≺
follows from off-diagonal monotonicity. QED
Conversely, however, marginal monotonicity does not necessarily imply

diagonal or off-diagonal monotonicity, because marginal monotonicity
solely specifies relations for matchings with the same marginal distribu-
tions and by itself has no implications for markets with different marginal
distributions.
Let us examine whether the aforementioned measures satisfy these

monotonicity axioms. The type-specific likelihood ratio satisfies off-diagonal
monotonicity but fails diagonal monotonicity: IL1(1, 1, 1, 6) 5 2:25 >
IL1(2, 1, 1, 6) ≈ 2:22 > IL1(6, 1, 1, 6) ≈ 1:74. To investigate further, we can
take the partial derivative of IL1 with respect to a. Diagonal monotonic-
ity tends to fail when one of the cells is relatively small. The aggregate
likelihood ratio satisfies off-diagonal monotonicity but fails diagonal
monotonicity:

∂IL
∂a

5
(a 1 d)(d 2 a)(b 1 c)

(a 1 b)(a 1 c)1(d 1 b)(d 1 c)½ �2 < 0 when a > d:
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The other aforementioned measures satisfy diagonal and off-diagonal
monotonicity.

C. Homogamy Axioms

A natural requirement is that any maximally positive assortative match-
ing should be a maximal element for preorder ≽. Following Robbins
(2009), we call it the maximum homogamy property.10

Maximum Homogamy. For any M, ad > 0, and bc 5 0, (a, b, c, d) ≻2
M .
A less restrictive condition suggests that fully positive assortative match-

ing should be perceived as the most positive assortative; we call this the
full homogamy property.11

Full Homogamy. For any M and ad > 0, (a, 0, 0, dÞ ≻2 M .
Note thatmaximumhomogamy is a stricter condition than full homog-

amy, because it requires not only matrices of the form (a, 0, 0, d) to be
maximal elements but also matrices of the form (a, 0, c, d) or (a, b, 0, d).
One can readily check that the odds ratio satisfies maximum homog-

amy—and hence full homogamy—since it becomes infinite when b 5 0
or c 5 0. By construction, we have IMD(M) ≤ 1 for all M and IMD(a, b,
0, d) 5 1. Therefore, minimum distance satisfies maximum homogamy.
The correlation index obviously satisfies full homogamy, since the correla-
tion is then equal to 1. However, it does not satisfy maximum homogamy.
For instance, ICorr(45, 5, 5, 45) 5 0:8 > 0:41 5 ICorr(40, 40, 0, 20).
Likelihood ratios fail full homogamy and hencemaximumhomogamy.

ComparematchingmatricesM 5 (5, 5, 5, 85) andM 0 5 (50, 0, 0, 50) cor-
responding to, for instance, two different cohorts in the same economy.
The distribution of education is independent of gender in both M and
M 0, but the proportion of educated people has increased from 10% in
M to 50% inM 0. CohortM exhibits PAM in the usual sense (more people
on the diagonal than would obtain under random matching), yet 50%
of educated people marry an uneducated spouse. CohortM 0 displays per-
fect sorting, with all educated individuals marrying together. The college-
based likelihood ratio yields IL1(M) 5 5 and IL1(M 0) 5 2: assortativeness
has decreased from M toM 0.

D. Summary

Table 1 summarizes whether the measures satisfy the basic invariance,
monotonicity, and homogamy axioms. The type-specific likelihood ratio
does not satisfy type invariance because relabeling the types would

10 HMax in Chiappori, Costa Dias, and Meghir (2022).
11 Weak HMax in Chiappori, Costa Dias, and Meghir (2022).
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change themeasure. The aggregate likelihood ratio fails diagonal mono-
tonicity, maximum homogamy, and full homogamy. The correlation in-
dex fails maximum homogamy.
The odds ratio, normalized trace, andminimum distance satisfy all the

basic axioms. That begs the question, what would be axioms that can
uniquely characterize thesemeasures? For the odds ratio and the normal-
ized trace, we answer this question next.

IV. Characterization Results

Table 1 shows that, except for the type-specific likelihood ratio, all the
measures listed satisfy the invariance axioms and at least one notion of
monotonicity: marginal monotonicity. Hence, the basic axioms are not
sufficient to distinguish the measures and provide a definitive answer re-
garding what measure to use.
We need additional axioms to distinguish and characterize the different

measures. We will introduce what we call characterization axioms, such that a
measure will be the unique one that satisfies both the basic axioms and an
additional axiom, which essentially highlights the special property of the
measure.

