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Abstract

We develop an endogenous growth model in which artificial intelligence (AI) and the brain generate
innovation. Al refines existing knowledge into a usable base, and the brain then recombines it into new
ideas. AI’s synthesis of information alleviates the brain’s knowledge burdens but may weaken knowledge
spillovers. Consequently, knowledge creation responds nonmonotonically to Al efficiency: at a modest
level of Al efficiency, innovation slows down despite faster Al growth. Faster Al progress raises long-run
growth, but its effects on research productivity and the R&D labor share are ambiguous. Finally, we
characterize the conditions under which Al makes innovation easier.
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1 Introduction

The similarities and differences between artificial intelligence and the brain have been central to pioneer-
ing work in computer science. For example, the seminal frameworks of the Turing Test (Turing, 1950) and the
von Neumann architecture (Von Neumann and Kurzweil, 1958) emphasize the imitation of brain functions
by computers, laying the foundations for modern computing and artificial intelligence (Al); J. C. R. Licklider,
who introduced the concept of man-computer symbiosis, argued that collaboration between computers and
the brain would drive advances in formalized reasoning, scientific decision-making, and complex situation
management (Licklider, 1960; Campbell-Kelly et al., 2023). Recent advances in Al highlight its connection
to the brain and its implications for economic development. When Geoffrey Hinton, the “Godfather of
Al discussed his work on artificial neural networks (ANNS5), he stated, “It’s going to be like the Industrial
Revolution—but instead of our physical capabilities, it’s going to exceed our intellectual capabilities” (BBC
News, 2024). However, existing economic studies have rarely examined the implications of AI’s foundational
philosophy—its relationship with the brain—for innovation and growth. Given the recent rapid advances in
Al we seek to explore the intricate relationships between Al and the brain in the innovation process.

In certain intelligence tasks, Al has already surpassed human capabilities. For example, deep learning
algorithms reduced image-labeling error rates on ImageNet—a dataset developed by Stanford researchers that
comprises over 10 million images—from over 30% in 2010 to less than 5% in 2016, reaching 2.2% by 2017,
significantly outperforming the human error rate of approximately 5% (Brynjolfsson et al., 2018). Further-
more, in tasks involving logical-mathematical intelligence, linguistic intelligence, and natural discriminative
intelligence, employing Al is substantially cheaper than hiring skilled workers (Bao et al., 2024).

However, some scholars contend that Al cannot replicate human-like creativity. Searle (1980) maintains
that intentionality emerges from the causal properties of the brain and cannot be duplicated merely through
the execution of computer programs. Consequently, Searle argues that strong Al relying solely on programs
without intrinsic causal powers, cannot achieve genuine cognition. Felin and Holweg (2024) argue that Al, as
a data-driven predictive tool, is inherently backward-looking and imitative, lacking the theory-driven causal
reasoning and forward-looking capacities intrinsic to human cognition, thus incapable of generating authentic
novelty or original knowledge. Yao et al. (2024) highlight concerns regarding the potential marginalization
of human creativity resulting from generative Al and analyzes the competitive dynamics and equilibrium
between human- and Al-generated content.

To explore the roles of Al and humans in innovation, we divide the innovation process into two sequential
stages, as illustrated in Figure 1. The first stage involves Al collecting, organizing, and refining vast amounts
of existing knowledge to generate the refined knowledge necessary for innovation. This process aligns with the
ancient philosophy that “simplicity is the ultimate sophistication.” Such a task cannot be accomplished by the
brain alone. On the one hand, the brain is decentralized, and each individual is constrained by physiological
limits that hinder their ability to synthesize, analyze, and organize high-dimensional knowledge. In contrast,
Al, supported by parallel processing chip architectures, is capable of handling these tasks efficiently. On the
other hand, even if the brain could process existing knowledge, its efficiency would be significantly lower,

and relying solely on it to manage vast amounts of information is restrictive.
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Figure 1: The roles of Al and brain in the innovation process of production technology

The second stage centers on the creative thinking of the brain as it builds upon refined knowledge. This
creative capacity distinguishes the brain from Al, ultimately delivering the “final blow” to generate new
production technologies. In this stage, two effects emerge within the processing of refined knowledge in
the brain: knowledge spillovers and knowledge burden. When the amount of refined knowledge is small,
its increase provides more ideas for creative thinking, facilitating innovation—this is known as knowledge
spillovers, as discussed in endogenous growth models such as Romer (1990) and Jones (1995). However,
when the amount of refined knowledge is too large, it burdens the creative thinking of the brain, hindering
innovation. This phenomenon, termed knowledge burden, has been rarely noted in the literature on economic
growth, with Jones (2009, 2010) being one of the few to study it.

