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Abstract

Artificial intelligence (AI) synthesizes existing knowledge into refined knowledge, which the human brain
then recombines to generate new ideas. By lowering the cognitive burden of information processing, AI
can accelerate discovery, but it may also reduce knowledge spillovers by filtering out valuable information.
We show that research productivity varies nonmonotonically with AI efficiency: AI boosts innovation
when knowledge is very scarce or very abundant yet may create a mid-knowledge-level AI trap where
faster AI progress slows down innovation and lowers productivity. In our endogenous growth model,
faster AI raises long-run growth, but its effect on R&D labor share is ambiguous.
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1 Introduction

The similarities and differences between artificial intelligence and the human brain have been central
to pioneering work in computer science (Turing, 1950; Von Neumann and Kurzweil, 1958).1 Recent
advances in AI highlight its connection to the brain and its implications for economic development. Geoffrey
Hinton, the “Godfather of AI,” stated, “[AI]’s going to be like the Industrial Revolution—but instead of our
physical capabilities, it’s going to exceed our intellectual capabilities” (BBC News, 2024). However, existing
economic studies have rarely examined the implications of AI’s foundational philosophy—its relationship
with the brain—for innovation and growth.

Given the recent rapid advances in AI, we seek to explore the intricate relationships between AI and the
brain in the innovation process. In many intelligence tasks, AI has already surpassed human capabilities.2

However, some scholars contend that AI alone cannot replicate human-like creativity.3 That is, although
AI excels at acquiring and processing existing knowledge, it lacks the capacity for fundamentally novel
idea generation. In contrast, the human brain is indispensable for creating new knowledge, despite it being
comparatively less efficient at processing large volumes of information.
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Figure 1: AI and the Brain in the Innovation Process

In this paper, we develop an endogenous growth model to capture the key roles of AI and the brain
in innovation. Figure 1 illustrates our proposed two-stage innovation process. The first stage involves AI

1For example, the seminal frameworks of the Turing Test (Turing, 1950) and the von Neumann architecture (Von Neumann
and Kurzweil, 1958) emphasize the imitation of brain functions by computers, laying the foundations for modern computing and
artificial intelligence (AI). J. C. R. Licklider, who introduced the concept of man-computer symbiosis, argued that collaboration
between computers and the brain would drive advances in formalized reasoning, scientific decision-making, and complex situation
management (Licklider, 1960; Campbell-Kelly et al., 2023).

2For example, deep learning algorithms reduced image-labeling error rates on ImageNet—a dataset developed by Stanford
researchers that comprises over 10 million images—from over 30% in 2010 to less than 5% in 2016, reaching 2.2% by 2017 and
significantly outperforming the human error rate of approximately 5% (Brynjolfsson et al., 2018). Furthermore, in tasks involving
logical and mathematical intelligence, linguistic intelligence, and natural discriminative intelligence, employing AI is substantially
cheaper than hiring skilled workers (Bao et al., 2024).

3Searle (1980) maintains that intentionality emerges from the causal properties of the brain and cannot be duplicated merely
through the execution of computer programs. Consequently, Searle argues that strong AI, relying solely on programs without
intrinsic causal powers, cannot achieve genuine cognition. Felin and Holweg (2024) argue that AI, as a data-driven predictive tool,
is inherently backward-looking and imitative, lacking the theory-driven causal reasoning and forward-looking capacities intrinsic
to human cognition, thus incapable of generating authentic novelty or original knowledge. Yao et al. (2024) highlight concerns
regarding the potential marginalization of human creativity resulting from generative AI and analyze the competitive dynamics and
equilibrium between human-generated and AI-generated content.
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collecting, organizing, and refining vast amounts of existing knowledge to generate the refined knowledge
necessary for innovation. Such a task cannot be accomplished by the brain alone. Each individual brain
is constrained by physiological limits that hinder its ability to synthesize, analyze, and organize high-
dimensional knowledge. In contrast, AI, supported by parallel processing chip architectures, is capable of
handling these tasks efficiently. Even if the brain could process existing knowledge, its efficiency would be
significantly lower, and relying solely on it to manage vast amounts of information is restrictive.

The second stage centers on the creative thinking of the brain as it builds upon refined knowledge. This
creative capacity distinguishes the brain from AI, ultimately delivering the “final blow” to generate new
production technologies. In this stage, two effects emerge within the processing of refined knowledge in
the brain: knowledge spillover and knowledge burden. When the amount of refined knowledge is small,
its increase provides more ideas for creative thinking, facilitating innovation—this is known as knowledge
spillover, as discussed in endogenous growth models such as Romer (1990) and Jones (1995). However,
when the amount of refined knowledge is too large, it hinders the brain’s creative thinking and, consequently,
innovation. This phenomenon, termed knowledge burden, has been rarely noted in the literature on economic
growth, with Jones (2009, 2010) among the few studies that examine it.

Al-neutrality
point

natural peak of
brain performance

spillovers dominate burdens dominate

AI trap

equilibrium refined knowledge

eq
ui

lib
riu

m
re

se
ar

ch
pr

od
uc

tiv
ity

Figure 2: Effects of Faster AI Progress on Refined Knowledge and Research Productivity

Along the balanced growth path (BGP), we establish three results. First, as shown in Figure 2, refined
knowledge and research productivity are nonmonotonic in AI progress. There is an optimal amount of
refined knowledge for the brain to reach peak research productivity, at which level the knowledge spillovers
and knowledge burdens effects balance. Starting from a relatively low level of refined knowledge, the
faster growth of AI will increase refined knowledge but will plateau before reaching the refined knowledge
needed for peak brain performance. Even the maximum speed of AI progress leads to a strictly lower
amount of equilibrium refined knowledge, which we call the AI-neutrality point. This implies a waste of
social intelligence: valuable knowledge remains unexploited, or the informational load exceeds the brain’s
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capacity. This inefficiency reflects distorted social resource allocation rather than physiological constraints.
In the region of intermediate levels of equilibrium refined knowledge, this distortion generates an AI trap in
which faster AI progress leads to a decline in research productivity.