A. Marginal Independence and Odds Ratio

We first provide the characterization result regarding marginal indepen-
dence (Edwards 1963) and the odds ratio. A measure satisfies marginal in-
dependence if multiplying any row or any column of any matching matrix
doesnot change the assortativeness order. Intuitively, twomatchingmatrices
differing in the number of (say) educated women will be equally assortative
if educated women match to educated and uneducated men in the same
proportion in both markets. This will happen, for instance, if there is an in-
crease in thenumber of educatedwomen in themarket, and the sortingpat-
terns of the additional educated women are the same as for the initial stock.
Marginal Independence (Edwards 1963). For any M and l > 0,

a b

c d
∼

la lb

c d
∼

a b

lc ld
∼

la b

lc d
∼

a lb

c ld
:

Note that marginal independence is an ordinal property. Nonetheless,
it is a strong condition. It implies scale, side, and type invariance. In ad-
dition, we have the following:
Claim 2. Marginal independence and marginal monotonicity imply

diagonal monotonicity and off-diagonal monotonicity.
In fact, more strongly, the three monotonicity properties are equiva-

lent under marginal independence:
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Claim 3. Suppose that a measure satisfies marginal independence.
It satisfies diagonal monotonicity if and only if it satisfies off-diagonal
monotonicity if and only if it satisfies marginal monotonicity.
Theorem 1. The odds ratio induces the unique preorder that satisfies

marginalmonotonicity,marginal independence, andmaximumhomogamy.
Note that the sole role of maximum homogamy is to specify the max-

imum PAM to be the maximal element of the preorder.
It is interesting to refer to an older statistics literature that discusses

the properties of measures of association in the case of paired attributes
(i.e., in our case, husband’s and wife’s education). The property posed by
Edwards (1963, 110) states that the association should not be “influenced
by the relative sizes of the marginal totals.” That is, the measure should not
change if one starts from a matching M and doubles the mass of couples
in which the man is educated (while keeping unchanged the ratio of edu-
cated versus uneducated wives of educated men).
Edwards (1963) justifies this property by posing that the measure must

be a function of only the proportion of educated women whose husband
is educated and the proportion of uneducated women whose husband
is educated (and conversely), so that any population change that keeps
these proportions constant should not affect the index. This imposes,
in particular, that global changes in the marginal distributions of the
characteristic on which people match—for instance, a global increase in
the mass of educated women—should not systematically impact the index;
only changes in the odds of marrying different types of spouses should
matter. The condition was later generalized by Altham (1970) to the n � n
case.
Among the indexes just reviewed, only the odds ratio and its preorder-

preserving transformations satisfy marginal independence. It is interest-
ing to consider how the other indexes violate this requirement. Consider
matching matrices Ml 5 (la, lb, c, d) withad > bc (PAM) and l ≥ 1. Sup-
pose that l increases. The type v1 likelihood ratio decreases since ∂IL1=∂l <
0, while the type v2 likelihood ratio increases. All other indexes may in-
crease or decrease, depending on parameters.

B. Population Decomposability and Normalized Trace

The next set of characterization axioms will endow the measures with
cardinal interpretations. Namely, the assortativeness of a matching matrix
will be a weighted average or sum of the measures of matching matrices
in the submarkets decomposed from the original market. Depending on
the weights used, different decomposability axioms correspond to differ-
ent measures.
Consider the following axiom in which the weight to average is the

population size of submarkets.
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Population Decomposability. For any positive matching M > 0
and M 0 > 0,

I (M 1 M 0) 5
Mj j

Mj j 1 M 0j j I (M) 1
M 0j j

Mj j 1 M 0j j I (M
0): (3)

Equivalently, for any positive matchings Mn > 0, n 5 1, 2, ... , N,

I o
n

Mn

� �
5 o

n

Mnj j
on Mnj j I (Mn)

� �
: (4)

Equivalent expressions (3) and (4) mean that for any decomposition
of a market, the assortativeness index of the matching in the entire mar-
ket is a weighted average of the same index in its decomposed submar-
kets.12 Practical and relevant examples of the decomposition of marriage
markets include (1) by geographic regions; (2) by metropolitan status,
such as urban and rural marriages; or (3) by race, such as into marriages
between whites, marriages between nonwhites, and interracial marriages
between whites and nonwhites.
As explained above, marginal monotonicity and the invariance axioms

cannot imply diagonal monotonicity or off-diagonal monotonicity. How-
ever, we have the following:
Claim 4. Marginal monotonicity and population decomposability,

together with scale invariance and type invariance, imply diagonal mono-
tonicity and off-diagonal monotonicity.
We show in the theorem below that population decomposability is a

characterization axiom for normalized trace. That is, the normalized trace
is the unique index, up to positive affine transformation, that satisfies pop-
ulation decomposability and the basic invariance and monotonicity axi-
oms. Under population decomposability, claims 1 and 4 combine to imply
the equivalence of the two notions of monotonicity—diagonal and off-
diagonal monotonicity and marginal monotonicity—and so the character-
ization result holds for both notions of monotonicity.