We develop an endogenous growth model in which Al technology advances at an exogenous rate.
Despite its simplified structure, the model effectively captures key characteristics of Al and the brain in the
innovation process, enhancing our understanding of AI’s economic impact. Under a general form of the
research productivity function, we obtain several notable findings along the balanced-growth path (BGP).
First, there exists a nonmonotonic response of the refined-knowledge stock to faster Al growth, revealing a
distortion in the translation of collective knowledge into innovation. The endogenous deviation of the refined-
knowledge stock from the brain’s optimal performance level implies a waste of social intelligence: valuable
knowledge remains unexploited, or the informational load exceeds the brain’s capacity. This inefficiency
reflects distorted social resource allocation rather than physiological constraints.

Second, faster Al growth raises long-run growth; yet, its effect on the R&D labor share is ambigu-
ous. When refined knowledge is scarce, Al expands the set of knowledge humans can effectively process,
strengthens spillovers, and boosts research productivity, yielding an R&D labor-saving effect. When refined
knowledge is abundant, marginal spillover gains from Al weaken or reverse, so the R&D labor share increases
in equilibrium.

Finally, we propose a criterion—based on relative elasticities—to assess whether innovation becomes
easier as Al advances. We find that Al makes innovation easier in two regions: a strongly spillover-dominant
region, where Al expands the set of knowledge humans can effectively process enough to realize spillovers
despite selective discarding; and a burden-dominant region, where AI’s second-order burden relief outweighs
its first-order spillover loss. However, in the intermediate region (a weakly spillover-dominant region), Al

makes innovation harder because filtering erodes spillovers more than it eases burden, lowering the returns



to creative recombination.

Related Literature. Our paper contributes to the literature on the economics of science and innovation. A
notable phenomenon in this field is the decline in research productivity over the past decades. For example,
Bloom et al. (2020) document substantial declines across sectors such as semiconductors, agriculture, and
medicine. Some scholars attribute this decline to the increasing depth and breadth of scientific knowledge.
Jones (2009) presents stylized facts showing that the expansion of knowledge raises cognitive burdens on
researchers, leading to a shift from individual to team-based innovation, prolonged training periods, and
delayed peak productivity. Subsequent studies corroborate the trend of later-life innovation among leading
inventors and scientists (Jones, 2010), and document rising co-authorship in economics as a response
to increasing specialization and knowledge complexity (Jones, 2021; Chen et al., 2025), as well as the
discouraging effect of the knowledge burden on disruptive and novel innovation (Park et al., 2023; Grashof
and Kopka, 2023)."!

From a theoretical perspective, Jones (2009) develops an idea-based growth model where innovators
incur rising costs to assimilate frontier knowledge, leading to prolonged education, greater specialization,
and greater reliance on teams. For quantitative analysis, Bloom et al. (2020) propose a simple growth
model that decomposes economic growth into two multiplicative factors: research productivity and the
number of researchers. This model implies that sustained technological progress—and thus economic
growth—requires exponentially increasing R&D investment. In contrast, we develop an endogenous growth
model that explicitly incorporates the knowledge burden. Building on Bloom et al. (2020), we further
decompose research productivity into two components: a negative effect from the knowledge burden and a
positive effect from knowledge spillovers. This tractable framework allows us to examine the effect of Al on
innovation and growth through two distinct channels.

Our study advances growth theory from a broader perspective. Since Romer (1990) introduced an
endogenous growth model based on the nonrivalry of knowledge, subsequent developments—whether in
the expanding-variety framework (e.g., Rivera-Batiz and Romer (1991) and Jones (1995)) or the quality-
ladder framework (e.g., Grossman and Helpman (991a), Grossman and Helpman (1991), and Aghion and
Howitt (1992))—have uniformly assumed purely positive knowledge spillovers. Beyond Jones (2009), who
examines the economic implications of knowledge burden within a growth framework, Xie and Yang (2022,
2025) identify frictions in spatial and intertemporal knowledge spillovers—stemming from underdeveloped
information carrier technologies—as constraints on innovation and growth. In contrast, to the best of our
knowledge, our model is the first to incorporate both knowledge burden and Al into the expanding-variety
framework, thus deepening our understanding of the role of Al in long-term growth.