Second, we propose an elasticity-based criterion to assess whether innovation becomes easier as the AI
growth rate increases. We find that faster AI growth makes innovation easier in two regions: a strongly
spillover-dominant region, where AI expands the set of knowledge that humans can effectively process
enough to sustain spillovers despite selective discarding; and a burden-dominant region, where second-order
burden relief outweighs first-order spillover loss. In the weakly spillover-dominant region—the AI trap
region—faster AI growth makes innovation harder because filtering erodes spillovers more than it eases
burdens, reducing the returns to the brain’s creative thinking.

Finally, faster AI growth raises long-run growth, but its effect on the R&D labor share is ambiguous.
When refined knowledge is scarce, faster AI growth expands the set of knowledge that humans can effectively
process, strengthens spillovers, and raises research productivity, generating an R&D labor-saving effect.
When refined knowledge is abundant, the marginal spillover gains from faster AI progress weaken or turn
negative, so the R&D labor share increases.

The rest of the paper is organized as follows. The remainder of this section reviews the related literature.
Section 2 presents the model, solves the Pareto-optimal problem, and establishes the existence of equilibrium.
Section 3 discusses our three main results on the effects of faster AI progress on research productivity, the
ease of innovation, and the R&D labor share. Section 4 concludes.

Related Literature. Our paper contributes to the literature on the economics of science and innovation. A
notable phenomenon in this field is the decline in research productivity over the past decades. For example,
Bloom et al. (2020) document substantial declines across sectors such as semiconductors, agriculture, and
medicine. Some scholars attribute this decline to the increasing depth and breadth of scientific knowledge.
Jones (2009) presents stylized facts showing that the expansion of knowledge raises cognitive burdens on
researchers, leading to a shift from individual to team-based innovation, prolonged training periods, and
delayed peak productivity. Subsequent studies corroborate the trend of later-life innovation among leading
inventors and scientists (Jones, 2010), and document rising co-authorship in economics as a response
to increasing specialization and knowledge complexity (Jones, 2021; Chen et al., 2025), as well as the
discouraging effect of the knowledge burden on disruptive and novel innovation (Park et al., 2023; Grashof
and Kopka, 2023).4

From a theoretical perspective, Jones (2009) develops an idea-based growth model in which innovators
incur rising costs to assimilate frontier knowledge, leading to prolonged education, greater specialization,
and greater reliance on teams. For quantitative analysis, Bloom et al. (2020) propose a simple growth
model that decomposes economic growth into two multiplicative factors: research productivity and the
number of researchers. This model implies that sustained technological progress—and thus economic
growth—requires exponentially increasing R&D investment. In contrast, we develop an endogenous growth
model that explicitly incorporates the knowledge burden. Building on Bloom et al. (2020), we further

4There is also evidence to the contrary. Ando et al. (2025) find that, in U.S. manufacturing, R&D has become more effective
at generating productivity-enhancing ideas; they attribute the decline in productivity growth to rising technological rivalry and
obsolescence.
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decompose research productivity into two components: a negative effect from the knowledge burden and a
positive effect from knowledge spillovers. This tractable framework allows us to examine the effect of AI on
innovation and growth through two distinct channels.

Our study advances growth theory from a broader perspective. Since Romer (1990) introduced an en-
dogenous growth model based on the nonrivalry of knowledge, subsequent developments—whether in the
expanding-variety framework (e.g., Rivera-Batiz and Romer (1991) and Jones (1995)) or the quality-ladder
framework (e.g., Grossman and Helpman (1991a,b) and Aghion and Howitt (1992))—have uniformly as-
sumed purely positive knowledge spillovers. Beyond Jones (2009), who examines the economic implications
of knowledge burden within a growth framework, Xie and Yang (2022, 2025) identify frictions in spatial and
intertemporal knowledge spillovers—stemming from underdeveloped information carrier technologies—as
constraints on innovation and growth. In contrast, to the best of our knowledge, our model is the first to
incorporate both knowledge burden and AI into the expanding-variety framework, thereby deepening our
understanding of the role of AI in long-term growth.

Our work also contributes to the emerging literature on AI and innovation.5 Among this literature,
empirical studies have linked AI to innovation. Cockburn et al. (2019) documents a rapid shift in the U.S.
toward learning-oriented research since 2009, coinciding with breakthroughs in deep learning for tasks
such as computer vision.6 Babina et al. (2024) show that AI investment promotes firm growth through
product innovation. A few theoretical studies explore the relationship between AI and innovation (Aghion
et al., 2019; Agrawal et al., 2019, 2023, 2024; Gans, 2025). Aghion et al. (2019) examine the role of AI
as a capital input in idea production, its interaction with research labor, and the resulting implications for
economic growth. Agrawal et al. (2019), building on Weitzman (1998), analyze how AI affects search
and combination processes within complex knowledge spaces during innovation. Agrawal et al. (2023,
2024) model innovation as a two-stage process—combinatorial prediction and hypothesis testing—and uses
survival analysis to assess the effects of AI adoption on innovation success probability, search duration, and
expected profits. Gans (2025) argues that AI reshapes research incentives by introducing complementarity
between scientific novelty and decision-making effectiveness, showing that sufficiently advanced AI tools
encourage more novel rather than incremental research. Jones (2025) characterizes AI’s role in R&D as the
automation of research tasks. However, the knowledge-burden-easing mechanism through which AI fosters
innovation remains underexplored in theory. This paper seeks to fill that void.

2 The Model

Our endogenous growth model incorporates both the advantages and limitations of the brain in the
innovation process. We focus on equilibrium outcomes under the Pareto optimal allocation.

5In recent years, rapid advances in and the widespread adoption of AI have spurred growing interest in its economic implications,
including employment (Acemoglu and Restrepo, 2018; Acemoglu et al., 2022; Felten et al., 2023; Sun and Zhang, 2025), finance
(Babina et al., 2024; Cao et al., 2024), risk and regulation (Jones, 2024; Acemoglu and Lensman, 2024), productivity (Noy and
Zhang, 2023; Aghion and Bunel, 2024; Brynjolfsson et al., 2025), economic growth (Aghion et al., 2019; Agrawal et al., 2019; Lu,
2021; Trammell and Korinek, 2023; Bao et al., 2024), and international trade (Goldfarb et al., 2019; Sun and Trefler, 2023).

