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Introduction
Auction theory has been a particularly successful application of game theory ideas to the real world, with its
uses ranging from eBay auctions on personal items such as phones and laptops worth few hundred dollars,
to those which sell treasury bonds, rights to use radio spectrums, and schedule and allocate courses.

We focus on the simplest auction: first price auction (FPA) to sell one unit of good with the simplest
assumptions on buyers’ values: independent, private values. First, we show that FPA can be modeled as
a Bayesian game. We get a glimpse of equilibrium bidding strategies look like from an example in which
two players have finite number of possible values and can only bid one of the finitely many prices. Next,
we show how we derive a symmetric equilibrium when the buyer’s type set is continuous (thus infinite).
Related auction formats like second price and Dutch auctions are mentioned, and the celebrated Revenue
Equivalence Theorem and its relation with Revelation Principle are briefly touched upon. References for
further readings and exercises are left for interested and dedicated readers.

1 Bayesian Game
What is a Bayesian game?

Definition 1. A Bayesian game (N,W,A,S,t,Pr,u) consists of

• a set of n players, N = {i},

• a set of states, W 3 w ,

and for each player i,

• a set of actions Ai 3 ai,

• a set of signals Si 3 si, that she may receive and a signal function ti : W ! Si that associates a signal
with each state,

• for each signal that she may receive, a belief about the states consistent with the signal (a probability
distribution over the set of states with which the signal is associated), and

• a payoff function ui : A⇥W !R representing the preferences/utilities over the action-state pairs, and
expected utility ui : Ai ! R.

⇤All errors are solely mine. For questions and suggestions, please email hanzhe@uchicago.edu.
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What is a Nash equilibrium of a Bayesian Game?

Definition 2. A Nash equilibrium of a Bayesian Game/Bayesian-Nash equilibrium is a Nash equilibrium
of the corresponding strategic game (with vNM preferences) with

• set of players as the set of all pairs (i,si) where i is the player in the Bayesian game and si one of the
signals i may receive,

• the set of actions of each player (i,si) is the set of actions of player i in the Bayesian game, and

• the Bernoulli payoff function of each player (i,si) is

u(i,si) (ai) = Â
w2W

Pr(w|si)ui ((ai,a�i (w)) ,w) .

Essentially, the Nash equilibrium in the Bayesian game is a strategy profile
n

a⇤(i,si)

o

such that for each
(i,si), a⇤(i,si)

is the best response to a⇤�(i,si)
that maximizes the expected utility

u(i,si)

⇣

a⇤(i,si)

⌘

= Â
w2W

Pr(w|si)ui
��

a⇤i ,a
⇤
�i (w)

�

,w
�

.

Next, we see how a first price auction is a Bayesian game and solve the symmetric Nash equilibrium in it.

2 First Price Auction with Discrete Types
In this section, we look at a setting where players have finite number of possible values and finite number
of possible strategies. We “guess” an equilibrium strategy first and verify that the strategy is indeed an
equilibrium because fixing other players’ strategy, a player’s strategy is the best response that maximizes
the expected utility over the belief distribution.

Two players bid for a painting. Each player has a private value vi to the painting only known by herself
and everyone else only knows that it is either 2 or 3 with equal probability. The rule of the first price auction
is that the player with the highest bid wins and pays her bid with ties broken by flip of a coin. Suppose that
the players can only bid integers 0, 1, 2, or 3.1

How does this game map to a Bayesian game?

• There are two (n = 2) players, N = {1,2}.

• The state set W is the set of pairs of players’ values, w = (v1,v2) 2 {(2,2) ,(2,3) ,(3,2) ,(3,3)}.

• For each player, the set of actions is Ai = {0,1,2,3} 3 bi.

• The signal si player i receives is 2 or 3, si = ti (w) = vi.

• For any signal she receives, her belief about the state is basically the belief of her opponent’s signal,
and it is the same conditional on the same signal she receive (independent)., i.e.

Pr(w|vi) = Pr(v j|vi) = Pr(v j) =
1
2
8v j 2 {2,3}

1This example is borrowed from Jackson and Shoham’s Coursera lecture on Discrete First Price Auctions.
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• The utility function given the action and state, with the rule of FPA,

ui ((bi,b j) ,(vi,v j)) =

8

>

<

>

:

0 : bi < b j
1
2 (vi �ai) : bi = b j

vi �ai : bi > b j

Now let us solve for a Nash equilibrium in this game. The corresponding strategic form game is demon-
strated as follows. Since the game is symmetric, we show one player’s payoffs and actions.

si = 2
ai\a j 0 1 2 3

0 1 0 0 0
1 1 1

2 0 0
2 0 0 0 0
3 �1 �1 �1 � 1

2

si = 3
ai\a j 0 1 2 3

0 3
2 0 0 0

1 2 1 0 0
2 1 1 1

2 0
3 0 0 0 0

Table 1: The corresponding strategic game

Guess

Let us look for a symmetric pure strategy Nash equilibrium in this Bayesian game, that is, we find a pair
b⇤ = (b(2) ,b(3)) where player (i,2) will bid b(2) and player (i,3) will bid b(3) for any i.