Our work also contributes to the emerging literature on Al and innovation.” Among this literature,

IThere is also evidence to the contrary. Ando et al. (2025) find that, in U.S. manufacturing, R&D has become more effective
at generating productivity-enhancing ideas; they attribute the decline in productivity growth to rising technological rivalry and
obsolescence.

2In recent years, rapid advances in, and the widespread adoption of Al have spurred growing interest in its economic implications,
including employment (Acemoglu and Restrepo, 2018; Acemoglu et al., 2022; Felten et al., 2023; Sun and Zhang, 2025), finance
(Babina et al., 2024; Cao et al., 2024), risk and regulation (Jones, 2024; Acemoglu and Lensman, 2024), productivity (Noy and
Zhang, 2023; Aghion and Bunel, 2024; Brynjolfsson et al., 2025), economic growth (Aghion et al., 2019; Agrawal et al., 2019; Lu,
2021; Trammell and Korinek, 2023; Bao et al., 2024), and international trade (Goldfarb et al., 2019; Sun and Trefler, 2023).



empirical studies have linked Al to innovation. Cockburn et al. (2019) documents a rapid shift in the U.S.
toward learning-oriented research since 2009, coinciding with breakthroughs in deep learning for tasks such
as computer vision;®> Babina et al. (2024) show that Al investment promotes firm growth through product
innovation. A few theoretical studies explore the relationship between Al and innovation (Aghion et al.,
2019; Agrawal et al., 2019, 2023, 2024; Gans, 2025). Aghion et al. (2019) examine the role of Al as
a capital input in idea production, its interaction with research labor, and the resulting implications for
economic growth. Agrawal et al. (2019), building on Weitzman (1998), analyze how Al affects search and
combination processes within complex knowledge spaces during innovation. Agrawal et al. (2023, 2024)
model innovation as a two-stage process—combinatorial prediction and hypothesis testing—and use survival
analysis to assess the effects of Al adoption on innovation success probability, search duration, and expected
profits. Gans (2025) argues that Al reshapes research incentives by introducing complementarity between
scientific novelty and decision-making effectiveness, showing that sufficiently advanced Al tools encourage
more novel rather than incremental research. However, the knowledge-burden-easing mechanism through

which Al fosters innovation remains underexplored in theory. This paper seeks to fill that void.

2 The Model

In this section, we describe the model. For simplicity, we assume that Al technology evolves exogenously
at a constant growth rate. Importantly, we incorporate both the advantages and limitations of the brain in
the innovation process. Throughout the paper, we focus on equilibrium outcomes under the Pareto optimal

allocation.

2.1 Economic Environment

The representative consumer. The economy consists of a constant mass L > 0 of homogeneous con-
sumers who supply labor inelastically. Each consumer has standard constant relative risk aversion (CRRA)
preferences. By choosing the consumption path ¢(¢) for r € (0, o), a representative consumer maximizes

her discounted lifetime utility
* nt=r-1
e P! L dt, (1)
1
0 -y

where p > 0 is the subjective discount rate, y > 0 is the coefficient of relative risk aversion, and c(¢) denotes
per capita consumption.
Final goods producers. The final good market is perfectly competitive. At time ¢, the production function

for the final good is

Y(1) = z(t)(1 = s(0))L, 2

3Cockburn et al. (2019) argue that among the three key Al trajectories—robotics, symbolic systems, and deep learning—only
deep learning, due to its general-purpose nature, is likely to transform the innovation process; symbolic systems have stagnated with
limited future relevance, and robotics, while capable of substituting for labor, is unlikely to fundamentally reshape innovation.



where Y (¢) denotes the total output of the final good in the economy, z () represents the production technology,
and s(¢) € (0, 1) indicates the fraction of labor allocated to R&D for production technology. Thus, 1 —s(7) is
the fraction of labor allocated to final good production. As a result, the final good output per capita, defined
as y(tr) = Y(t)/L, is given by z(#) (1 — s(1)).

Production technology. As adownstream technology, the advancement of production technology depends
on Al technology, R&D labor input, and the existing knowledge base. At time ¢, the stock of production
knowledge, N, (¢), depends on the level of production technology, z(¢), as follows:

N,(t) = dz(1)", 3)

where d > 0 captures the strength, and v € (0, 1] governs the scale effect in converting production technology
into knowledge stock.