6Cockburn et al. (2019) argue that among the three key AI trajectories—robotics, symbolic systems, and deep learning—only
deep learning, due to its general-purpose nature, is likely to transform the innovation process; symbolic systems have stagnated with
limited future relevance, and robotics, while capable of substituting for labor, is unlikely to fundamentally reshape innovation.
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2.1 Economic Environment

The representative consumer. The economy consists of a constant mass 𝐿 > 0 of homogeneous consumers
who supply labor inelastically. Each consumer has constant relative risk aversion (CRRA) preferences. By
choosing the consumption path 𝑐(𝑡) for 𝑡 ∈ (0,∞), a representative consumer maximizes her discounted
lifetime utility ∫ ∞

0
𝑒−𝜌𝑡

𝑐(𝑡)1−𝛾 − 1
1 − 𝛾

𝑑𝑡, (1)

where 𝜌 > 0 is the subjective discount rate, 𝛾 > 0 is the coefficient of relative risk aversion, and 𝑐(𝑡) denotes
per capita consumption.

Final goods producers. The final goods market is perfectly competitive. At time 𝑡, the production
function for the final good is

𝑌 (𝑡) = 𝑧(𝑡) (1 − 𝑠(𝑡))𝐿, (2)

where𝑌 (𝑡) denotes the total output of the final good in the economy, 𝑧(𝑡) represents the production technology,
and 𝑠(𝑡) ∈ (0, 1) indicates the fraction of labor allocated to R&D for production technology. Thus, 1− 𝑠(𝑡) is
the fraction of labor allocated to final good production. As a result, the final good output per capita, defined
as 𝑦(𝑡) ≡ 𝑌 (𝑡)/𝐿, is given by 𝑧(𝑡) (1 − 𝑠(𝑡)).

Production technology. As a downstream technology, the advancement of production technology depends
on AI technology, R&D labor input, and the existing knowledge base. At time 𝑡, the stock of production
knowledge, 𝑁𝑧 (𝑡), depends on the level of production technology, 𝑧(𝑡), as follows:

𝑁𝑧 (𝑡) = 𝑑 · 𝑧(𝑡)𝜈 , (3)

where 𝑑 > 0 captures the strength, and 𝜈 ∈ (0, 1] governs the scale effect in converting production technology
into knowledge stock.

The brain typically filters knowledge to enable thought. Licklider (1960) argues that approximately 85%
of his “thinking” time is spent on clerical or mechanical tasks that prepare for actual thinking, decision-
making, or learning, including searching, calculating, plotting, transforming, determining the logical or
dynamic consequences of a set of assumptions or hypotheses, and preparing the way for a decision or insight.
The renowned communication theorist Marshall McLuhan distinguishes hot from cool media, defining hot
media as high definition (the state of being well filled with data), thereby limiting audience participation
(McLuhan, 1994). He argues that high-definition experiences must be forgotten, censored, and cooled before
they can be assimilated. Censorship is crucial for learning; without it, unfiltered exposure to shocks would
result in mental collapse.

Motivated by these insights, we formalize innovation as a two-stage process. The first stage involves AI
technology 𝐴(𝑡) processing the stock of production knowledge 𝑁𝑧 (𝑡) to generate refined knowledge 𝑥(𝑡).
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This process is represented as

𝑥(𝑡) = ℎ (𝑁𝑧 (𝑡), 𝐴(𝑡)) ≡
𝑁𝑧 (𝑡)
𝐴(𝑡) , (4)

where the function ℎ(·, ·) satisfies 𝜕ℎ(𝑁𝑧 , 𝐴)/𝜕𝑁𝑧 > 0 and 𝜕ℎ(𝑁𝑧 , 𝐴)/𝜕𝐴 < 0. To make the model tractable,
we define this function as ℎ(𝑁𝑧 , 𝐴) ≡ 𝑁𝑧/𝐴 throughout the paper.

The second stage involves R&D labor expanding the frontier of innovative possibilities in production
technology. This process is expressed as:

¤𝑧(𝑡)
𝑧(𝑡) = 𝑓 (𝑥(𝑡))︸  ︷︷  ︸

research productivity

× 𝑠(𝑡)𝐿︸︷︷︸
number of researchers

, (5)

where the function 𝑓 (·) captures the contribution of each brain to technological innovation. Here, 𝑓 (𝑥) and
𝑠𝐿 correspond to research productivity and the number of researchers, respectively, similar to the formulation
in Bloom et al. (2020). We specify the function 𝑓 (·) as follows:

𝑓 (𝑥(𝑡)) = 𝐹0 exp
(
−𝑏

[
ln

𝑥(𝑡)
𝑥0

]2

︸           ︷︷           ︸
knowledge burden

+ 𝑎 ln
𝑥(𝑡)
𝑥0︸    ︷︷    ︸

knowledge spillovers

)
, (6)

where 𝐹0 > 0 is a scale constant, 𝑎 > 0 parameterizes knowledge spillovers, 𝑏 > 0 captures the knowledge
burden, and 𝑥0 > 0 is a reference level used to normalize 𝑥(𝑡). We can readily observe the following
properties of the function 𝑓 (·):

lim
𝑥→0+

𝑓 (𝑥) = 0, lim
𝑥→+∞

𝑓 (𝑥) = 0,
𝜕 𝑓 (𝑥)
𝜕𝑥

> 0 for 𝑥 < 𝑥̂,
𝜕 𝑓 (𝑥)
𝜕𝑥

< 0 for 𝑥 > 𝑥̂,

where 𝑥̂ ≡ 𝑥0 exp( 𝑎
2𝑏 ) is the threshold at which the monotonicity of the function changes and can be

interpreted as the level of refined knowledge at which the brain operates at optimal performance. Thus, 𝑓 (𝑥)
is an inverted-U in 𝑥, shaped by positive knowledge spillovers and negative knowledge burdens.

AI technology. AI technology is upstream in the innovation process, as shown in Figure 1. AI technology
progresses exogenously at a constant rate 𝑚 > 0. Thus, at time 𝑡, the level of AI technology is:

𝐴(𝑡) = 𝐴(0) exp(𝑚𝑡), (7)

where 𝐴(0) > 0 is the initial level of AI technology. This setup is sufficient to explore the core mechanisms
by which AI technology and the brain influence innovation and growth.