12 Expressions (3) and (4) are equivalent for the following reasons. It is straightforward
that expression (4) implies expression (3), because expression (4) when n 5 2 is expres-
sion (3). Expression (3) implies expression (4) by induction. Below is the step to show that (3)
implies (4) for n 5 3: formatchingM decomposed into three positivematchingsM1,M2,M3,

I (M)5
M1j j

M1j j 1 M2 1 M3j j I (M1) 1
M2 1 M3j j

M1j j 1 M2 1 M3j j I (M2 1 M3)

5
M1j j

M1j j 1 M2j j 1 M3j j I (M1) 1
M2 1 M3j j

M1j j 1 M2j j 1 M3j j
M2j j

M2j j 1 M3j j I (M2) 1
M3j j

M2j j 1 M3j j I (M3)

� �

5
M1j j

M1j j 1 M2j j 1 M3j j I (M1) 1
M2j j

M1j j 1 M2j j 1 M3j j I (M2) 1
M3j j

M1j j 1 M2j j 1 M3j j I (M3):
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Theorem 2. An index satisfies the basic axioms (i.e., of invariance,
monotonicity, and homogamy) and population decomposability if and
only if it is a positive affine transformation of normalized trace.
Equivalently, the normalized trace is the unique index, up to positive

affine transformation, that satisfies the three invariance axioms,marginal
monotonicity, maximum homogamy, and population decomposability. Or
alternatively, it is the unique index, up to positive affine transformation, that
satisfies the three invariance axioms, diagonal monotonicity, off-diagonal
monotonicity, maximum homogamy, and population decomposability.
In addition, because of uniqueness up to a positive affine transforma-

tion, the index satisfying all basic axioms and population decomposabil-
ity is uniquely determined if the range is specified. For example, when
the range is [0, 1], the unique index is the normalized trace. Maximum
homogamy is used to pin down the boundary cases of maximally but not
fully positive assortative matchings, that is, (a, b, c, d) when b 5 0 or c 5 0
(but not both). We restricted the normalized trace of a matching of form
(a, b, 0, d), where abd > 0, to be 1. If we drop maximum homogamy as a
criterion, then the normalized trace without this restriction—namely,
I (a, b, c, d)5 (a 1 d)=(a 1 b 1 c 1 d) for any matching matrix (a, b, c,
d)—also satisfies the other aforementioned properties.

C. Random Decomposability and Aggregate
Likelihood Ratio

The aggregate likelihood ratio is characterized by a decomposability ax-
iom in which the summation weights are the expected mass of pairs of
like types under random matching.
Random Decomposability. For any positive matching matrices M

and M 0,

I (M 1 M 0) 5
r(M)

r(M 1 M 0)
I (M) 1

r(M 0)

r(M 1 M 0)
I (M 0),

where r(M) indicates the expected mass of pairs of like types under ran-
dom matching in market M:

r(M) ;
a 1 b

Mj j
a 1 c

Mj j jM j 1 d 1 b

Mj j
d 1 c

Mj j jM j

5
(a 1 b)(a 1 c)1 (d 1 b)(d 1 c)

a 1 b 1 c 1 d
:

Equivalently, for any positive Mn, n 5 1, 2, ... , N,

I o
n

Mn

� �
5 o

n

r(Mn)

r onMn

� 	 I (Mn)

" #
:
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Theorem 3. An index satisfies the three invariance axioms, marginal
monotonicity, and random decomposability if and only if it is a positive
multiple of aggregate likelihood ratio.
Wemake two comments. First, note that the aggregate likelihood ratio

does not satisfy maximum homogamy, diagonal monotonicity, or off-
diagonal monotonicity, so we do not have a characterization result that
connects those axioms and the aggregate likelihood ratio. Second, note
that the class of measures that satisfy the axioms in theorem 3 must be a
positive multiple—that is, a positive affine transformation without an in-
tercept—of the aggregate likelihood ratio. This is because the weights
r(M)=r(M 1 M 0) and r(M 0)=r(M 1 M 0) do not necessarily add up to
be 1. Nonetheless, this characterization result gives the aggregate likeli-
hood ratio a cardinal interpretation.
To address the observation that the weights do not necessarily add up

to 1, consider an axiom that involves weighted averages that add up to 1
and compares markets with proportional marginal distributions.
Marginal Random Decomposability. For all M > 0 and M 0 > 0

such that M=jM j and M 0=jM 0j have the same marginal distributions,

I (M 1 M 0) 5
r(M)

r(M) 1 r(M 0)
I (M) 1

r(M 0)

r(M) 1 r(M 0)
I (M 0):

Aggregate likelihood ratio satisfies this axiom, but it is not the unique
measure that does so. For example, the normalized trace—and, as a re-
sult, any linear combination of aggregate likelihood ratio and normal-
ized trace—also satisfies this axiom.

V. Structural Interpretation of the Odds Ratio

It is important to note that among the various indexes, the odds ratio has
a known structural interpretation. Specifically, assume that the observed
matching behavior constitutes the stable equilibrium of a frictionless
matching model under transferable utility. Assume, furthermore, that
the surplus generated by a match between woman x belonging to cate-
gory vi and man y belonging to category vj takes the separable form

s x, yð Þ 5 Z vivj 1 avj
x 1 bvi

y , (5)

where Z is a deterministic component depending only on individual edu-
cations and the a’s and b’s are random shocks reflecting unobserved het-
erogeneity among individuals.13 It is now well known (Graham 2011;

