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1 Semidefiniteness

Definition 1. The N⇥N matrix M is negative semidefinite (NSD) (positive semidefinite (PSD)) if 8z2RN ,

z ·Mz  (�)0.

If the inequality is strict for all z 6= 0, then M is negative definite (ND) (positive definite (PD)).

Example 2. The identity matrix I =
✓

1 0
0 1

◆
is positive (semi)definite since for all z =

✓
x
y

◆
,

z · Iz =
✓

x
y

◆
·
✓

1 0
0 1

◆✓
x
y

◆
=

✓
x
y

◆
·
✓

x
y

◆
= x2 + y2 � 0.

And �I is negative (semi)definite. The matrix M =

✓
�1 �1
�1 �1

◆
is negative semidefinite, as 8z =

✓
x
y

◆
,

z ·Mz =
✓

x
y

◆
·
✓
�1 �1
�1 �1

◆✓
x
y

◆
=

✓
x
y

◆
·
✓
�x� y
�x� y

◆
=�x2 � xy� xy� y2 =�(x+ y)2  0,

but not negative definite at x = �y, z ·Mz = 0. However, not all matrices are either positive or negative

semidefinite, for example, D =

✓
1 0
0 �1

◆
,

z ·Dz =
✓

x
y

◆
·
✓

1 0
0 �1

◆✓
x
y

◆
= x2 � y2.

Proposition 3. Some properties of the matrices are

1. M is PSD (PD) ,�M is NSD (ND).

2. M is ND (PD) ) M is NSD (PSD), but M is NSD (PSD) 6) M is ND (PD).

3. M is ND (PD) , M�1 is ND (PD).

4. M is ND (PD) , M+M0 is ND (PD).

Proof. Sketches are as follows:

1. z · (�M)z =�(z ·Mz).
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2. For all z 6= 0, z ·Mz > 0 and for z = 0, z ·Mz = 0, then 8z,z ·Mz � 0.

3. z ·Mz = (z ·Mz)0 = z ·M0z = z ·MM�1M0z = M0z ·M�1M0z.

4. z · (M+M0)z = 2z ·Mz.

2 Concave Functions

Definition 4. On a convex set A ⇢RN , a function f : A !R is concave (convex) if 8x,x0 2 A and a 2 (0,1],

f
�
ax0+(1�a)x

�
� ()a f

�
x0
�
+(1�a) f (x) .

If the inequality is strict for all x 6= x0 and all a (0,1), then the function is strictly concave (strictly convex).

Proposition 5. Equivalently, a function is concave if 8x1, · · · ,xk 2 A,

f (a1x1 + · · ·+akxk)� a1 f (x1)+ · · ·+ak f (xk)

such that a1 + · · ·+ak = 1.

Proof. Since A is convex, if f (a1x1 +(1�a1)x01)� a1 f (x1)+(1�a1) f (x01),

f
✓

a1x1 +(1�a1)

✓
a2

1�a1
x2 + · · ·+ ak

1�a1
xk

◆◆

� a1 f (x1)+(1�a1) f
✓

a2

1�a1
x2 + · · ·+ ak

1�a1
xk

◆

� a1 f (x1)+(1�a1)
a2

1�a1
f (x2)+(1�a1 �a2) f

✓
a3

1�a2
x3 + · · ·+ ak

1�a2
xk

◆

In essence, f (Âaixi)� Âai f (xi) with Âi ai = 1. If we think ai as probability weight, in general,

Proposition 6 (Jensen’s Inequality). If f : R! R is concave, f
�´

xdF
�
�
´

f (x)dF.

The second characterization of concave function is by the condition that any tangent to the graph of a
concave function must lie (weakly) above the graph of f (·).

Proposition 7. The (continuously differentiable) function f : A ! R is concave if and only if

f (x+ z) f (x)+O f (x) · z

for all x 2 A and z 2 RN (with x+ z 2 A).

Proof. Take x and x+ z, for given a ,

f (a (x+ z)+(1�a)x) � a f (x+ z)+(1�a) f (x)

f (x+az)� f (x) � a ( f (x+ z)� f (x))

f (x)+
f (x+az)� f (x)

a
� f (x+ z)

Take a ! 0, then we have the desired inequality.
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3 Connections between Concavity and NSD

Proposition 8. The (twice continuously differentiable) function f : A ! R is concave if and only if D2 f (x)
is NSD for every x 2 A. If D2 f (x) is ND, then the function is strictly concave.