The brain typically filters knowledge to enable thought. Licklider (1960) argues that approximately 85%
of his “thinking” time is spent on clerical or mechanical tasks that prepare for actual thinking, decision-
making, or learning, including searching, calculating, plotting, transforming, determining the logical or
dynamic consequences of a set of assumptions or hypotheses, and preparing the way for a decision or
an insight. The renowned communication theorist Marshall McLuhan distinguishes hot from cool media,
defining hot media as high definition (the state of being well filled with data), thereby limiting audience
participation (McLuhan, 1994). He argues that high-definition experiences must be forgotten, censored, and
cooled before they can be assimilated. The censorship is crucial for learning; without it, unfiltered exposure
to shocks would result in mental collapse. Motivated by these insights, we formalize innovation as a two-stage
process. The first stage involves Al technology A(f) processing the stock of production knowledge N, (t) to
generate refined knowledge x(¢). This process is represented as

N (1)
A(t)’

where the function A(-, -) satisfies dh(N,, A)/ON, > Oand 0h(N,, A)/0A < 0. To make the model tractable,
we define this function as #(N,, A) = N, /A throughout the paper.

x(1) = h (N (1), A1) =

“

The second stage involves R&D labor expanding the frontier of innovative possibilities in production
technology. This process is expressed as:
z(1)
— = fG&@) X s(L &)
Z(t) ——— ——
research productivity — number of researchers
where the function f(-) captures the contribution of each brain to technological innovation. Here, f(x) and

s L correspond respectively to research productivity and the number of researchers, similar to the formulation



in Bloom et al. (2020). We specify the function f(-) as follows:

x(t)

F(x(1) :Foexp(—b[ln—]2+ an ™2 ) ©6)
X0 X0
N———— [

knowledge burden  knowledge spillovers

where Fp > 0 is a scale constant, a > 0 parameterizes knowledge spillovers, b > 0 captures the knowledge
burden, and xo > 0 is a reference level used to normalize x(¢). We can readily observe the following
properties of the function f(-):

for x < X,

(9f_(x)>0 <0Oforx > X%,
Ox

: : af(x)
A S0 =0 I Jw =0 Tox
where £ = xoexp(s3) is the threshold at which the monotonicity of the function changes and can be
interpreted as the stock of refined knowledge at which the brain operates at optimal performance. Thus, f(x)
is inverted-U in x, shaped by knowledge spillovers (positive) and knowledge burden (negative).

Al technology. Al technology is upstream in the innovation process, as shown in Figure 1. As noted
above, Al technology progresses exogenously at a constant rate m > 0. Thus, at time ¢, the level of Al

technology is:
A(t) = A(0) exp(mt), (7

where A(0) > 0 is the initial level of Al technology. This setup is sufficient to explore the core mechanisms
by which Al technology and the brain influence innovation and growth.

Resource constraint. The two resources involved are labor and the final good. The labor constraint has
been implicitly accounted for by allocating 1 — s(¢) of labor to the final good production. Thus, the only

remaining resource constraint is the final good constraint:
c(t)L =Y (¢). ®)

2.2 Pareto Optimal Problem

The dynamic optimization problem of a social planner is:

© et -1
{cl,lsli’fz}/o A )
subject to
c(t) = z(1)(1 - 5(2)), (10)
_dz(1)”
x(1) = A0 )
(1) = z()s()Lf (x(1)), (12)



Here, the combination of equations (2) and (8) leads to equation (10), equation (11) follows from equations
(3) and (11), and equation (12) is the equivalent transformation of equation (5). Thus, the current-value

Hamiltonian of this maximization problem can be expressed as

[z() (1 —s(1)]'" -1

H(s,z,A) = T

+A()z(1)s() L f (x(2)), 13)

where x(¢) = df‘((ttiv , A(r) grows exogenously as in equation (7), and A(¢) is the current-value costate variable.

We explicitly incorporate f(x(¢)) as defined in equation (6) below.

3 Equilibrium Analysis

In the model, the balanced growth path (BGP) equilibrium is defined as one in which the growth rates
of per capita consumption, production technology, and per capita output of the final good converge to the
same constant value, the labor allocation between final good production and R&D for production technology
approaches constant ratios, and the stock of refined knowledge tends to a constant value. Throughout the

paper, gx denotes the growth rate of any variable k, and k* denotes the equilibrium value of any variable k.

