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Question 1. Show that the symmetric equilibrium bidding function for a first-price auc-
tion is strictly increasing.

Solution. Method 1: Take the derivative with respect to v,

b̂
′
(v) = − (N − 1) F−N (v) f (v)

ˆ v

0
xdFN−1 (x) + F−N+1 (N − 1) vFN−2 (v) f (v)

= (N − 1)
f (v)
F (v)

[
v− F−N+1 (v)

ˆ v

0
xdFN−1 (x)

]
= (N − 1)

f (v)
F (v)

(
v− b̂ (v)

)
Economically b̂ (v) < v for all v > 0 because all strategies b (v) > v are strictly
dominated by b (v) = v because if there is positive probability of winning, the
expected payment is bigger than v so the expected payoff is negative if a bidder
bids higher than his value. Mathematically or directly from the interpretation of
the conditional expected value on winning,

F−N+1 (v)
ˆ v

0
xdFN−1 (x) =

ˆ v

0
xd
(

FN−1 (x)
FN−1 (v)

)
<

ˆ v

0
vd
(

FN−1 (x)
FN−1 (v)

)
= v.

Method 2: u (r, v) = FN−1 (r)
(

v− b̂ (r)
)

achieves a critical point r when r = v.
Consequently,

b̂′ (v) =
1

FN−1 (v)
(N − 1) f (v) FN−2

(
v− b̂ (v)

)
=

1
F (v)

(N − 1) f (v)
(

v− b̂ (v)
)

.
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Method 3 (credit to a student): Let G (v) = FN−1 (v) and g (v) = G′ (v), then

b̂ (v) =
1

G (v)

ˆ v

0
xdG (x) =

1
G (v)

ˆ v

0
xg (x) dx

b̂′ (v) = − g (v)
G2 (v)

ˆ v

0
xdG (x) +

1
G (v)

vg (v)

=
g (v)
G (v)

[
v− 1

G (v)

ˆ v

0
xdG (x)

]
=

g (v)
G (v)

(
v− b̂ (v)

)
Question 2. Show that the symmetric equilibrium bidding strategy of a first price auction
with N symmetric bidders each with values distributed according to F, can be written as

b̂ (v) = v−
ˆ v

0

(
F (x)
F (v)

)N−1

dx.

(Hint: For the first way, use solution from text and apply integration by parts. For the
second way, use the fact that FN−1 (r)

(
v− b̂ (r)

)
is maximized in r when r = v and

apply the envelope theorem to conclude that d
(

FN−1 (v)
(

v− b̂ (v)
))

/dv = FN−1 (v);
now integrate both sides from 0 to v.)

Solution. Method 1: Integrate by parts, with u = x, du = dx, and dv = dFN−1 (x),
v = FN−1 (x) in

´
udv = uv−

´
vdu,

b̂ (v) = F1−N (v)
[[

x · FN−1 (x)
]∣∣∣v

0
−
ˆ v

0
FN−1 (x) dx

]
= F1−N (v)

[
v · FN−1 (v)−

ˆ v

0
FN−1 (x) dx

]
= v−

ˆ v

0

(
F (x)
F (v)

)N−1

dx

Method 2: Since utility is maximized at r = v, we have the equality,

u
(

b̂ (v) |v
)
= FN−1 (v)

(
v− b̂ (v)

)
= max

r∈[0,v̄]
FN−1 (r)

(
v− b̂ (r)

)
By envelope theorem, with respect to v, the equation becomes

d
(

FN−1 (v)
(

v− b̂ (v)
))

/dv = FN−1 (v)

d
(

FN−1 (x)
(

x− b̂ (x)
))

= FN−1 (x) dxˆ v

0
d
(

FN−1 (x)
(

x− b̂ (x)
))

=

ˆ v

0
FN−1 (x) dx

v− b̂ (v) =
1

FN−1 (v)

ˆ v

0
FN−1 (x) dx

Rearrange to get the desired result.
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Remark. This form of the equilibrium bidding function highlights the amount by
which bidders shade their bids (i.e. bid below their value). Note that it is opti-
mal to engage in more shading if there are fewer bidders and less shading as the
number of bidders increases. As N → ∞,

b̂ (v) = v−
ˆ v−ε/2

0

(
F (x)
F (v)

)N−1

dx−
ˆ v

v−ε/2

(
F (x)
F (v)

)N−1

dx

We have,∣∣∣∣∣
ˆ v−ε/2

0

(
F (x)
F (v)

)N−1

dx

∣∣∣∣∣ ≤
ˆ v−ε/2

0

∣∣∣∣∣
(

F (x)
F (v)

)N−1
∣∣∣∣∣ dx ≤

ˆ v−ε/2

0

∣∣∣∣∣∣
(

F
(
v− ε

2

)
F (v)

)N−1
∣∣∣∣∣∣ dx

∣∣∣∣∣
ˆ v

v−ε/2

(
F (x)
F (v)