13 Transferable utility models satisfying condition (5) are referred to as separable mod-
els in the literature.
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Chiappori 2017) that, keeping constant the distribution of the shocks,
assortativeness is related to the supermodularity of the matrix Z vivj , that is,
in the two-type case, to the sign of the supermodular core Z v1v1 1 Z v2v2 2 Z v1v2 2
Z v2v1 . More importantly, if, following the seminal contribution by Choo and
Siow (2006), one assumes that the random shocks follow type 1 extreme
value distributions—the so-called separable extreme valuemodel—then the
supermodular core equals twice the odds ratio. Hence, the odds ratio rep-
resents the average gain per couple from positive assortative matching
over negative assortative matching.
This structural interpretation is especially useful for disentangling

possible changes in the value of different matches from the mechanical
effect of variations in the marginal distributions of education among in-
dividuals. Here, structural changes can affect only either the matrix Z
or the distributions of random shocks. It is also useful for constructing
counterfactual simulations, since the same structure can be applied to
different distributions of education by genders, using standard tech-
niques to solve for the stable equilibrium of the correspondingmatching
game.14

We make two remarks at this point. First, as clearly pointed out by
Choo and Siow (2006) as well as by the subsequent literature (Chiappori
and Salanié, 2016; Galichon and Salanié 2022), this structural model can
be identified (in the econometric sense) from matching patterns but
only under strong parametric restrictions. For instance, the initial Choo
and Siow (2006) framework, which generates the odds ratio as an estima-
tor of the supermodularity of the surplus, is exactly identified under the
assumption that the random shocks a’s and b’s follow type 1 extreme
value distributions. Indeed, the consensus is that to be identified from
the sole observation ofmatching patterns, any structural model would re-
quire strong parametric assumptions regarding the distribution of ran-
dom preference shocks. It follows that, in general, the ranking (in terms
of assortativeness, i.e., supermodularity of the deterministic surplus) may
vary with the specific assumptions made on the distribution of the sto-
chastic factors.
Several routes can be followed to overcome this limitation. Following

Chiappori, Salanié, andWeiss (2017), onemay consider repeated cross sec-
tions and impose restrictions on how the structural components change
over time. Alternatively, Chiappori, Costa Dias, and Meghir (2018) argue
that direct observation of postmarital behavior provides additional infor-
mation on the surplus (since the latter, under transferable utility, is simply
the sumof individual utilities and canbe estimated from the observation of

14 See Chiappori, Costa Dias, and Meghir (2020) and Chiappori et al. (2020) for
applications.
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the demand functions); this information can be used in particular to relax
parametric assumptionsmade on the stochastic components of themodel.
In a recent contribution, Gualdani and Sinha (2023) also show how partial
(i.e., set) identificationmay obtain using general assumptions on thedistri-
bution of stochastic shocks (e.g., independence of taste shocks from covar-
iates and quantile or symmetry restrictions).
Second and more importantly, while robust examples can be given

where an assortativeness ranking is reversedwhen the assumptions regard-
ing stochastic distributions are changed, one can nevertheless define
conditions under which the ranking will be the same for any separable
transferable utility model irrespective of the stochastic distribution, pro-
vided that the latter satisfy some basic properties (such as independence).
Specifically, Chiappori, Costa Dias, and Meghir (2020) show that if two
PAM M and M 0 are such that

a

a 1 b
≥

a 0

a 0 1 b 0
,

a

a 1 c
≥

a 0

a 0 1 c 0
,

d

b 1 d
≥

d 0

b 0 1 d 0 , and 
d

c 1 d
≥

d 0

c 0 1 d 0 , (6)

then irrespective of the stochastic distributions of a and b (provided that
they are independent from each other and from the observed character-
istics), the deterministic surplus corresponding toM will be more super-
modular than M 0; this is the generalized separable criterion in Chiappori,
Costa Dias, and Meghir (2020). As a result, for any stochastic distributions
of a’s and b’s, while the numerical value of the supermodular cores will
depend on the choice of distributions, the structural model will always
rank M above M 0 in terms of assortativeness.
In other words, one can define a preorder that is totally robust to

changes in distributional assumptions. The price to pay for this genera-
lization, however, is that the preorder is no longer complete: if some in-
equalities in (6) are satisfied while others are violated, the matching ma-
trices simply cannot be compared.

VI. Multiple Types

There are 14 different education categories in the census, for example.
It is worthwhile to consider how to compare the assortativeness of match-
ing matrices of more than two types (if we must compare). Consider match-
ing M 5 (mij)i,j∈f1, ::: ,ng for n ≥ 3.

A. Extensions from Two Types

The aggregate likelihood ratio and normalized trace can be naturally ex-
tended to multitype markets, but the odds ratio does not have a natural
extension. The normalized trace for multitype markets is

(6)
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Itr(M) 5

1 if  mijmji 5 0 8 i and j ≠ i,

0 if  tr(M) ; o
n

i51

mii 5 0,

tr(M)= Mj j otherwise:

8>>><
>>>:

The aggregate likelihood ratio for multitype markets is

IL(M) ;
tr(M)= Mj j

on
i51

on

j51
mij

Mj j

 �

on

j51
mji

Mj j

 � 5

Mj j(on
i51mii)

on
i51(on

j51mij)(on
j51mji)

:

Theorems 2 and 3 can be naturally extended so that normalized trace
and the aggregate likelihood ratio are the unique indexes that satisfy the
sets of axioms (appropriately modified) in those theorems. Hence, nor-
malized trace and the aggregate likelihood ratio can still be used to mea-
sure the assortativeness of multitype markets.
In addition, we can extend the measures to measure assortativeness in

(1) markets with unmarried and (2) one-sided (e.g., homosexual) match-
ing markets. See Zhang (2024) for more detailed theoretical discussions
and empirical analyses of these markets.