We also define &(x*) := A ,f(zcx) )x - as the elasticity of research productivity with respect to refined knowledge.
To ensure the existence of the BGP equilibrium and the tractability of the model, we impose the following
assumptions on the model parameters. Throughout the subsequent analysis, the following assumptions are

always maintained.

_ p+(7—1)m/V)‘

Assumption 1. f(xin) > 27 where Xuin = X0 exp(5; B

Assumption 2. pv > m and min{a,2V2Vb} > % + %

Next, we analyze the BGP equilibrium results, as outlined in the following propositions. All proofs are
provided in the Appendix.

Proposition 1. There exists a unique BGP equilibrium such that g;. = g7 = g\, = %+ and s* = where

x* solves % = %[Lf(x*) +me(x*) — p].

m
L)

Proposition 1 demonstrates that the model admits a unique BGP equilibrium. Specifically, the BGP
growth rates of per capita consumption, production technology, and per capita output are identical at = m/v,
determined by the Al technology progress rate m and the parameter v (which captures the scale effect of
converting production technology into knowledge). Faster Al progress supports faster growth in productive
knowledge, consistent with the BGP equilibrium in which the refined knowledge stock remains constant. In
the absence of sufficiently rapid Al advances, the accumulation of productive knowledge cannot be effectively
converted into the creative-thinking stage and hence into technological progress. Moreover, a straightforward
observation is that, in BGP equilibrium, Al progress not only determines economic growth but also governs
labor allocation and the accumulation of refined knowledge. Here, although the form of f(x*) is unspecified
thus far, important insights follow from the equilibrium equality m/v = [Lf (x*) + me(x*) — p] /7y for solving

*

X .



a— 7/v

Proposition 2. When x* < xo exp(—5—), the equilibrium stock of refined knowledge, x*, is increasing in

the Al growth rate m. When x* > xg exp( ) x* is decreasing in m.

Proposition 2 characterizes how the equilibrium stock of refined knowledge, x*, responds to changes
in the Al growth rate, m. When x* is sufficiently low, accelerated progress in Al technology increases the
equilibrium stock of refined knowledge in the second stage of the innovation process—the creative thinking
stage—and thus enhances research productivity (since x* lies in the region where knowledge spillovers
dominate, i.e., x* < £). In contrast, when x* is sufficiently high, faster Al progress reduces the equilibrium

stock of refined knowledge. In particular, when xo exp(“5%~ /

) < x* < %, additional refined knowledge
remains physiologically productive, but Al-accelerated refinement selectively filters and discards information,
weakening knowledge spillovers and underutilizing the brain’s capacity for creative recombination. Once
marginal spillovers decline sufficiently, the social planner optimally reduces the stock of refined knowledge
even before cognitive performance reaches its physiological peak. Overall, the nonmonotonic response
of the equilibrium refined-knowledge stock to faster Al growth reflects a distortion in the translation of
collective knowledge into innovation. The endogenous wedge from the optimal level of brain performance
X—which faster Al growth need not eliminate—implies a waste of social intelligence: potentially useful
knowledge remains unexploited, or the knowledge burden outpaces the brain’s capacity. This waste stems

from a distortion in social resource allocation rather than physiological limits.

Proposition 3. The proportion of labor allocated to the R&D sector decreases with the growth rate of Al

technology if x* < xo exp(55; — —) and increases if x* > xo exp(5; — % .

Proposition 3 has two implications. First, when the equilibrium stock of refined knowledge required for
the brain’s creative thinking is sufficiently low (i.e., Xxmin < x* < xgexp(5; — ’”)), faster Al growth expands
the amount of knowledge that humans can process during innovation. This increases the equilibrium refined-

knowledge stock and strengthens knowledge spillovers, thereby significantly raising research productivity
V/V))

and generating R&D labor-saving effects (note that Assumption 2 implies xo exp( 53 — —) < xpexp(<
Second, when the marginal knowledge spillovers induced by faster Al growth are weak for xo exp (55 — —) <

x* < xoexp(“5; /v a"/v

), decline for xo exp(—7—) < x* < £, or when faster Al growth primarily alleviates the
knowledge burden for £ < x* < xpax, the somal planner allocates a higher fraction of labor to R&D to offset
lower research productivity or insufficient marginal gains in research productivity.