Resource constraint. The two resources involved are labor and the final good. The labor constraint has
been implicitly accounted for by allocating 1 − 𝑠(𝑡) of labor to the final good production. Thus, the only
remaining resource constraint is the final good constraint:

𝑐(𝑡)𝐿 = 𝑌 (𝑡). (8)
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2.2 Pareto Optimal Problem

The dynamic optimization problem of a social planner is:

max
{𝑐,𝑠,𝑥,𝑧}

∫ ∞

0
𝑒−𝜌𝑡

𝑐(𝑡)1−𝛾 − 1
1 − 𝛾

𝑑𝑡, (9)

subject to

𝑐(𝑡) = 𝑧(𝑡) (1 − 𝑠(𝑡)), (10)

𝑥(𝑡) = 𝑑𝑧(𝑡)𝜈
𝐴(𝑡) , (11)

¤𝑧(𝑡) = 𝑧(𝑡)𝑠(𝑡)𝐿 𝑓 (𝑥(𝑡)). (12)

Here, the combination of equations (2) and (8) leads to equation (10), equation (11) follows from equations
(3) and (11), and equation (12) is the equivalent transformation of equation (5). Thus, the current-value
Hamiltonian of this maximization problem can be expressed as:

H(𝑠, 𝑧, 𝜆) = [𝑧(𝑡) (1 − 𝑠(𝑡))]1−𝛾 − 1
1 − 𝛾

+ 𝜆(𝑡)𝑧(𝑡)𝑠(𝑡)𝐿 𝑓 (𝑥(𝑡)), (13)

where 𝑥(𝑡) =
𝑑𝑧 (𝑡 )𝜈
𝐴(𝑡 ) ; 𝐴(𝑡) grows exogenously as in equation (7); and 𝜆(𝑡) is the current-value costate

variable. We explicitly incorporate 𝑓 (𝑥(𝑡)) as defined in equation (6) below.

2.3 Existence of Equilibrium

In the model, the balanced growth path (BGP) equilibrium is defined as one in which the growth rates
of per capita consumption, production technology, and per capita output of the final good converge to the
same constant value, the labor allocation between final good production and R&D for production technology
approaches constant ratios, and the level of refined knowledge tends toward a constant value. Throughout
the paper, 𝑔𝑘 denotes the growth rate of any variable 𝑘 , and 𝑘∗ denotes the equilibrium value of any variable
𝑘 . We define the innovation ease by 𝜀(𝑥∗) := 𝑓 ′ (𝑥∗ )𝑥∗

𝑓 (𝑥∗ ) , the elasticity of research productivity with respect to
refined knowledge.

For model tractability, we impose two technical assumptions on the parameters. The first rules out a
corner solution for the fraction of labor allocated to R&D versus production, while the latter ensures the
transversality condition and streamlines the equilibrium characterization. These assumptions are maintained
throughout the subsequent analysis.

Assumption 1. 𝑓 (𝑥min) ≥ 𝑚
𝜈𝐿

where 𝑥min ≡ 𝑥0 exp[ 𝑎
2𝑏 − 𝜌+(𝛾−1)𝑚/𝜈

2𝑏𝑚 ] .

Assumption 2. 𝜌𝜈 > 𝑚 and min{𝑎, 2
√

2
√
𝑏} > 𝜌

𝑚
+ 𝛾

𝜈
.

Next, we analyze the BGP equilibrium, as outlined in the following theorem and propositions. All proofs
are provided in the Appendix.
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Theorem 1. There exists a unique BGP equilibrium such that 𝑔∗𝑐 = 𝑔∗𝑧 = 𝑔∗𝑦 = 𝑚
𝜈

and 𝑠∗ = 𝑚
𝐿𝜈 𝑓 (𝑥∗ ) , where

𝑥∗ solves 𝑚
𝜈
= 1

𝛾
[𝐿 𝑓 (𝑥∗) + 𝑚𝜀(𝑥∗) − 𝜌].

Theorem 1 demonstrates that the model admits a unique BGP equilibrium. Specifically, the BGP growth
rates of per capita consumption, production technology, and per capita output are identical at ≡ 𝑚/𝜈,
determined by the AI technology progress rate 𝑚 and the parameter 𝜈 (which captures the scale effect of
converting production technology into knowledge). Faster AI progress supports faster growth in productive
knowledge, consistent with the BGP equilibrium in which the refined-knowledge level remains constant. In
the absence of sufficiently rapid AI advances, the accumulation of productive knowledge cannot be effectively
converted into the creative-thinking stage and, thus, into technological progress. Moreover, in equilibrium,
faster AI progress not only raises economic growth—because its higher-order burden relief outweighs the
spillover loss from selective discarding—but also shapes labor allocation and the level of refined knowledge.
Although the form of 𝑓 (𝑥∗) is unspecified thus far, important insights follow from the equilibrium equality
𝑚/𝜈 = [𝐿 𝑓 (𝑥∗) + 𝑚𝜀(𝑥∗) − 𝜌]/𝛾 for solving 𝑥∗.

3 Effects of Faster AI Progress

3.1 On Refined Knowledge and Research Productivity

Proposition 1 characterizes how the equilibrium level of refined knowledge, 𝑥∗, responds to changes
in the AI growth rate, 𝑚, as illustrated in Figure 2. When 𝑥∗ is sufficiently low, accelerated progress in
AI technology increases the equilibrium level of refined knowledge in the second stage of the innovation
process—the creative thinking stage—and thus enhances research productivity (since 𝑥∗ lies in the region
where knowledge spillovers dominate, i.e., 𝑥∗ < 𝑥̂). In contrast, when 𝑥∗ is sufficiently high, faster AI
progress reduces the equilibrium level of refined knowledge.

Proposition 1. When 𝑥∗ < 𝑥̃ ≡ 𝑥0 exp( 𝑎−𝛾/𝜈2𝑏 ), the equilibrium level of refined knowledge, 𝑥∗, is increasing
with the AI growth rate 𝑚. When 𝑥∗ > 𝑥̃, 𝑥∗ is decreasing in 𝑚. At 𝑥∗ = 𝑥̃, AI neutrality obtains: any change
in 𝑚 does not alter 𝑥∗.