)N−1

dx

∣∣∣∣∣ ≤
ˆ v

v−ε/2

∣∣∣∣∣
(

F (x)
F (v)

)N−1
∣∣∣∣∣ dx ≤

ˆ v−ε/2

0
1dx = ε/2

Since
F(v− ε

2)
F(v) < 1,

(
F(v− ε

2)
F(v)

)N−1

→ 0 as N → ∞ implies that

∃N0 :

∣∣∣∣∣∣
(

F
(
v− ε

2

)
F (v)

)N−1
∣∣∣∣∣∣ ≤ ε/2 ∀N ≥ N0

Then, for all N ≥ N0,∣∣∣v− b̂ (v)
∣∣∣ ≤ ∣∣∣∣∣

ˆ v−ε/2

0

(
F (x)
F (v)

)N−1

dx

∣∣∣∣∣+
∣∣∣∣∣
ˆ v

v−ε/2

(
F (x)
F (v)

)N−1

dx

∣∣∣∣∣ ≤ ε

2
+

ε

2
= ε.

Question 3. This exercise will guide you through the proof that the equilibrium first-price
bidding function is in fact a symmetric equilibrium of the first-price auction. (Hint: First
show that du (r, v) /dr = (N − 1) FN−2 (r) f (r) (v− r) and conclude that du (r, v) /dr
is positive when r < v and negative when r > v so that u (r, v) is maximized when
r = v.)

Solution. Because it holds for all du (v, v) /dr = 0, it must hold for v = r, that is,

0 = du (r, r) /dr = (N − 1) FN−2 (r) f (r)
(

r− b̂ (r)
)
− FN−1 (r) · b̂′ (r)

Then,

du (r, v)
dr

=
du (r, v)

dr
− du (r, r)

dr
=

[
(N − 1) FN−2 (r) f (r)

(
v− b̂ (r)

)
− FN−1 (r) · b̂′ (r)

]
−
[
(N − 1) FN−2 (r) f (r)

(
r− b̂ (r)

)
− FN−1 (r) · b̂′ (r)

]
= (N − 1) FN−2 (r) f (r) (v− r)

and since F, f > 0 for all r ∈ (0, v̄], du (r, v) /dr > 0 when v > r and < 0 when
v < r, therefore, u (r, v) attains maximum at r = v.
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Question 4. In a first-price, all-pay auction, the bidders simultaneously submit sealed
bids. The highest bid wins the object and every bidder pays the seller the amount of his
bid. Consider the independent private values model with symmetric bidders whose values
are each distributed according to the distribution function F with density f .

(a) Find the unique symmetric equilibrium bidding function. Interpret.

ANSWER: Now since a bidder always pays his bid but only gets the object if
his bid is the highest, the expected utility by bidding according to b̂ (r) when
value is v is

u (r, v) = FN−1 (r) v− b̂ (r)

And the foc is

∂u (r, v)
∂r

= (N − 1) FN−2 (r) f (r) v− b̂
′
(r)

setting to zero at r = v,

b̂
′
(v) = (N − 1) FN−2 (v) f (v) v = v

(
FN−1 (v)

)′
ˆ

db̂ (v) =

ˆ v

0
xd
(

FN−1 (x)
)
+ k

b̂ (v) = vFN−1 (v)−
ˆ v

0
FN−1 (x) dx + k

and b̂ (0) = 0 fixes k = 0. Therefore, the unique symmetric bidding function
is

b̂APFPA (v) = FN−1 (v)

[
v−
ˆ v

0

(
F (x)
F (v)

)N−1

dx

]
Interpretation is in next part.

(b) Do bidders bid higher or lower than in a first-price auction?

ANSWER: We see that b̂APFPA (v) = FN−1 (v) b̂FPA (v), and F (v) ≤ 1, so bid-
ders bid lower than in a first price auction, and bid by exactly a factor equal
to the probability of winning.

(c) Find an expression for the seller’s expected revenue.

ANSWER: The seller’s expected revenue is the sum of the bids for all agents
since everyone pays, i.e.

RAPFPA = N
ˆ v̄

0
b̂APFPA (v) dF (v)

= N
ˆ v̄

0
FN−1 (v)

[
v−
ˆ v

0

(
F (x)
F (v)

)N−1

dx

]
dF (v) .
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(d) Both with and without revenue equivalence theorem, show that the seller’s
expected revenue is the same as in a first-price auction.

ANSWER: Without revenue equivalence theorem, we show directly that RAPFPA =
RFPA.

RFPA = N
ˆ v̄

0
FN−1 (v) b̂FPA (v) dF (v) = N

ˆ v̄

0
b̂APFPA (v) dF (v)

which is exactly RAPFPA as expressed above.

Since both FPA and APFPA assign the object to the bidder with the highest
value, and are both incentive-compatible with bidder with value zero indif-
ferent between the mechanism as their expected payoff is zero, by RET, the
two mechanisms generate the same expected revenues.