B. Robustness to Categorization

Consider three types vi, vj, and vk. When two types vi and vj merge so that
the three categories are partitioned to p 5 ffvi , vjg, fvkgg, the matching
given this categorization becomes

M p 5
mii 1 mij 1 mji 1 mjj mki 1 mkj

mik 1 mjk mkk

 !
:

We say that M1 is more assortative than M2 if and only if M p
1 is more as-

sortative than M p
2 for all partitions p. For example, with normalized

trace, forM andM 0 such that jM j 5 jM 0j and tr(M) 5 tr(M 0),M is more
assortative than M 0 if and only if m12 1 m21 ≥ m120 1 m210 , m13 1 m31 ≥ m130 1
m310 , and m23 1 m32 ≥ m230 1 m320 . Formally, we define robustness to categoriza-
tion as follows.
Robustness to Categorization. Let categorization Π denote the

set of partitions of types to be considered. Let Mp denote the match-
ing under partition p ∈ Π. A preorder ≽ is robust to categorization Π
when for all matrices M1 and M2, M1 ≻2M2 if and only if M p

1 ≻2M p
2 for

any partition p ∈ Π and M1 ≻M2 if and only if M p
1 ≻M p

2 for any partition
p ∈ Π.
Theorem 4. Let Π be a nondegenerate categorization. No total pre-

order satisfies marginal monotonicity and robustness to categorization Π.
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A counterexample suffices for the claim. Although the counterexam-
ple is one of three-type matching matrices, it suffices for the claim to be
valid for matching matrices with more than three types.
Proof of theorem 4. Consider matrices M and Me of three types v1, v2,

and v3:

M 5

1=9 1=9 1=9

1=9 1=9 1=9

1=9 1=9 1=9

 and Me5

1=9 2 e 1=9 1 e 1=9

1=9 1 e 1=9 1=9 2 e

1=9 1=9 2 e 1=9 1 e

5 M 1

2e 1e 0

1e 0 2e

0 2e 1e

:

Under partition p12 5 ffv1, v2g, fv3gg, we group v1 and v2:

M p12 5
4=9 2=9

2=9 1=9

 and M p12

e 5
4=9 1 e 2=9 2 e

2=9 2 e 1=9 1 e
5 M p12 1

1e 2e

2e 1e
:

Under partition p23 5 fv1, fv2, v3gg, we group v2 and v3:

M p23 5
1=9 2=9

2=9 4=9

 and M p23

e 5
1=9 2 e 2=9 1 e

2=9 1 e 4=9 2 e
5 M p23 1

2e 1e

1e 2e
:

By marginal monotonicity,

M p12 ≺M p12

e  and M p23 ≻M p23

e :

Hence, there does not exist a total preorder that satisfiesmarginal mono-
tonicity and robustness to categorization. QED
The impossibility result suggests that wemust resort to partial rankings

to satisfy some notion of monotonicity and robustness to categorization.
Existing partial rankings such as supermodular stochastic order (Meyer
and Strulovici 2012, 2015) and positive quadrant dependence order (An-
derson and Smith 2024) are natural candidates. However, they compare
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onlymatchingmatrices of the samemarginals.Hence, further investigations
to compare matching matrices of differential marginal distributions are
needed.

VII. Educational Homogamy in the United States

Our paper was in part motivated by the conflicting results on how educa-
tional homogamy has changed in the United States. We now consider its
evolution for recent cohorts through the lens of our discussion. Our goal
is to compare and contrast the answers givenby various indexes to the same
basic question: did educational homogamy increase between different co-
horts? Gihleb and Lang (2020) consider this issue, using a variety of in-
dexes (correlation, rank correlation, Goodman and Kruskal’s g, Kendall’s
t adjusted and not adjusted for ties). A difference from our approach is
that they consider changes affecting the entire distribution of education
and many classes, whereas we additionally consider how assortativeness
changed locally at the top of the education distribution using our 2 � 2
framework.
We use the March extract of the Current Population Survey (CPS; Flood

et al. 2024) for 1962–2019. From thosedata, we select the subsample ofmar-
ried couples (including legally married and cohabiting) with at least one
spouse born between 1950 and 1959 (1950s cohort) or between 1970
and1975 (1970s cohort) andobserved at ages 35–44.15 This is an interesting
comparison to make because the educational attainment of women accel-
erated just among cohorts born after the 1950s and overtook that of men,
which also increased but less so (Chiappori, Iyigun, andWeiss 2009; Zhang
2021). Relatedly, the returns to investments in human capital increased
substantially during the 1980s and later (Katz and Murphy 1992). Educa-
tional andmarital choices by the older 1950s generation weremostly made
before that period; in contrast, individuals born in the 1970s, when choos-
ing both their education level and their spouse, were fully aware of the new
context. Consequently, it has been argued that homogamy should have
increased between these two cohorts (e.g., Chiappori 2017; Chiappori,
Salanié, and Weiss 2017), which is what we reconsider here. Specifically,
we define the 1950s cohort as married couples in which at least one part-
ner was born in the 1950–59 period and similarly for the 1970s cohort.
Following Gihleb and Lang (2020), who highlight the sensitivity of em-

pirical changes in assortativeness to separating college graduates and post-
graduates over this period, we consider five education groups: high school
dropouts, high school graduates, some college education but no degree,