In particular, when 𝑥̃ < 𝑥∗ < 𝑥̂, additional refined knowledge remains physiologically productive; how-
ever, AI-accelerated refinement selectively filters and discards information, thereby weakening knowledge
spillovers and underutilizing the brain’s capacity for creative recombination. We refer to this region as the
“AI trap” region. Once marginal spillovers decline sufficiently, the social planner optimally reduces refined
knowledge even before brain performance reaches its physiological peak. In particular, at 𝑥∗ = 𝑥̃, AI neutral-
ity obtains: any change in AI growth rate does not alter equilibrium refined knowledge and hence research
productivity. Overall, the nonmonotonic response of refined knowledge—and thus research productivity—to
faster AI growth reflects a distortion in translating collective knowledge into innovation. The endogenous
wedge from the refined knowledge base needed for the optimal level of brain performance 𝑥̂—which faster
AI growth need not eliminate—implies a waste of social intelligence: potentially useful knowledge remains
unexploited, or the knowledge burden outpaces the brain’s capacity. This waste stems from a distortion in
social resource allocation rather than physiological limits.

9



𝑥min 𝑥̃ 𝑥̂ 𝑥max

Al-neutrality
point

natural peak of
brain performance

spillovers dominate burdens dominate

AI trap

equilibrium refined knowledge 𝑥∗

eq
ui

lib
riu

m
re

se
ar

ch
pr

od
uc

tiv
ity

𝑓
(𝑥

∗ )

Figure 3: Effects of Faster AI Progress on Refined Knowledge and Research Productivity

3.2 On the Ease of Innovation

As AI technology advances, is innovation becoming easier? To evaluate this, we propose a criterion
based on relative elasticities:

𝜀𝑔∗,𝑚 ≡ 𝜕𝑔∗/𝑔∗
𝜕𝑚/𝑚 > 𝜀𝑠∗,𝑚 ≡ 𝜕𝑠∗/𝑠∗

𝜕𝑚/𝑚 , (14)

where 𝜀𝑔∗,𝑚 represents the elasticity of 𝑔∗ with respect to 𝑚, and 𝜀𝑠∗,𝑚 represents the elasticity of 𝑠∗ with
respect to 𝑚. The relation 𝑔∗ = 𝑓 (𝑥∗) × 𝑠∗𝐿 implies that 𝜀𝑔∗,𝑚 − 𝜀𝑠∗,𝑚 corresponds to the elasticity of
research productivity with respect to 𝑚. The criterion that AI technology makes innovation easier can also
be equivalently interpreted as the elasticity of research productivity 𝑓 (𝑥∗) with respect to 𝑚 being positive.
Thus, we obtain the following proposition.

Proposition 2. AI technology makes innovation easier (i.e., 𝜀𝑔∗,𝑚 > 𝜀𝑠∗,𝑚) if either 𝑥∗ < 𝑥̃ or 𝑥∗ > 𝑥̂; AI
technology makes innovation harder (i.e., 𝜀𝑔∗,𝑚 < 𝜀𝑠∗,𝑚) if 𝑥̃ < 𝑥∗ < 𝑥̂.

The proposition characterizes the conditions under which AI technology makes innovation easier.
Whether AI facilitates innovation depends on both (i) the relative importance of the knowledge burden
versus knowledge spillovers for research productivity and (ii) how the equilibrium level of refined knowl-
edge responds to faster AI growth. We identify two cases in which AI makes innovation easier. First,
when knowledge spillovers substantially dominate the knowledge burden (i.e., 𝑥∗ < 𝑥̃)), faster AI growth
enables humans to process more knowledge, thereby allowing these spillovers to be realized despite selective
knowledge discarding. Second, when the knowledge burden dominates spillovers (i.e., 𝑥∗ > 𝑥̂), faster AI
growth reduces the knowledge burden through a second-order channel; this higher-order relief dominates the
first-order spillover loss.

In contrast, when 𝑥̃ < 𝑥∗ < 𝑥̂, the knowledge-burden relief from faster AI growth is insufficient to
offset the substantial weakening of knowledge spillovers; thus, faster AI progress makes innovation harder.

10



The intuition is that AI diminishes knowledge spillovers significantly—due to the selective discarding
of knowledge—relative to its effect on easing the knowledge burden during the innovation process. To
understand how such a scenario may occur, consider the idea of cross-industry innovation, where solutions
developed in one industry have historically been found to be useful in other industries. For example, groove
patterns initially designed for space shuttle runways were later utilized for highways to improve traction
and reduce hydroplaning and accidents. While humans may exchange information and share “wasteful"
knowledge in the R&D process, AI tools may discard information they deem obsolete, as AI tools in
corporate R&D are often highly specialized or proprietary. In turn, as AI technology progresses and AI
usage increases, serendipitous cross-industry innovation will be harder if knowledge and insights from other
fields are overlooked or discarded during the innovation process.

3.3 On R&D Labor Share

Proposition 3. The proportion of labor allocated to the R&D sector decreases with the growth rate of AI
technology if 𝑥∗ < 𝑥0 exp( 𝑎

2𝑏 − 𝑚
𝜌
) and increases if 𝑥∗ > 𝑥0 exp( 𝑎

2𝑏 − 𝑚
𝜌
).

The proposition has two implications. First, when the equilibrium level of refined knowledge required for
the brain’s creative thinking is sufficiently low (i.e., 𝑥∗ < 𝑥0 exp( 𝑎

2𝑏 −
𝑚
𝜌
), for convenience, let 𝑥 ≡ 𝑥0 exp

(
𝑎
2𝑏 −

𝑚
𝜌

)
), faster AI growth expands the amount of knowledge that humans can process during innovation. This

increases the equilibrium refined-knowledge level and strengthens knowledge spillovers, thereby significantly
raising research productivity and generating R&D labor-saving effects (note that Assumption 2 implies 𝑥 < 𝑥̃).
Second, when the marginal knowledge spillovers induced by faster AI growth are weak for 𝑥 < 𝑥∗ < 𝑥̃, decline
for 𝑥̃ < 𝑥∗ < 𝑥̂, or when faster AI growth primarily alleviates the knowledge burden for 𝑥∗ > 𝑥̂, the social
planner allocates a higher fraction of labor to R&D to offset lower research productivity or insufficient
marginal gains in research productivity.

