Grading Rubic and Comments for Midterm

Hanzhe Zhang*

Friday, February 4, 2012

Question 1

(a) $(+5) u(r, v)=r^{N-1} v-b(r)-(N-1) \int_{0}^{r} b(x) d x$ where

- r^{N-1} is probability of winning (+1)
- v is the value of object won if he wins (+1)
- $b(r)$ is own bid (+1)
- $(N-1) \int_{0}^{r} b(x) d x$ is the expected sum of all the bids: number of bidders times the expected payment due to one bidder (+2)
(b) (+10) Derivative of $u(r, v)$ wrt r is: (+3)

$$
\frac{\partial u(r, v)}{\partial r}=(N-1) r^{N-2} v-b^{\prime}(r)-(N-1) b(r)
$$

maximized at $r=v(+3)$

$$
(N-1) v^{N-1}-b^{\prime}(v)-(N-1) b(v)=0 .
$$

Rearranging and caluculating (showing some steps +2),

$$
b^{\prime}(v)=(N-1)\left(v^{N-1}-b(v)\right)
$$

Because assumption is $v^{N-1}>b(v), b^{\prime}(v)>0 .(+2)$
(c) $(+10)$ Revenue is the same. $(+2)$ because

- Probability assignment functions are the same (+4).
- $\bar{c}(0)=0$ or $u(0)=0$ or value 0 guy is indifferent $(+4)$.
- If you show some ICDSM proof/argument, +2

[^0]
Question 2

(a) (+10) A bidder's expected payoff from bidding $b(r)$ where $r \geq \rho$ when his value is $v \geq \rho$ is $u(r, v)=r^{N-1}(v-b(r))(+\mathbf{1})$
Take derivative of $u(r, v)$ wrt $r, \frac{\partial u(r, v)}{\partial r}=(N-1) r^{N-2}(v-b(r))-r^{N-1} b^{\prime}(r)(+\mathbf{1})$
Set it equal to 0 when $r=v,\left.\frac{\partial u(r, v)}{\partial r}\right|_{r=v}=(N-1) v^{N-2}(v-b(v))-v^{N-1} b^{\prime}(v)=0$ (+1)
Write it into differential equation form (but with steps), $\frac{d}{d v}\left(v^{N-1} b(v)\right)=(N-1) v^{N-1}$ (+2)
Some argument about $b(\rho)=\rho(+2)$
Integrate, $v^{N-1} b(v)-\rho^{N-1} b(\rho)=\int_{\rho}^{v}(N-1) x^{N-1} d x=\frac{N-1}{N}\left(v^{N}-\rho^{N}\right)(+\mathbf{1})$
Use $b(\rho)=\rho$, to get $b(v)=\frac{N-1}{N} v+\frac{1}{N} \rho\left(\frac{\rho}{v}\right)^{N-1} .(+2)$
(b) Revenue is (+2)

$$
R=N \int_{\rho}^{1} b(x) x^{N-1} d x
$$

Plugging in b and solve (+2), and the result is (+1)

$$
R=\frac{N-1}{N+1}\left(1-\rho^{N+1}\right)+\rho^{N}(1-\rho)
$$

(c) A consultant maximizes $R(+3)$

FOC is (+2)

$$
-(N-1) \rho^{N}+N \rho^{N-1}-(N+1) \rho^{N}=0
$$

Some correct steps (+3) include

$$
\begin{aligned}
\rho^{N-1}(2 N \rho-N) & =0 \\
2 N \rho^{N} & =N \rho^{N-1} \\
2 N \rho & =N
\end{aligned}
$$

And optimal reserve price is $\rho^{*}=1 / 2(+2)$

Question 3

(a) $u(r, v)=b(r) r^{N-1}(v-b(r))(+\mathbf{1})$

Substitute, $u(r, v)=\alpha r^{N}(v-\alpha r)(+\mathbf{1})$
Solve, $0=\frac{\partial u}{\partial r}=N r^{N-1}(v-\alpha r)-r^{N} \alpha=N v-N \alpha r-\alpha r=0(+2)$
Result is $b(v)=\frac{N}{N+1} v(+\mathbf{1})$
(b) $\frac{N-1}{N} v<\frac{N}{N+1} v$, i.e. FPA less than this auction. (+2)

Reason: bidder is more aggresive in hidden reserve price auction because there is like another bidder. (+3)
(c) Show equivalence (can't write obvious: +1)

Strictly prefer an additional bidder, because the first N bidders bid the same (as shown), but for the $\mathrm{N}+1(+2)$:

In FPA: it's $N /(N+1) \cdot v$, but (+1)
In hidden reserve price, $\mathrm{it}^{\prime} \mathrm{s} v(+\mathbf{1})$
(d) Some points:

- FPA with optimal reserve price is revenue-maximizing
- Hidden reserve price auction deviates from the revenue-maximizing probability assignment function

Question 4

(a) $p_{i}\left(v_{1}, \cdots, v_{N}\right)(+\mathbf{1})=1$ if $v_{i}>v_{j} \quad \forall j \neq i(+\mathbf{2})$, and $=0$ otherwise (+2)
(b) By ICDSM ii), $\bar{c}_{i}\left(v_{i}\right)=\bar{c}_{i}(0)+\bar{p}_{i}\left(v_{i}\right) v_{i}-\int_{0}^{v_{i}} \bar{p}_{i}(x) d x(+5)$
(IR: $\bar{c}(0) \leq 0)$
(c) Any cost function that satisfies $\bar{c}(0)=0$ and part (b) implies revenue-max subject to Eff and IR. One way is to set (+5)

$$
c_{i}\left(v_{i}, \cdots, v_{N}\right)=p_{i}\left(v_{1}, \cdots, v_{N}\right) v_{i}-\int_{0}^{v_{i}} p_{i}\left(x, v_{i}\right) d x
$$

Because it is possible of asymmetric bidders, SPA cost function is an example, but other auctions' cost functions are subject to distribution problems.
(d) SPA is efficient, IR, IC with $\overline{\mathbf{c}}(\mathbf{0})=\mathbf{0}$. (Notice the correspondence $\boldsymbol{+} \mathbf{2}$, argue each holds +2)

[^0]: *hanzhe@uchicago.edu. All errors are solely mine.