15 In the appendix, we present comparisons of the 1970s cohort with other cohorts,
which also show interesting patterns.
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4-year college degree, and postgraduate degree (meaning more than a
bachelor’s degree).
Table 2 shows the marginal distributions of education for men and

women and the resulting matching patterns. Both panels show evidence
of positive sorting, with most of the mass concentrated on the main diag-
onal. They also show how women with college or more education in-
creased dramatically between these two cohorts,making this group larger
than the corresponding one for men, which also increased but not by
nearly as much. These changes in the marginal distributions are at the
heart of the contradictory results of the various measures. The question
is whether sorting became more positive between the two cohorts.
Table 3 presents the results. For each index and each matching (sub)

matrix, we present its change across the two cohorts, with a positive num-
ber indicating an increase in positive sorting. Since we are testing differ-
ences across many indexes and many matching matrices, we adjust our p-
values for multiple testing using the Romano-Wolf step-down approach
(Romano and Wolf 2005). The table presents two sets of p-values: in pa-
rentheses are the most conservative, allowing for all 30 estimates; in

TABLE 2
Marginal Distributions of Education and Marital Sorting Patterns in 1950s

and 1970s Cohorts

Women

Marginal
Distribution:

Men

High
School
Dropout

High
School

Some
College College Postgraduate

A. 1950s Cohort

Men:
High school
dropout 4.7 3.9 1.1 .2 .0 9.9

High school 3.1 20.0 7.1 2.4 .6 33.2
Some college .9 9.1 10.8 3.8 1.0 25.6
College .2 3.9 5.8 7.8 2.0 19.6
Postgraduate .1 1.1 2.4 4.4 3.7 11.6

Marginal distribu-
tion: women 8.9 37.9 27.2 18.6 7.4

B. 1970s Cohort

Men:
High school
dropout 4.5 2.4 1.2 .4 .1 8.6

High school 2.0 13.5 7.8 3.8 1.3 28.4
Some college .6 4.9 11.5 5.9 2.4 25.3
College .2 2.0 4.8 11.6 4.9 23.4
Postgraduate .1 .5 1.8 5.3 6.6 14.3

Marginal distribu-
tion: women 7.3 23.4 27.0 27.0 15.3

Note.—Numbers are cell percentages.
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square brackets are p-values adjusted formultiple testing within each sub-
market only.
Looking first at estimates in column 5 for the whole disaggregated

5 � 5 sorting matrix, both the normalized trace and the aggregate like-
lihood ratio (the two indexes that are designed for such a comparison) im-
ply an overall increase in PAM, highly significant in the case of the likeli-
hood ratio but only marginally so at conventional significance levels for

TABLE 3
Marital Assortativeness: Comparing 1970s and 1950s Cohorts

Submarkets Global Indexes

College and
Postgraduate vs.
Some College

(1)

Postgraduate
vs. College

(2)

College
vs. Some
College
(3)

College and
Postgraduate
vs. Others

(4)

All Five
Education
Levels
(5)

1. Odds ratio 1.173 2.400 .920 .639
(.00) (.04) (.00) (.11)
[.00] [.01] [.00] [.02]

2. L1 ratio (high
education)

2.046 2.074 2.025 2.421
(.00) (.00) (.10) (.00)
[.00] [.00] [.02] [.00]

3. L2 ratio (low
education)

.246 .011 .113 .155
(.00) (.32) (.00) (.00)
[.00] [.21] [.00] [.00]

4. Weighted L
ratio

2.013 2.003 .058 .149 .223
(.17) (.95) (.00) (.00) (.00)
[.09] [.78] [.00] [.00] [.00]

5. Normalized
trace

.041 2.004 .024 2.017 .007
(.00) (.76) (.00) (.00) (.07)
[.00] [.55] [.00] [.00] [.01]

6. x2 .029 2.008 .035 .040
(.00) (.31) (.00) (.00)
[.00] [.20] [.00] [.00]

7. Minimum
distance

.001 2.099 .028 .026
(.88) (.00) (.04) (.00)
[.88] [.00] [.01] [.00]

Source.—March extract of CPS, subsample of legally married and cohabiting individu-
als observed at ages 35–44 and born in 1950–59 and 1970–75.
Note.—The table shows education attainment in five groups: postgraduate degrees