In summary, the growth effect of Al technology is always positive because its knowledge-burden-
alleviating effect is of higher order than its adverse effect on knowledge spillovers. However, the effects of
faster Al growth on research productivity (i.e., the performance of the brain’s creative thinking) and on the
fraction of labor allocated to R&D are ambiguous, since Al technology may induce selective knowledge

discarding (thereby weakening knowledge spillovers) or instead alleviate the knowledge burden.

3.1 Is Innovation Getting Easier?

As Al technology advances, does innovation become easier? To evaluate it, we propose a criterion based

on relative elasticities:
c'?g /g* _0s™/s”

E = E¢* =
M= dmim ~ ™ T dmm’

(14)



where &g+ ,, represents the elasticity of g* with respect to m, and &+ ,,, represents the elasticity of s* with
respect to m. The relation g* = f(x*) x s*L implies that g4+ ,,, — &4+, corresponds to the elasticity of
research productivity with respect to m. The criterion that Al technology makes innovation easier can also
be equivalently interpreted as the elasticity of research productivity f(x*) with respect to m being positive.

Thus, we obtain the following proposition.
Proposition 4. Al technology makes innovation easier (i.e., €g+ y > Es+ ) if x* < xg exp( a_z}i/ Y orx* > %

holds; Al technology makes innovation harder (i.e., £g« 1 < Es+.m) if Xo exp(a_z—%/y) <x* <3

Proposition 4 characterizes the conditions under which Al technology makes innovation easier. Whether
Al facilitates innovation depends on both (i) the relative importance of the knowledge burden versus knowl-
edge spillovers for research productivity and (ii) how the equilibrium stock of refined knowledge responds

to faster Al growth. We identify two cases in which Al makes innovation easier. First, when knowledge

spillovers substantially dominate the knowledge burden (i.e., xpin < X* < xg exp( “_ZZ/ YY), faster Al growth
enables humans to process more knowledge, thereby allowing these spillovers to be realized despite selective
knowledge discarding. Second, when the knowledge burden dominates spillovers (i.e., £ < x* < xmax), faster
Al growth reduces the knowledge burden through a second-order channel; this higher-order relief dominates
the first-order spillover loss.

In contrast, when x( exp( “_22/ ") < x* < xgexp(4), the knowledge-burden relief from faster A growth

is insufficient to offset the substantial weakening of knowledge spillovers; thus, faster Al progress makes
innovation harder. The intuition is that AI diminishes knowledge spillovers significantly—due to the selective
discarding of knowledge—relative to its effect in easing the knowledge burden during the innovation process.
To understand how such a scenario may occur, consider the idea of cross-industry innovation, where solutions
developed in one industry have historically been found to be useful in other industries. For example, groove
patterns initially designed for space shuttle runways were later utilized for highways to improve traction
and reduce hydroplaning and accidents. While humans may exchange information and share “wasteful”
knowledge in the R&D process, Al tools may discard information they deem obsolete, as Al tools in
corporate R&D are often highly specialized or proprietary. In turn, as Al technology progresses and Al
usage increases, serendipitous cross-industry innovation will be harder if knowledge and insights from other

fields are overlooked or discarded during the innovation process.

3.2 Further Discussion

Figure 2 summarizes the scenarios described in Propositions 3 and 4.* A key insight is that whether Al
progress makes innovation harder or easier need not induce a monotonic change in the R&D labor share.
When the equilibrium stock of refined knowledge is very low, faster Al growth raises this stock and facilitates
innovation; yet because the increase in research productivity exceeds the increase in the Al growth rate, the
marginal value of R&D labor can be lower than that of labor in the production of final goods, reducing

the R&D labor share. Outside this region, once the equilibrium stock of refined knowledge is sufficiently

4The equilibrium in Figure 2 is characterized by b < 1 (% + 7—;1) £ Ifinstead b > } (% + 7—;1) £, which implies X < Xmin,
then ds*/dm < 0 always holds. We, therefore, focus on the former case.

10



Xmin X x X
Al technology makes Al technology makes Al technology makes
innovation easier innovation harder e e INNOVation casier
(i.e, €g*m > &5 m) : (i-e, €g*m < &s*m) (i-e, £grm > €5*m)
R&D labor share declines R&D labor share rises
with the Al growth rate with the Al growth rate
(i.e, ds™/dm<0) : (i.e, ds*/dm>0)
Xmin x xh

Figure 2: Effects of Al Technological Progress on R&D Performance over Different Ranges of x*

Notes: For convenience, we provide new definitions: X = xo exp (57 — %) and X = xg exp (

v/
az’)l;V)

high, allocating a higher fraction of labor to R&D becomes more profitable regardless of whether Al makes

innovation harder or easier.