If a player bids her value, i.e., b(2) = 2, b(3) = 3, the payoff is 0 no matter she wins or loses. This is
the same payoff as not participating, the worst payoff for a “rational” player who never bids higher than her
own value, as any other bid lower than value results in possible positive payoff without loss. Maybe one can
do better by shading - bidding lower than her own value.

Verify

Try b(3) = 2, b(2) = 1. We show that this is indeed a symmetric Nash equilibrium. Succinctly, this bidding
function is b⇤ (v) = v�1. Given that the other player will bid according to b⇤ (·), a player with value 3 will
get the respective payoffs when she chooses different actions ai:

ui (0) = ui (3) = 0

ui (1) =
1
2
·1+ 1

2
·0 =

1
2

ui (2) =
1
2
·1+ 1

2
· 1

2
=

3
4

On the other hand, if the player has value 2, the payoffs when she bids ai is

ui (0) = ui (2) = 0

ui (1) =
1
2
· 1

2
+

1
2
·0 =

1
4

ui (3) < 0.

Therefore, indeed b⇤ (·) is a symmetric equilibrium.
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Summary

There are two points to be taken from this example. First, FPA with discrete types can be a Bayesian game.
Second, in equilibrium a bidder bids lower than her true value to increase her expected payoff. Although
it’s possible that the final transaction is below a buyer’s willingness to pay (thus triggering some sort of ex-
post regret of not bidding), it is nonetheless best response to bid lower than own value to maximize ex-ante
expected payoff. We show next that both points stay true when the signal and type sets are continuous.

Furthermore, let’s recap how we’ve gone this far. First, we formulate the auction problem as a Bayesian
game. Then, we see that bidding exactly one’s value seems to be suboptimal, so we guess an equilibrium that
both types of bidders shade their bids. Nonetheless, the equilibrium bidding function is strictly increasing
(type 3 bids 2, type 2 bids 1) and symmetric. Finally, we verify that it is indeed an equilibrium.

3 First Price Auction with Continuous Type Set2

Suppose now that there are n buyers each observe a signal which is drawn from the distribution with cu-
mulative distribution function F on [0,1] with strictly increasing density function f . This latter assumption
guarantees that the probability of a tie is zero. A bidder’s value is still her signal. It is still a Bayesian game
with

• n players,

• state set with each element denoted by the values of the bidders, w = (v1, · · · ,vn),

• player i’s action set bi 2 R,

• a private signal si player i, and si = ti (w),

• player i’s belief about the state Pri (w|vi) =⇥ j 6=i f (v j),

• the utility of player i of value vi submitting bi is

ui ((bi,b�i) ,(vi,v�i)) =

8

>

<

>

:

vi �bi if bi > max j 6=i b j
1
k (vi �bi) if bi = max j 6=i b j and there are k�1 ties
0 otherwise.

Now we try find a Nash equilibrium that mimics the guess-and-verify approach used in the previous ex-
ample. First we try to guess that there exists a symmetric, strictly increasing bidding function as the Nash
equilibrium. By definition, given that every other bidder j bids according to bidding function b j (·), bidder
i of value vi should bid bi (vi). Since it’s symmetric, we can drop the subscript i.

Guess

Let the equilibrium bidding function of agent with value v be b(v). The expected value of bidder of value v
bidding a when everyone else bids according to b(·),

u(a |v) = Pr(a > b(v j)8 j 6= i) · (v�a) = Fn�1 �b�1 (a)
�

(v�a) . (1)

2The first derivation follows Jehle and Reny (2011) (JR2 hereafter) and the second Osborne (2004).
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Calculate: Approach 1

Now a thought experiment. Any other choice of a is pretending to be bid as if you are some other type r, i.e.,
a = b(r). Therefore, choosing a bid a is equivalent to choosing the type r that a bidder mimics, as illustrated
in Figure 1. Furthermore, there is no incentive to have a > b(1), because bidding higher than b(1) will not
result in higher probability of winning but only causes higher payment than b(1).

v r

a = b(r)

b(v)

v

b(v)

Figure 1: Choosing a is equivalent to choosing b(r), which is equivalent to choosing r

Then the expected utility function can be written as

u(b(r) ,v) = Fn�1 (r)(v�b(r)) .