𝑥min 𝑥max

𝑥max𝑥min

ҧ𝑥

෤𝑥 ො𝑥

R&D labor share declines 

with the AI growth rate

(i.e, 𝑑𝑠∗/𝑑𝑚<0)

R&D labor share rises

with the AI growth rate

(i.e, 𝑑𝑠∗/𝑑𝑚>0)

AI technology makes

innovation easier

(i.e, 𝜀𝑔∗,𝑚 > 𝜀𝑠∗,𝑚)

AI technology makes

innovation easier

(i.e, 𝜀𝑔∗,𝑚 > 𝜀𝑠∗,𝑚)

AI technology makes

innovation harder

(i.e, 𝜀𝑔∗,𝑚 < 𝜀𝑠∗,𝑚)

optimal level of

brain performance

Figure 4: Effects of AI Technological Progress on R&D Performance over Different Ranges of 𝑥∗

The equilibrium implications stated in Propositions 2 and 3 are summarized in Figure 4.7 In summary,
whether AI progress makes innovation harder or easier need not induce a monotonic change in the R&D

7The equilibrium in Figure 4 is characterized by 𝑏 < 1
2

(
𝜌

𝑚
+ 𝛾−1

𝜈

)
𝜌

𝑚
. If instead 𝑏 > 1

2

(
𝜌

𝑚
+ 𝛾−1

𝜈

)
𝜌

𝑚
—which implies 𝑥 < 𝑥min—

then 𝑑𝑠∗/𝑑𝑚 < 0 always holds. We therefore focus on the former case.
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labor share. When refined knowledge is very low, faster AI growth raises it and facilitates innovation. Yet
because research productivity increases by more than the AI growth rate, the marginal returns to R&D labor
can fall below those to labor in final-goods production, reducing the R&D labor share. Outside this region,
once refined knowledge is sufficiently high, allocating a higher fraction of labor to R&D becomes more
profitable, regardless of whether AI makes innovation harder or easier.

4 Conclusion

In this paper, we incorporate the mechanism through which AI alleviates the knowledge burden—thus
fostering innovation and growth—into an endogenous growth framework. We decompose research produc-
tivity, as characterized in Bloom et al. (2020), into two components: (positive) knowledge spillovers and
(negative) knowledge burdens. This approach enriches the micro mechanism of technological innovation in
the AI era. In our model, the innovation process consists of two sequential stages: AI-driven refinement
of existing knowledge and human creative thinking. This structure enables a theoretical assessment of
whether innovation becomes easier. Our analysis delivers three takeaways. First, faster AI growth raises
the growth rate of per capita consumption (and, analogously, production technology), but its effect on the
fraction of labor allocated to R&D is ambiguous. Second, the equilibrium level of refined knowledge may
fall short of the level required for optimal brain performance, leading to a waste of social intelligence. This
arises because, while faster AI growth mitigates the brain’s knowledge burden, it also diminishes knowledge
spillovers by selectively discarding information. Third, AI makes innovation easier when spillovers survive
filtering or burden relief dominates, but harder in the intermediate region where spillover loss outweighs
burden reduction. Future research may examine decentralized economies to assess the impact of AI on
market failures and the design of optimal government policies. AI may also facilitate the second-stage
creative thinking proposed in this paper, and its micro mechanisms merit further analysis.

12



Appendix: Proofs

We introduce some notation that will simplify the analysis in the following proofs. Let 𝑢(𝑡) := ln 𝑥 (𝑡 )
𝑥0

,
𝜓(𝑢(𝑡)) := 𝑎𝑢(𝑡) − 𝑏[𝑢(𝑡)]2, and F (𝑢(𝑡)) := 𝐹0 exp[𝜓(𝑢(𝑡))]. That is, we can rewrite 𝑓 (𝑥(𝑡)) as F (𝑢(𝑡)).
Note that the mapping between 𝑥∗ and 𝑢∗ is bijective and strictly increasing. Assumption 1 can also be
restated as

Assumption 1′. F (𝑢min) ≥ 𝑚
𝜈𝐿

where 𝑢min = 𝑎
2𝑏 − 𝜌+(𝛾−1)𝑚/𝜈

2𝑏𝑚 .

Finally, we can rewrite the elasticity of research productivity concerning refined knowledge as E(𝑢(𝑡)) :=
𝑎 − 2𝑏𝑢(𝑡).

A Proof of Theorem 1

Proof. The social planner’s maximization problem, characterized by the current-value Hamiltonian in equa-
tion (13), implies that the time paths of 𝑠(𝑡), 𝑧(𝑡), and 𝜆(𝑡) must satisfy the following first-order necessary
conditions:

H𝑠 (𝑠, 𝑧, 𝜆) = −𝑧(𝑡) [𝑧(𝑡) (1 − 𝑠(𝑡))]−𝛾 + 𝜆(𝑡)𝑧(𝑡)𝐿 𝑓 (𝑥(𝑡)) = 0, (O1)

H𝑧 (𝑠, 𝑧, 𝜆) = (1 − 𝑠(𝑡)) [𝑧(𝑡) (1 − 𝑠(𝑡))]−𝛾 + 𝜆(𝑡)𝑠(𝑡)𝐿 [ 𝑓 (𝑥(𝑡)) + 𝜈 𝑓 ′(𝑥(𝑡))𝑥(𝑡)] = 𝜌𝜆(𝑡) − ¤𝜆(𝑡), (O2)

¤𝑧(𝑡) = H𝜆(𝑠, 𝑧, 𝜆) = 𝑧(𝑡)𝑠(𝑡)𝐿 𝑓 (𝑥(𝑡)). (O3)

The transversality condition is lim𝑡→∞ [exp(−𝜌𝑡)𝜆(𝑡)𝑧(𝑡)] = 0.
To prepare for the equilibrium analysis, we rearrange the above conditions as follows. First, when

expressed in growth rates, equation (O1) yields

−𝛾
[
𝑔𝑧 (𝑡) +

−¤𝑠(𝑡)
1 − 𝑠(𝑡)