4 Conclusion

In this paper, we incorporate the mechanism through which Al alleviates the knowledge burden—thus
fostering innovation and growth—into an endogenous growth framework. We decompose research produc-
tivity, as characterized in Bloom et al. (2020), into two components: (positive) knowledge spillovers and
(negative) knowledge burdens. This approach enriches the micro mechanism of technological innovation in
the Al era. In our model, the innovation process consists of two sequential stages: Al-driven refinement of
existing knowledge and human creative thinking. This structure enables a theoretical assessment of whether
innovation becomes easier. Our analysis delivers three takeaways. First, faster Al growth raises the growth
rate of per capita consumption (analogous to production technology) and increases the fraction of labor
allocated to R&D. Second, the equilibrium stock of refined knowledge may fall short of the level required
for optimal brain performance, leading to a waste of social intelligence. This arises because, while faster
Al growth mitigates the brain’s knowledge burden, it also diminishes knowledge spillovers by selectively
discarding information. Third, Al makes innovation easier (or harder) when the relative degree of knowledge
spillovers to knowledge burden is sufficiently high (or low). Future research may examine decentralized
economies to assess the impact of Al on market failures and the design of optimal government policies. Al
may also facilitate the second-stage creative thinking proposed in this paper, and its micro mechanisms merit

further analysis.
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Appendix: Proofs

We introduce some notation that will simplify the analysis in the following proofs. Let u(z) := In %z)

W(u(t)) = au(t) — b[u(t)]? and F (u(t)) := Fyexp[¥(u(t))]. Thatis, we can rewrite f(x(z)) as F (u(t)).
Note that the mapping between x* and u™ is bijective and strictly increasing. Assumption 1 can also be

restated as
s m _ p+(y—1)m/v
Assumption 1. F (umin) 2 57 where umin = 35 — =55 -——.

Finally, we can rewrite the elasticity of research productivity with respect to refined knowledge as
E(u(r)) :==a—2bu(r).
A Proof of Proposition 1

Proof. The social planner’s maximization problem, characterized by the current-value Hamiltonian in equa-

tion (13), implies that the time paths of s(¢), z(¢), and A(z) must satisfy the following first-order necessary

conditions:
H(s,z2,4) = —z(O) [z2() (1 = s()]™7 + A z()Lf (x(2)) = 0, (01)
H(s,2,4) = (1 = s(0) [2(1) (1 = s())]77 + AD)s()L[f (x(1)) + vf (x(1)x(1)] = pA(t) = A(1), (02)
2(1) = Ha(s,z,4) = z(t)s(H) L f (x(2)). (03)

The transversality condition is lim; . [exp(—pt)A(¢)z(?)] = 0.
To prepare for the equilibrium analysis, we rearrange the above conditions as follows. First, when

expressed in growth rates, equation (O1) yields

—$() | _ J(x(1)
-y [gz(t)+ l—s(t)] —ga(t)+f(x(t)). (04
Equation (O1) also implies
[z()(1 =)™ _
o = LG (05)
Second, incorporating equation (O5) into equation (O2) gives
Lf(x(0) +vs@Lf" (x()x(t) = p = ga(1). (06)
Third, equation (O3) directly implies
8z(1) = s()Lf (x(1)). (07

Next, we determine the BGP equilibrium. Recall the definition of the BGP equilibrium. As ¢t — oo, x(7)

converges to a constant value x*. Therefore, equation (11) implies g; = ~. In the BGP equilibrium, the

01



fraction of labor allocated to R&D tend to a constant value s*, which, by condition (10), implies g;. = g;.
Since y(7) = z(1)(1 — s(2)), it follows that g}, = g7. Taking into account equation (O4) in BGP equilibrium,
we obtain: gz = g7 =gy = andg) = —g. It follows immediately that g* = g; = g7 = gj, increases in
m. Thus, condition (O7) yields the fraction of labor allocated to the R&D sector in the BGP equilibrium as

*

s* = % Moreover, substituting the full expressions for s* and g into equation (O6) yields
m 1 . .
7=;[Lf(X)+m8(X)—p]- (08)

Thus, once x* is obtained from this equation, all equilibrium outcomes are determined. It remains to prove
that equation (O8) admits at least one solution for x*.

