201 Notes: Intellectual Property

Hanzhe Zhang*

Thursday, November 29, 2012

This note expands and clarifies Glen's IP notes and solves the last two problems of PS5 along the way.
Supply of innovations: $S(\pi)$. Demand for the product is $Q(p)$ and supply of product is constant marginal cost, 0 . We normalize p to be the the fraction of the monopoly optimal price charged and $Q(0)=1$. Then $Q(p)$ is the fraction of the total efficient market served. Profit

$$
\pi(p)=p Q(p) \Rightarrow \frac{\partial \pi(p)}{\partial p}=Q(p)+p Q^{\prime}(p)
$$

and consumer surplus per product is

$$
C S(p)=\int_{p}^{\infty} Q(\tilde{p}) d \tilde{p} \Rightarrow \frac{\partial C S(p)}{\partial p}=-Q(p)
$$

Then the social welfare is

$$
\begin{aligned}
S W(p) & =\text { consumer surplus }+ \text { producer surplus } \\
& =S(\pi(p)) C S(p)+\int_{0}^{\pi(p)} S(\pi) d \pi .
\end{aligned}
$$

To choose the socially efficient p, we look at FOC with respect to p,

$$
\begin{aligned}
\frac{\partial S\left(\pi\left(p^{*}\right)\right)}{\partial \pi\left(p^{*}\right)} \frac{\partial \pi\left(p^{*}\right)}{\partial p} C S\left(p^{*}\right)+S\left(\pi\left(p^{*}\right)\right) \frac{\partial C S\left(p^{*}\right)}{\partial p}+S\left(\pi\left(p^{*}\right)\right) \frac{\partial \pi\left(p^{*}\right)}{\partial p} & =0 \\
\frac{\partial S\left(\pi\left(p^{*}\right)\right)}{\partial \pi\left(p^{*}\right)} \frac{1}{S\left(\pi\left(p^{*}\right)\right)} \frac{\partial \pi\left(p^{*}\right)}{\partial p^{*}} C S\left(p^{*}\right)+\frac{\partial C S\left(p^{*}\right)}{\partial p}+\frac{\partial \pi\left(p^{*}\right)}{\partial p} & =0 \\
\varepsilon_{S}\left(\pi\left(p^{*}\right)\right) \frac{\partial \pi\left(p^{*}\right)}{\partial p^{*}} C S\left(p^{*}\right)-Q\left(p^{*}\right)+\frac{\partial \pi\left(p^{*}\right)}{\partial p} & =0
\end{aligned}
$$

And rearrange, we get

$$
\varepsilon_{S} \frac{C S}{\pi}=\frac{D W L^{\prime}}{\pi^{\prime}}
$$

where $D W L(p)=C S(0)-C S(p)-\pi(p)$.
Exercise 1 (LA2c). We equate social welfare to consumer welfare, so FOC becomes

$$
\begin{aligned}
\varepsilon_{S}\left(\pi\left(p^{*}\right)\right)\left[Q(p)+p Q^{\prime}(p)\right] \frac{C S\left(p^{*}\right)}{\pi\left(p^{*}\right)}-Q\left(p^{*}\right) & =0 \\
\varepsilon_{S}\left(\pi\left(p^{*}\right)\right)\left[1+p Q^{\prime}(p) / Q\left(p^{*}\right)\right] \frac{C S\left(p^{*}\right)}{\pi\left(p^{*}\right)} & =1 \\
\varepsilon_{S}\left(\pi\left(p^{*}\right)\right) \frac{C S\left(p^{*}\right)}{\pi\left(p^{*}\right)} & =\frac{1}{1-\varepsilon_{Q}\left(p^{*}\right)}
\end{aligned}
$$

[^0]Since $D W L+C S+\pi=K$,

$$
D W L^{\prime}=-\pi^{\prime}-C S^{\prime}
$$

and

$$
D W L^{\prime} / \pi^{\prime}=-1-\frac{C S^{\prime}}{\pi^{\prime}}=-1+\frac{Q}{Q+p Q^{\prime}}=-\frac{p Q^{\prime}}{Q+p Q^{\prime}}=\frac{\varepsilon_{Q}}{1-\varepsilon_{Q}}<\frac{1}{1-\varepsilon_{Q}}
$$

Therefore, the optimal price is lower in this case, the level of protection is lower (which is intuitive, as we place no weight on producer's welfare).

Exercise 2 (LA2b). Since everything is put in fractional terms, holding elasticity of supply constant, everything is only shifted by fraction, although the optimal price is going to change, the optimal fraction of price will not be altered, especially with linear demand $Q(p)=a-b p$, as we demonstrate below.

$$
\begin{aligned}
C S(p) & =\frac{1}{2}\left(\frac{a}{b}-p\right)(a-b p) \\
\pi(p) & =(a-b p) p \\
D W L(p) & =\frac{1}{2} p(a-(a-b p))=\frac{1}{2} p^{2} b
\end{aligned}
$$

so

$$
\begin{aligned}
\pi^{\prime}(p) & =a-2 b p \\
D W L^{\prime}(p) & =b p
\end{aligned}
$$

However, we normalized $Q(0)=1$, so $a=1$, and $a-2 b p=0$ for monopoly price $p=1$, so $b=0.5$. And we see that p^{*} that satisfies the equilibrium condition

$$
\varepsilon \frac{C S\left(p^{*}\right)}{\pi\left(p^{*}\right)}=\frac{D W L^{\prime}\left(p^{*}\right)}{\pi^{\prime}\left(p^{*}\right)}
$$

does not change with respect to change in supply or demand curve.

[^0]: *All errors are solely mine. For questions, please email hanzhe@uchicago.edu.