]
= 𝑔𝜆(𝑡) +

¤𝑓 (𝑥(𝑡))
𝑓 (𝑥(𝑡)) . (O4)

Equation (O1) also implies

[𝑧(𝑡) (1 − 𝑠(𝑡))]−𝛾
𝜆(𝑡) = 𝐿 𝑓 (𝑥(𝑡)). (O5)

Second, incorporating equation (O5) into equation (O2) gives

𝐿 𝑓 (𝑥(𝑡)) + 𝜈𝑠(𝑡)𝐿 𝑓 ′(𝑥(𝑡))𝑥(𝑡) = 𝜌 − 𝑔𝜆(𝑡). (O6)

Third, equation (O3) directly implies

𝑔𝑧 (𝑡) = 𝑠(𝑡)𝐿 𝑓 (𝑥(𝑡)). (O7)

Next, we determine the BGP equilibrium. Recall the definition of the BGP equilibrium. As 𝑡 → ∞, 𝑥(𝑡)
converges to a constant value 𝑥∗. Therefore, equation (11) implies 𝑔∗𝑧 = 𝑚

𝜈
. In the BGP equilibrium, the

O1



fraction of labor allocated to R&D tend to a constant value 𝑠∗, which, by condition (10), implies 𝑔∗𝑐 = 𝑔∗𝑧 .
Since 𝑦(𝑡) = 𝑧(𝑡) (1 − 𝑠(𝑡)), it follows that 𝑔∗𝑦 = 𝑔∗𝑧 . Taking into account equation (O4) in BGP equilibrium,
we obtain: 𝑔∗𝑐 = 𝑔∗𝑧 = 𝑔∗𝑦 = 𝑚

𝜈
and 𝑔∗

𝜆
= − 𝛾𝑚

𝜈
. It follows immediately that 𝑔∗ ≡ 𝑔∗𝑐 = 𝑔∗𝑧 = 𝑔∗𝑦 increases in

𝑚. Thus, condition (O7) yields the fraction of labor allocated to the R&D sector in the BGP equilibrium as
𝑠∗ = 𝑚

𝐿𝜈 𝑓 (𝑥∗ ) . Moreover, substituting the full expressions for 𝑠∗ and 𝑔∗𝜅 into equation (O6) yields

𝑚

𝜈
=

1
𝛾
[𝐿 𝑓 (𝑥∗) + 𝑚𝜀(𝑥∗) − 𝜌] . (O8)

Thus, once 𝑥∗ is obtained from this equation, all equilibrium outcomes are determined. It remains to prove
that equation (O8) admits at least one solution for 𝑥∗.

We further define 𝑥𝑙 := min{𝑥 | 𝑓 (𝑥) = 𝑚
𝐿𝜈

} and 𝑥max := max{𝑥 | 𝑓 (𝑥) = 𝑚
𝐿𝜈

}. To ensure that 𝑠∗

lies within (0, 1), it must hold that 𝑓 (𝑥∗) > 𝑚
𝐿𝜈

, or equivalently, 𝐿F (𝑢∗) > 𝑚/𝜈. This condition implies
𝑥𝑙 < 𝑥∗ < 𝑥max, or equivalently, 𝑢𝑙 < 𝑢∗ < 𝑢max, where 𝑢𝑙 = 𝑢(𝑥𝑙) and 𝑢max = 𝑢(𝑥max). The existence of 𝑥∗

is equivalent to that of 𝑢∗, as the mapping between them is bijective and strictly increasing. Equation (O8)
can be rewritten as

𝐿F (𝑢∗) = −𝑚E(𝑢∗) + 𝛾𝑚/𝜈 + 𝜌. (O9)

Consider that in the equation, the left-hand side 𝐻 (𝑢∗) := 𝐿F (𝑢∗) is inverted-U in 𝑢∗, whereas the right-hand
side ℎ(𝑢∗) := −𝑚E(𝑢∗) + 𝛾𝑚/𝜈 + 𝜌 is linear and strictly increasing in 𝑢∗. It follows that the intersection of
ℎ(𝑢∗) with 𝑚/𝜈 occurs at 𝑢min (Assumption 2 ensures that 𝑢min > 0). By Assumption 1′, F (𝑢min) > 𝑚

𝐿𝜈
.

Thus, the intersection of 𝐻 (𝑢∗) and ℎ(𝑢∗) lies above 𝑚/𝜈 on the vertical axis and within (𝑢min, 𝑢max) on
the horizontal axis. Hence, there exists a unique 𝑢∗ satisfying equation (O9), and consequently, a unique 𝑥∗

satisfying equation (O8). □

B Proof of Proposition 1

Proof. As established in the proof of Proposition 1, equation (O9) holds in equilibrium. We have that

𝑢min =
𝑎

2𝑏
−

𝜌

𝑚
+ 𝛾−1

𝜈

2𝑏
< 𝑢∗ < 𝑢ℎ =

𝑎

2𝑏
+

√︂
𝑎2 − 4𝑏 ln

(
𝑚
𝜈

1
𝐿𝐹0

)
2𝑏

.

Let 𝜙 := 𝐿F (𝑢∗) + 𝑚E(𝑢∗) − 𝛾𝑚/𝜈 − 𝜌 = 0. By the implicit function theorem, we have 𝑑𝑢∗

𝑑𝑚
= − 𝜕𝜙

𝜕𝑚

/
𝜕𝜙

𝜕𝑢∗

where the partial derivatives are

𝜕𝜙

𝜕𝑚
= (𝑎 − 2𝑏𝑢∗) − 𝛾/𝜈 and

𝜕𝜙

𝜕𝑢∗
= 𝐿𝐹0 exp(𝑎𝑢∗ − 𝑏𝑢∗2) (𝑎 − 2𝑏𝑢∗) − 2𝑏𝑚.

O2



Thus, we obtain

𝑑𝑢∗

𝑑𝑚
=

2𝑏
(
𝑢∗ − 𝑎−𝛾/𝜈

2𝑏

)
𝐿𝐹0 exp(𝑎𝑢∗ − 𝑏𝑢∗2) (𝑎 − 2𝑏𝑢∗) − 2𝑏𝑚

.