(more than 4 years of college), 4-year college degrees, some college education but no de-
gree, high school qualifications, and no qualifications. Column 1 refers to matching matri-
ces between graduates (graduates and postgraduates taken together) and individuals with
some college education but no degree. Column 2 refers to postgraduates and 4-year col-
lege graduates. Column 3 refers to college graduates and individuals with some college ed-
ucation. Column 4 refers to college graduates and everyone else together. Column 5 refers
to all five education groups separately. For each index, the top row shows estimates of the
difference in the respective index between the latest and the earliest cohort. Numbers in
parentheses show p-values for two-sided significance testing adjusted for multiple hypoth-
esis using the step-down method jointly for all 30 measures in the table (Romano and Wolf
2005; Romano, Shaikh, and Wolf 2008; Romano and Wolf 2016), and numbers in square
brackets show step-down p-values but for each market (column) separately.
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the normalized trace. The change in the normalized trace is also close
to zero, pointing to an increase of 0.7 percentage points in the mass of
homogamous marriages across the two cohorts.16 On the basis of these
two measures, sorting increased or remained the same between these two
cohorts.
Column 4 also displays estimates for the entire population of cou-

ples but aggregating education into two larger groups—college educated
(graduates and postgraduates) and individuals who did not gain college
qualifications—so that the comparison is between two 2 � 2 matrices.
Under this aggregation, the aggregate likelihood ratio still shows a strongly
significant increase in assortativeness, while the normalized trace shows
a strongly significant drop. The latter confirms the conclusion in Gihleb
and Lang (2020) that aggregation matters. Taken together, even mea-
sures satisfying the basic axioms (of invariance, monotonicity, homog-
amy) may point in opposite directions when comparing assortativeness
in two matching matrices. In some instances, the ambiguity can be re-
solved by requiring that measures satisfy some characterization axiom,
such as marginal independence, which leaves the odds ratio as the uniquely
acceptable index. However, the impossibility result in theorem 4 points
to the limitations.
Consider now the likelihood ratios. In all columns 1–4 involving com-

parisons of 2 � 2 matrices, the two type-specific likelihood ratio indexes
differ by whether the basis for its construction is thematching of the high-
education types with each other (L1 in row 2, type v1) or the low-education
types with each other (L2 in row 3, type v2). These conflicting findings
between the two type-specific likelihood ratios are possible because they
do not satisfy the basic axiom of type invariance. The aggregate likeli-
hood ratio is a weighted average of the two, and depending on the rela-
tive mass associated with each, it can sometimes be positive or negative.
Moreover, none of the likelihood ratios satisfies diagonal monotonicity or
the homogamy axioms. This implies that in cases where there is a natural
ranking of assortativeness revealed unambiguously by all other indexes
we examined (such as when one of the markets is fully homogamous or
when two markets differ by the mass in a single cell), it is possible that
the likelihood ratios will show contrary findings. More generally, failure
to satisfy these properties can result in the likelihood ratios frequently
finding changes in assortativeness in the opposite direction of other mea-
sures that do satisfy them.

16 Note that the different indexes vary in scale, so comparing the size of their changes is
not meaningful. Most indexes, including the odds ratio, lack a cardinal interpretation, and
hence comparing how much they change across different markets is also not meaningful.
However, the normalized trace stands out for having a cardinal interpretation, implied by
its population decomposability property, and hence the size of changes in this measure
across markets can be interpreted and compared.
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Submarket comparisons.—Assortativeness can change differently, even
in opposite directions, for different parts of the education distribution,
making the overall indexes difficult to interpret. Local differences in how
much PAM changes across two matching matrices may also contribute to
ambiguity in findings related to whole markets, as different measures
weigh the various margins differently. Given the stark differences in uni-
versity graduation rates across the two cohorts, we now focus on sorting
at the top of the education distribution between college educated and
individuals who attend for some time but drop out of college without a
degree.
Column 1 considers the submarket of individuals with some college

degree (college graduates or postgraduates) matched to individuals with
some college attendance but no 4-year degree. Setting aside the likelihood
ratios, all indexes in column 1 show either a significant increase in sorting
or no (significant) change at all (minimum distance). As we noted above,
the direction of the type-specific likelihood ratios depends onhow it is com-
puted (L1 or L2), while the aggregate likelihood ratio points to a reduction
in assortativeness but is not statistically significant at conventional levels.
To gain further insight, we separate individuals with a college degree by

whether they obtained postgraduate degrees. Columns 2 and 3 show re-
sults for postgraduates versus college graduates (col. 2) and for college
graduates versus individuals with some college but no degree (col. 3).
While the indexes consistently point to a significant increase in assortative-
ness between college graduates and individuals with some college but no
degree (col. 3), assortativeness may actually have decreased among gradu-
ates and postgraduates (col. 2), though estimates are statistically signifi-
cant for only the odds ratio and the minimum distance. The opposing
changes in these two submarkets can help explain the ambiguous results
in the literature, which most refer to as global measures of assortativeness.
Identifying changes in sorting on the basis of a distribution-free structural ap-

