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1 Semidefiniteness
Definition 1. The N x N matrix M is negative semidefinite (NSD) (positive semidefinite (PSD)) if Vz € RV,
7-Mz < (>)0.

If the inequality is strict for all z # 0, then M is negative definite (ND) (positive definite (PD)).

Example 2. The identity matrix / = <(1) ?) is positive (semi)definite since for all z = <§> ,
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And —/ is negative (semi)definite. The matrix M = < > is negative semidefinite, as Vz = <§>,
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but not negative definite at x = —y, z- Mz = 0. However, not all matrices are either positive or negative
semidefinite, for example, D = <(1) Ol> s
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Proposition 3. Some properties of the matrices are
1. M is PSD (PD) & —M is NSD (ND,).
2. M is ND (PD) = M is NSD (PSD), but M is NSD (PSD) # M is ND (PD).
3. Mis ND (PD) < M~ is ND (PD).
4. M is ND (PD) < M +M' is ND (PD).
Proof. Sketches are as follows:

1. z: (M) z = —(z- Mz).



2. Forallz#0,z-Mz>0and forz=0, z- Mz =0, then Vz,z-Mz > 0.
3. 2Mz=(z-Mz) =z2-M'z=2-MM~'‘M'z=M'z-M~'M'z.

4. z-(M+M')z="2z-Mz.

2 Concave Functions

Definition 4. On a convex set A C RV, a function f:A— Ris concave (convex) if Vx,x' € A and a € (0, 1],
f (o +(1-@)x) > (S af (¢) +(1—a) £ (x).
If the inequality is strict for all x # x’ and all ¢ (0, 1), then the function is strictly concave (strictly convex).
Proposition 5. Equivalently, a function is concave if Vxi,--- ,x; € A,
flouxy 4+ ogxe) > o f(xr) + -+ o f (xx)
such that oy +---+ oy = 1.

Proof. Since A is convex, if f (oux; + (1 —ai)x)) > aif (x1)+ (1 — ) f(x]),

f((X1X1+(1—(X1)( % X+ -+ % xk>>
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2 alf(xl)+(1_al)f<1_2a1x2+--~—|— l—kalxk)

> ouf(x)+(1—a) (lef(xz)—f-(l—(xl—az)f( B it % xk)
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In essence, f (Y a;x;) > Y oif (x;) with ¥; a; = 1. If we think o as probability weight, in general,
Proposition 6 (Jensen’s Inequality). If f : R — R is concave, f ([xdF) > [ f(x)dF.

The second characterization of concave function is by the condition that any tangent to the graph of a
concave function must lie (weakly) above the graph of f (-).

Proposition 7. The (continuously differentiable) function f : A — R is concave if and only if
fa+2) <fx)+Vf(x)-z
forallx € A and z € RN (withx+z € A).

Proof. Take x and x 4z, for given «,

flax+2)+(1—a)x) > oaf(x+z)+(1—a)f(x)
frt+az)=f(x) > a(f(x+z)—f(x)
£+ LEHIITED s g
Take ¢ — 0, then we have the desired inequality. O



3 Connections between Concavity and NSD

Proposition 8. The (twice continuously differentiable) function f : A — R is concave if and only if D* f (x)
is NSD for every x € A. If D*f (x) is ND, then the function is strictly concave.

Proof. We first show that concavity implies Hessian matrix is NSD. Suppose f is concave. Fix some x € A,
with some z # 0, take second-order Taylor expansion,

f(x—sz)—f(x)—i—vf(x)-(az)—i-sz-sz(x—i-ﬁz)z. (1)
By Proposition 7,
sz-sz()H—Bz)z <0.
Take « arbitrarily small, then f3 is arbitrarily small, so
2-D’f(x)z<0. 2)
And we can show sufficiency by the same equation 1 coupled with the condition in equation 2. O

Proposition 9 (Checking for ND and NSD). Let M be a symmetric N X N matrix.

1. M is ND if and only if (—1)"det(,M,) > 0 for every r = 1,--- N, where ;M denotes the matrix of M
with the first t rows and first s columns.

2. M is NSD if and only if (—1)" det(,M,) > 0 for every r = 1,--- |N, and for every permutation T of the
indices {1,--- ,N}.

3. M is PD if and only if det (;M,) > 0 for every r =1,--- ,N.

4. M is PSD if and only if det(,M,) > 0 for every r =1,--- |N, and for every permutation T of the indices
{1,--- ,NV.

Example 10. Check if f (x;,x;) is concave by checking the definiteness of the Hessian matrix,

> _mGaxe) fiz(xn,x)
D°f (x1,32) = for(x,x2)  for(xr,x)|”

To see if the function is strictly concave, we check for ND, and we need that, by Proposition 9,
det(f11) < 0,detD?f (x1,x3) >0,

or f11 < 0and f11f22 —flzz > 0.
To check for concavity of the function, we check for NSD of Hessian matrix, i.e.,

det(f11) <0,detD?f (x1,x3) >0,

and permutating,
f2

>0
fiz fu

det (fzz) < 0,det

In summary, check fi1, f2, f5 — fi1fi2 <O0.



4 Quasiconcave Functions

Definition 11. The function f : A — R is quasiconcave (quasiconvex) if its upper (lower) contour sets
{x€A: f{x} >t} are convex sets; that is, if Vs € R, x,x' € A, and & € [0, 1]

F@),f()>(Qt=f(ax+(1—a)x) > ().

If the inequality is strict whenever x # x’ and o € (0, 1), then f is strictly quasiconcave (strictly quasicon-
vex).

Remark 12. 1t follows that f (-) is quasiconcave if and only if Vx,x’ € A and o € [0, 1],

flax+(1—a)x') >min{f(x),f(x)}.

Thus, a concave function is automatically a quasiconcave function. However, the converse is not true: for
example, all increasing functions of one variable are quasiconcave but they are not necessarily concave.

More importantly, a concave function is not preserved under an increasing transformation of f(-), for
example, (\/})4. However, quasiconcavity is preserved under the transformation. Therefore, concavity is a
“cardinal” property, but quasiconcavity is “ordinal” property.

Proposition 13. The (twice continuously differentiable) function f : A — R is quasiconcave if and only if
for every x € A, the Hessian matrix D*f (x) is NSD in the subspace {z € RV : Vf(x)-z=0}.

The proof is the same to that of Proposition 8 and follows from the following lemma.

Lemma 14. The (continuously differentiable) function f : A — R is quasiconcave if and only if Vx,x' € A
such that f (x') > f (x),
Vf(x) (¥ —x)>0.

S Extended Reading

The notes are extracted from pps 930-940, Mas-Colell, Whinston, and Green (1995). For an equally superior
and more detailed treatment of the materials, please refer to Chapter 21, pp 505-543 of Simon and Blume
(1994) on concave and quasiconcave functions, and to Chapter 16, pp 375-393 of Simon and Blume (1994)
for detailed discussions of semidefinite matrices in optimization.
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