We further define x! := min{x | f(x) = 75} and xmax = max{x | f(x) = {5}. To ensure that s~
lies within (0, 1), it must hold that f(x*) > -, or equivalently, L¥ («*) > m/v. This condition implies
xb < x* < Xmax, OF equivalently, ul < u* < u” where u! = u(x') and u” = u(xmax). The existence of x* is
equivalent to that of u#*, as the mapping between them is bijective and strictly increasing. Equation (O8) can

be rewritten as
LF (u*) = —m&EW™) + ym/v + p. (09)

Consider that in the equation, the left-hand side H (¢*) := L (u*) is inverted-U in u*, whereas the right-hand
side h(u*) := —m&E(u*) + ym/v + p is linear and strictly increasing in u*. It follows that the intersection of
h(u*) with m/v occurs at upin (Assumption 2 ensures that upmiy > 0). By Assumption 1”, F (umin) > 75 -
Thus, the intersection of H(u*) and h(u*) lies above m /v on the vertical axis and within (u#min, #") on the
horizontal axis. Hence, there exists a unique u* satisfying equation (O9), and consequently, a unique x*

satisfying equation (O8). O

B Proof of Proposition 2

Proof. As established in the proof of Proposition 1, equation (09) holds in equilibrium. We have that

2 _ m_1_
B \/a 4bin (2 )
n=——-—""—<u" <u'=—+
fmin=0p T T 2p S T 2b
Let ¢ := LF (u") + mEu*) — ym/v — p = 0. By the implicit function theorem, we have Z—j’; = —g—i/%

where the partial derivatives are

0 0
99 _ (a—2bu™) —y/v and ¢ _ LFyexp(au® — bu*?)(a - 2bu*) — 2bm.
om ou*

02



Thus, we obtain

B b a3
dm — LFyexp(au* — bu?)(a — 2bu*) — 2bm’

Using the equilibrium condition from (O9), the derivative becomes

* a-y/v
du* 2b (” T T )

= . (010)
dm  —4b2mu*? + 2b(2am — ym/v — p)u* + [m(ay/v — a® — 2b) + ap]

Next, we examine the sign of flim. First, it is evident that if u* > a_z—%/v, the numerator is positive;

otherwise, it is negative. Second, the denominator remains strictly negative because 2V2Vb > % + % in
Assumption 2. Thus, we can conclude that: if aylv oo < u”, there is - 0; if upn < u* < azyly

2b dm 2b
there is ‘flim > (0. Moreover, since u* = ln(j‘(—o), it follows that
du” 1 dx*
= — , O11
dm x* dm ©1h
——
>0
which implies sign{%} = sign{%}, establishing the result. O

C Proof of Proposition 3

Proof. Based on the expression of s* in BGP equilibrium, we obtain

ds* 1 f(x*) dx*
dm  Lvf(x*) " f(x*) dm < stom <
e  —— e
>0 :SS*’m
We have
du*

Esom =1 —mEu”) o

m8(u*)(% — (a —2bu™))
 LFyexplau* — bu*?](a — 2bu*) — 2bm
m&(u*) (3 - Eu*))

B LF (u*)E(u*) + m&’ (u*)

EW)(LF (u*) + mE(u*) — %) +m&’ (u*)
- LF (u*)Ew*) + m&' (u*)
_ p&W) +m&' (u*)
© LF (uh)E(u*) + m&E’ (u*)

03



where the first line follows from the proof of Proposition 4 and the last equality comes from (O9). Therefore,

ds* p&EW) + m&E’ (u*)
an <0 = Tramew +me ) -

We know the denominator is negative (recall the proof of Proposition 2), so zll—‘m <0 = u' <5~ O

m,
D Proof of Proposition 4

Proof. Recall the equilibrium results: g* = = and 5™ = % The definitions of elasticities imply:

fr(x*) dx* Lodu®
_mf(x*) - 1 -m&E(u )dm'

Egrm = land &g, =
where the last equality follows from (O11). We have

AE = gg: y — Eg*

Ldu®
=m&E(u )dm

m(a — 2bu*)(% — (a —2bu™))
~ LFyexplau* — bu*?](a — 2bu*) — 2bm

where the last equality uses (O10). Therefore,

d *

sign{AE} = sign{&(u*)} x sign{ - }
dm

a-y/v

which gives us AE > 0 if u* < =3—= or u™ > ii. Otherwise, AE < 0. O
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