Using the equilibrium condition from (O9), the derivative becomes

𝑑𝑢∗

𝑑𝑚
=

2𝑏
(
𝑢∗ − 𝑎−𝛾/𝜈

2𝑏

)
−4𝑏2𝑚𝑢∗2 + 2𝑏(2𝑎𝑚 − 𝛾𝑚/𝜈 − 𝜌)𝑢∗ + [𝑚(𝑎𝛾/𝜈 − 𝑎2 − 2𝑏) + 𝑎𝜌]

. (O10)

Next, we examine the sign of 𝑑𝑢∗

𝑑𝑚
. First, it is evident that if 𝑢∗ >

𝑎−𝛾/𝜈
2𝑏 , the numerator is positive; if

𝑢∗ < 𝑎−𝛾/𝜈
2𝑏 , it is negative; and if 𝑢∗ = 𝑎−𝛾/𝜈

2𝑏 , AI neutrality obtains, so 𝑢∗ (and hence 𝑥∗) does not vary with
𝑚. Second, the denominator remains strictly negative because 2

√
2
√
𝑏 >

𝛾

𝜈
+ 𝜌

𝑚
in Assumption 2. Thus, we

can conclude that: if 𝑎−𝛾/𝜈
2𝑏 < 𝑢∗ < 𝑢max, there is 𝑑𝑢∗

𝑑𝑚
< 0; if 𝑢min < 𝑢∗ < 𝑎−𝛾/𝜈

2𝑏 , there is 𝑑𝑢∗

𝑑𝑚
> 0. Moreover,

since 𝑢∗ = ln( 𝑥∗
𝑥0
), it follows that

𝑑𝑢∗

𝑑𝑚
=

1
𝑥∗︸︷︷︸
>0

𝑑𝑥∗

𝑑𝑚
, (O11)

which implies 𝑠𝑖𝑔𝑛
{
𝑑𝑥∗

𝑑𝑚

}
= 𝑠𝑖𝑔𝑛

{
𝑑𝑢∗

𝑑𝑚

}
, establishing the result. □

C Proof of Proposition 2

Proof. Recall the equilibrium results: 𝑔∗ = 𝑚
𝜈

and 𝑠∗ = 𝑚
𝐿𝜈 𝑓 (𝑥∗ ) . The definitions of elasticities imply:

𝜀𝑔∗,𝑚 = 1 and 𝜀𝑠∗,𝑚 = 1 − 𝑚
𝑓 ′(𝑥∗)
𝑓 (𝑥∗)

𝑑𝑥∗

𝑑𝑚
= 1 − 𝑚E(𝑢∗) 𝑑𝑢

∗

𝑑𝑚
.

where the last equality follows from (O11). We have

Δ𝐸 := 𝜀𝑔∗,𝑚 − 𝜀𝑠∗,𝑚

= 𝑚E(𝑢∗) 𝑑𝑢
∗

𝑑𝑚

=
𝑚(𝑎 − 2𝑏𝑢∗) ( 𝛾

𝜈
− (𝑎 − 2𝑏𝑢∗))

𝐿𝐹0 exp[𝑎𝑢∗ − 𝑏𝑢∗2] (𝑎 − 2𝑏𝑢∗) − 2𝑏𝑚

where the last equality uses (O10). Therefore,

𝑠𝑖𝑔𝑛{Δ𝐸} = 𝑠𝑖𝑔𝑛{E(𝑢∗)} × 𝑠𝑖𝑔𝑛

{ 𝑑𝑢∗
𝑑𝑚

}
which gives us Δ𝐸 > 0 if 𝑢∗ < 𝑎−𝛾/𝜈

2𝑏 or 𝑢∗ > 𝑢̂. Otherwise, Δ𝐸 < 0. □
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D Proof of Proposition 3

Proof. Based on the expression of 𝑠∗ in BGP equilibrium, we obtain

𝑑𝑠∗

𝑑𝑚
=

1
𝐿𝜈 𝑓 (𝑥∗)︸    ︷︷    ︸

>0

©­­­­­«
1 − 𝑚

𝑓 ′(𝑥∗)
𝑓 (𝑥∗)

𝑑𝑥∗

𝑑𝑚︸               ︷︷               ︸
=E𝑠∗ ,𝑚

ª®®®®®¬
< 0 ⇐⇒ E𝑠∗,𝑚 < 0.

We have

E𝑠∗,𝑚 = 1 − 𝑚E(𝑢∗) 𝑑𝑢
∗

𝑑𝑚

= 1 −
𝑚E(𝑢∗) ( 𝛾

𝜈
− (𝑎 − 2𝑏𝑢∗))

𝐿𝐹0 exp[𝑎𝑢∗ − 𝑏𝑢∗2] (𝑎 − 2𝑏𝑢∗) − 2𝑏𝑚

= 1 −
𝑚E(𝑢∗) ( 𝛾

𝜈
− E(𝑢∗))

𝐿F (𝑢∗)E(𝑢∗) + 𝑚E′(𝑢∗)

=
E(𝑢∗) (𝐿F (𝑢∗) + 𝑚E(𝑢∗) − 𝛾𝑚

𝜈
) + 𝑚E′(𝑢∗)

𝐿F (𝑢∗)E(𝑢∗) + 𝑚E′(𝑢∗)

=
𝜌E(𝑢∗) + 𝑚E′(𝑢∗)

𝐿F (𝑢∗)E(𝑢∗) + 𝑚E′(𝑢∗)

where the first line follows from the proof of Proposition 2 and the last equality comes from (O9). Therefore,

𝑑𝑠∗

𝑑𝑚
< 0 ⇐⇒ 𝜌E(𝑢∗) + 𝑚E′(𝑢∗)

𝐿F (𝑢∗)E(𝑢∗) + 𝑚E′(𝑢∗) < 0.

Since the denominator is negative (see the proof of Proposition 1), 𝑑𝑠∗

𝑑𝑚
< 0 if and only if the numerator is

positive, which is equivalent to 𝑢∗ < 𝑎
2𝑏 − 𝑚

𝜌
. □
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