By definition of a Nash equilibrium, the best response of bidder with value v to others’ equilibrium bids is
to bid b(v), that is,

u(b(v) ,v)� u(b(r) ,v)8r

Maximizing the expected utility with respect to r,

∂u(b(r) ,v)
∂ r

=
�

Fn�1 (r)
�0
(v�b(r))�Fn�1 (r)b

0
(r) (2)

and FOC is satisfied at r = v, that is,

0 =
�

Fn�1 (v)
�0
(v�b(v))�Fn�1 (v)b

0
(v) (3)

0 =
�

Fn�1 (v)
�0

b(v)�Fn�1 (v)b
0
(v)+(n�1)Fn�2 (r) f (v)v

0 = (n�1)Fn�2 (v) f (v)v�d
�

Fn�1 (v)b(v)
�

/dv

In differential form and solve,

d
�

Fn�1 (v)b(v)
�

= (n�1)Fn�2 (v) f (v)vdv

Fn�1 (v)b(v) =

ˆ v

0
(n�1) ·Fn�2 (x) f (x)xdx+K
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And we have another equilibrium boundary condition b(0) = 0, that is, equilibrium bid by value 0 player is
0. Therefore for v = 0, we can plug in b(v) and get that K = 0. Written more succinctly, the equilibrium
bidding function is

b(v) =
1

FN�1 (v)

ˆ v

0
xdFn�1 (x) = E



max
j 6=i

v j

�

�

�

�

max
j 6=i

v j < v
�

(4)

Calculate: Approach 2

Instead of going through the thought experiment, we can directly make the choice of a to maximize the
expected utility from equation 1 by taking the FOC. It is more convoluted mathematically than the first
approach but may be more straightforward economically.

∂
⇥

Fn�1 �b�1 (a)
�

(v�a)
⇤

∂a
= �Fn�1 �b�1 (a)

�

+(v�a)(n�1)Fn�2 �b�1 (a)
�

f
�

b�1 (a)
� ∂b�1 (a)

∂a

= �Fn�1 �b�1 (a)
�

+(v�a)(n�1)Fn�2 �b�1 (a)
�

f
�

b�1 (a)
� 1

b0 (b�1 (a))
.

At the utility-maximizing choice a⇤, b�1 (a⇤) = v, that is, the person who bids a⇤ has value v, and a⇤ = b(v)
and FOC is 0.

�Fn�1 (v)+(v�b(v))(n�1)Fn�2 (v)
1

b0 (v)
= 0

which is the same as we have arrived in the previous approach.

Example 1. If vi ⇠U [0,1], i.e. F (vi) = vi, f (vi) = 18i, then the equilibrium strategy in Equation 4 is

b(v) =
1

vn�1

ˆ v

0
x(n�1)xn�2dx =

1
vn�1



n�1
n

xn
�

�

�

�

v

0

�

=
n�1

n
v.

The economic interpretation of this bidding function is that the bidder will bid the expectation of the
highest value among opponents assuming that a bidder wins (i.e., has the highest bid, or has the highest
value). The idea that one ought to bid conditional on winning is a key feature and insight in strategic
analysis of bidder behaviors. In the exercise, you are asked in exercise to show that the equilibrium bidding
exhibits shading

b(v) = v�
ˆ v

0

✓

F (x)
F (v)

◆n�1

dx.

Verify

So far we only solve out a candidate equilibrium bidding function. We have just guessed that the bidding
function is symmetric and increasing and the candidate equilibrium bidding function is in the form illustrated
above. However, we have not shown that it is indeed an equilibrium. Exercise 2 guides you to verify this is
indeed the case.

Expected Revenue

The expected revenue of the seller from running this FPA is the expected bid of the highest value bidder,
ˆ 1

0



1
FN�1 (v)

ˆ v

0
xdFn�1 (x)

�

dFn (v) = E


E


max
j 6=i

v j

�

�

�

�

max
j 6=i

v j < v
�

|v = maxv j

�

.
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4 Second Price Auctions, Open-Cry Auctions, and Revenue Equivalence
Theorem

First price auction is a sealed-bid auction where each player essentially puts a bid in a sealed envelope and
submit it to the seller. There is a set of auctions where they are conducted in the auction house, where people
actively participate while visible to each other. In particular, Dutch auction, is an auction in which price
starts from Dutch auction is actually equivalent to the first price sealed-bid auction.

Second price auction is a sealed-bid auction where the player with the highest bid pays the highest
bid among losers. It turns out that bidding one’s own value is the dominant strategy. However, perhaps
more surprisingly is that the equal expected revenue generated by the FPA and SPA! In fact, (first-price and
second-price) all-pay auctions will generate the same expected revenues too! This is the celebrated Revenue
Equivalence Theorem. The proof depends on characterizing all the auctions as a pair of functions from
reports: probability assignment function and payment function, and utilizing the Revelation Principle that
we previously mentioned in the straightforward games.