Proof. We first show that concavity implies Hessian matrix is NSD. Suppose f is concave. Fix some x 2 A,
with some z 6= 0, take second-order Taylor expansion,

f (x+az) = f (x)+O f (x) · (az)+
a2

2
z ·D2 f (x+b z)z. (1)

By Proposition 7,
a2

2
z ·D2 f (x+b z)z  0.

Take a arbitrarily small, then b is arbitrarily small, so

z ·D2 f (x)z  0. (2)

And we can show sufficiency by the same equation 1 coupled with the condition in equation 2.

Proposition 9 (Checking for ND and NSD). Let M be a symmetric N ⇥N matrix.

1. M is ND if and only if (�1)r det(rMr)> 0 for every r = 1, · · · ,N, where tMs denotes the matrix of M
with the first t rows and first s columns.

2. M is NSD if and only if (�1)r det(rMr)� 0 for every r = 1, · · · ,N, and for every permutation p of the
indices {1, · · · ,N}.

3. M is PD if and only if det(rMr)> 0 for every r = 1, · · · ,N.

4. M is PSD if and only if det(rMr)� 0 for every r = 1, · · · ,N, and for every permutation p of the indices
{1, · · · ,N}.

Example 10. Check if f (x1,x2) is concave by checking the definiteness of the Hessian matrix,

D2 f (x1,x2) =


f11 (x1,x2) f12 (x1,x2)
f21 (x1,x2) f22 (x1,x2)

�
.

To see if the function is strictly concave, we check for ND, and we need that, by Proposition 9,

det( f11)< 0,detD2 f (x1,x2)> 0,

or f11 < 0 and f11 f22 � f 2
12 > 0.

To check for concavity of the function, we check for NSD of Hessian matrix, i.e.,

det( f11) 0,detD2 f (x1,x2)� 0,

and permutating,

det( f22) 0,det
����
f22 f21
f12 f11

����� 0.

In summary, check f11, f22, f 2
12 � f11 f12  0.
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4 Quasiconcave Functions

Definition 11. The function f : A ! R is quasiconcave (quasiconvex) if its upper (lower) contour sets
{x 2 A : f {x}� t} are convex sets; that is, if 8t 2 R, x,x0 2 A, and a 2 [0,1]

f (x) , f
�
x0
�
� () t ) f

�
ax+(1�a)x0

�
� () t.

If the inequality is strict whenever x 6= x0 and a 2 (0,1), then f is strictly quasiconcave (strictly quasicon-

vex).

Remark 12. It follows that f (·) is quasiconcave if and only if 8x,x0 2 A and a 2 [0,1],

f
�
ax+(1�a)x0

�
� min

�
f (x) , f

�
x0
� 

.

Thus, a concave function is automatically a quasiconcave function. However, the converse is not true: for
example, all increasing functions of one variable are quasiconcave but they are not necessarily concave.

More importantly, a concave function is not preserved under an increasing transformation of f (·), for
example, (

p
x)4. However, quasiconcavity is preserved under the transformation. Therefore, concavity is a

“cardinal” property, but quasiconcavity is “ordinal” property.

Proposition 13. The (twice continuously differentiable) function f : A ! R is quasiconcave if and only if
for every x 2 A, the Hessian matrix D2 f (x) is NSD in the subspace

�
z 2 RN : O f (x) · z = 0

 
.

The proof is the same to that of Proposition 8 and follows from the following lemma.

Lemma 14. The (continuously differentiable) function f : A ! R is quasiconcave if and only if 8x,x0 2 A
such that f (x0)� f (x),

O f (x) ·
�
x0 � x

�
� 0.

5 Extended Reading

The notes are extracted from pps 930-940, Mas-Colell, Whinston, and Green (1995). For an equally superior
and more detailed treatment of the materials, please refer to Chapter 21, pp 505-543 of Simon and Blume
(1994) on concave and quasiconcave functions, and to Chapter 16, pp 375-393 of Simon and Blume (1994)
for detailed discussions of semidefinite matrices in optimization.

MAS-COLELL, A., M. D. WHINSTON, AND J. R. GREEN (1995): Microeconomic Theory. Oxford Univer-
sity Press.

SIMON, C., AND L. BLUME (1994): Mathematics for Economists. WW Norton New York.

4


	Semidefiniteness
	Concave Functions
	Connections between Concavity and NSD
	Quasiconcave Functions
	Extended Reading