proach.—We can apply our generalized separable conditions (6) to exam-
ine whether sorting increased. Table 4 shows estimates of the differences
in the respective ratios. Identifying unambiguous changes in assortati-
veness across two markets requires that all differences in a column have
the same sign: positive for an increase in PAM and negative for a reduc-
tion. As shown in the table, the conditions for increased sorting under
this criterion are not all simultaneously satisfied for any of the markets
considered. This implies that for the markets studied here, one can al-
ways find specific distributions for random preference terms in the sepa-
rable transferable utility model such that the ranking would be reversed,
a conclusion similar to that of Gualdani and Sinha (2023). While impos-
ingmarginal independence is attractive, we note that the odds ratio is not
decomposable, while the normalized trace is (but does not satisfy mar-
ginal independence).
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Discussion.—Setting aside the likelihood ratios, all other indexes point
to an increase in assortativeness at the top of the education distribution,
with the exception of the very top in the submarket involving individuals
with postgraduate degrees matching with individuals with just a 4-year
college degree (bachelor’s degree). The single exception is that of the
normalized trace, which shows a drop in assortativeness when the entire
market is aggregated in two big classes, contradicting its own predictions
when assortativeness at the top is investigated at a more local level.
In other settings, however, there could be more ambiguity than we ob-

serve here, even between indexes that satisfy all the basic axioms. In such
cases, it will be especially important to consider the additional character-
ization properties that could help resolve the ambiguity. When compar-
ing the markets for the two cohorts (1950s and 1970s), large changes in
themarginal distributions standout, especially for women for whomcollege
attainment increased substantially. In cases such as this one, imposing mar-
ginal independence seems especially relevant: changes in assortativeness

TABLE 4
Testing for Assortativeness Based on Structural Model with No Distributional

Assumptions: Comparing 1970s and 1950s Cohorts

Submarkets

Global Index:
College andPostgraduate

vs. Others
(4)

College and
Postgraduate vs.
Some College

(1)

Postgraduate
vs. College

(2)

College vs.
Some College

(3)

1. Δ a
a1b .126 2.097 2.077 .181

(.00) (.00) (.00) (.00)
[.00] [.00] [.00] [.00]

2. Δ a
a1c 2.013 .045 .056 2.018

(.00) (.00) (.00) (.00)
[.00] [.00] [.00] [.00]

3. Δ d
d1b .069 2.078 2.010 .020

(.00) (.00) (.14) (.00)
[.00] [.00] [.14] [.00]

4. Δ d
d1c 2.109 .097 .133 2.105

(.00) (.00) (.00) (.00)
[.00] [.00] [.00] [.00]

Source.—March extract of CPS, subsample of legally married and cohabiting individu-
als observed at ages 35–44 and born in 1950–59 and 1970–75.
Note.—Δ signifies change from the 1950s to the 1970s cohort. Education attainment

separates postgraduate degrees (more than 4 years of college), 4-year college degrees, some
college education but no degree, and all others (high school qualifications and no qualifi-
cations). For each index, the top row shows estimates of the difference in the respective in-
dex between the latest and the earliest cohort. Numbers in parentheses show p-values for
two-sided significance testing adjusted for multiple hypothesis using the step-down method
jointly for all 16 measures in the table (Romano and Wolf 2005; Romano, Shaikh, and Wolf
2008; Romano and Wolf 2016), and numbers in square brackets show step-down p-values
but for each market (column) separately.
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relate to how the additional 1970s college womenmatch with high- versus
low-educatedmen in proportions similar to or different from those for the
college women in the 1950s. Imposing marginal independence means
adopting the odds ratio, which under the separable extreme valuemodel
admits an economic interpretation based on optimal partner choice and
marriage market equilibrium. However, a question that remains open
and in need of further investigation is the characterization of the com-
plete class of structural economic models that satisfy the basic axioms
andmarginal independence. Discovering this, which is beyond the scope
of this paper, will provide the complete link between the axiomatic ap-
proach and one based on optimizing economic behavior and the equilib-
rium in the marriage market.

VIII. Concluding Remarks

It is relatively simple to estimate whether there is positive assortative
matching in a stochastic marriagemarket along the dimensions of a char-
acteristic such as education. However, measuring the extent to which
such assortative matching differs between two economies or between
two points in time for the same economy is challenging when the mar-
ginal distributions of the characteristics also change.
In this paper, we show that different measures may generate different

conclusions regarding the evolution of educational homogamy over
time. We first take an axiomatic approach to better understand the un-
derlying properties of commonly used measures. Namely, we axiomatize
the odds ratio, highlighting themarginal independence property.We dis-
cuss a structural interpretation of the odds ratio. In addition, we also dis-
cuss the difficulties of comparing assortativeness for markets with more
than two types. We then revisit the changes in assortative matching in
theUnited States between the 1950s and the 1970s cohort, betweenwhich
there were large changes in the educational attainment of men and
even more so for women. The odds ratio points to an increase in sorting,
with the exception of the very top of the education distribution that in-
volves postgraduate degrees.

Data Availability

Data for this study are drawn from the IPUMS CPS. The CPS source data
are provided by theUSCensus Bureau and the Bureau of Labor Statistics.
Code used to generate the estimates together with the relevant instruc-
tions can be found in Chiappori et al. (2025) in the Harvard Dataverse,
https://doi.org/10.7910/DVN/WEWKGK. The data for this study need
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to be downloaded from the IPUMS website. Instructions are provided in
the README.pdf file.
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