There are some classic papers that are must-read. Vickrey (1961) shows that the second price auction has
truthful report as the dominant strategy. Myerson (1981) shows that first- and second-price auctions (among
many others) have the same expected revenue, and more importantly, the auction that restricts participation
to buyers with high values is generated the most expected revenue among ALL selling mechanisms (posting
prices, lotteries, whatever you can think of). Furthermore, it generalizes Vickrey’s observation that expected
revenue of FPA and SPA is equal. Milgrom and Weber (1982) extends the analysis to settings where the
buyers’ values are affiliated; for example, oil field in which no one actually knows the exact amount of oil
but comes up with separate estimates that are correlated.

For textbook treatment, pages 80-91, 291-301, and 307-310 of Osborne (2004) have a nice introductory
guide to the basic first-price and second-price auctions as applications of a Bayesian game (as we have
covered). For a little more in-depth analysis on Revenue Equivalence Theorem and reserve price, Jehle and
Reny (2011) is a good guide. Krishna (2002) is a book entirely devoted to auction, suitable for advanced
undergraduates. Milgrom (2004) is a more compact and advanced text that connects with research frontiers.
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5 Exercises
The exercises consist of three parts. The basic problems directly follow from the lecture notes. The sec-
ond extended problem is asking you to apply the methodology to a little more complicated problem. The
challenging problem is another extension of the standard FPA model with the tweak that the number of
participants is uncertain.

JRE C.N denotes that the questions are directly from Jehle and Reny (2011) E th edition with the respec-
tive chapter C and question number N, possibly modified to be conformable notation-wise.

DO NOT FORGET THE TWO BARGAINING PROBLEMS!

5.1 Basic Problems

Exercise 1 (JR2 9.1). Show that the equilibrium bidding function

b(v) =
1

Fn�1 (v)

ˆ v

0
xdFn�1 (x)

is strictly increasing.

Exercise 2 (JR2 9.2). Show in two ways that the symmetric equilibrium bidding strategy of a first price
auction with n symmetric bidders each with values distributed according to F , can be written as

b(v) = v�
ˆ v

0

✓

F (x)
F (v)

◆n�1

dx.

(Hint: For the first way, use solution from text and apply integration by parts. For the second way, use the
fact that FN�1 (r)(v�b(r)) is maximized in r when r = v and apply the envelope theorem to conclude that
d
�

FN�1 (v)(v�b(v))
�

/dv = Fn�1 (v); now integrate both sides from 0 to v.)

Exercise 3 (JR2 9.3). This exercise will guide you through the proof that the equilibrium bidding function
is in fact a symmetric equilibrium of the first-price auction. (Hint: First show that

du(r,v)/dr = (n�1)Fn�2 (r) f (r)(v� r)

and conclude that du(r,v)/dr is positive when r < v and negative when r > v so that u(r,v) is maximized
when r = v.)

5.2 Extended Problems

Exercise 4. Is there another Bayes-Nash equilibrium in the discrete auction game in Section 2 besides the
one derived?

Exercise 5 (Auction with buyers who have sequential outside options, Zhang (2012)). One item is for
sale using first price auction. There are n buyers who have private values v independently drawn from the
same cumulative distribution F (·) (probability density function is denoted by f (·)). Suppose that in the
subsequent (second) period, the same item will be available to all buyers at price p with probability l (p),
and buyer i will purchase the good if the price is lower than vi, and gets utility vi� p. Buyers do not discount.

1. What is the expected utility of a bidder of value v in the second period? What is her expected utility
when she bids b(r) and others are bidding according to b(·) as well?

2. Derive the symmetric, strictly increasing equilibrium bidding functions of the bidders in the first price
auction.
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3. How does the equilibrium bidding function change compared to the one where there is no sequential
outside option (as derived in class)?

4. Calculate the equilibrium bidding function when buyer’s value distribution is uniformly distributed
on [0,1] and the price in the next period is uniformly distributed. (Mathematically, f (v) = 18v 2 [0,1]
and l (x) = 1). Compare it to the one derived in Example 1.

5.3 Challenging Problem

Exercise 6 (Auction with uncertain number of bidders, Harstad et al. (1990)). Suppose now that each bidder
does not know the exact number of opponents she’s facing, but gn is the probability that there are n bidders,
with the number of possible bidders ranging from 2 to N. Bidders have independent private values drawn
from common distribution F as before.

1. What is the expected utility of value v bidder bidding b(r)?

2. Derive the symmetric, strictly increasing equilibrium bid function.

3. How does the equilibrium bid function relate to the one when there are n bidders for n 2 {2, · · · ,N}?
Express it in terms of the standard bid function with n players if possible.
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