Negative Semidefiniteness, and Concave and Quasiconcave Functions

Hanzhe Zhang

Thursday, October 25, 2012

1 Semidefiniteness

Definition 1. The $N \times N$ matrix M is negative semidefinite (NSD) (positive semidefinite (PSD)) if $\forall z \in \mathbb{R}^{N}$,

$$
z \cdot M z \leq(\geq) 0 .
$$

If the inequality is strict for all $z \neq 0$, then M is negative definite (ND) (positive definite (PD)).
Example 2. The identity matrix $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is positive (semi)definite since for all $z=\binom{x}{y}$,

$$
z \cdot I z=\binom{x}{y} \cdot\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{x}{y}=\binom{x}{y} \cdot\binom{x}{y}=x^{2}+y^{2} \geq 0
$$

And $-I$ is negative (semi)definite. The matrix $M=\left(\begin{array}{cc}-1 & -1 \\ -1 & -1\end{array}\right)$ is negative semidefinite, as $\forall z=\binom{x}{y}$,

$$
z \cdot M z=\binom{x}{y} \cdot\left(\begin{array}{ll}
-1 & -1 \\
-1 & -1
\end{array}\right)\binom{x}{y}=\binom{x}{y} \cdot\binom{-x-y}{-x-y}=-x^{2}-x y-x y-y^{2}=-(x+y)^{2} \leq 0,
$$

but not negative definite at $x=-y, z \cdot M z=0$. However, not all matrices are either positive or negative semidefinite, for example, $D=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$,

$$
z \cdot D z=\binom{x}{y} \cdot\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{x}{y}=x^{2}-y^{2} .
$$

Proposition 3. Some properties of the matrices are

1. M is $P S D(P D) \Leftrightarrow-M$ is $N S D(N D)$.
2. M is $N D(P D) \Rightarrow M$ is $N S D(P S D)$, but M is $N S D(P S D) \nRightarrow M$ is $N D(P D)$.
3. M is $N D(P D) \Leftrightarrow M^{-1}$ is $N D(P D)$.
4. M is $N D(P D) \Leftrightarrow M+M^{\prime}$ is $N D(P D)$.

Proof. Sketches are as follows:

1. $z \cdot(-M) z=-(z \cdot M z)$.
2. For all $z \neq 0, z \cdot M z>0$ and for $z=0, z \cdot M z=0$, then $\forall z, z \cdot M z \geq 0$.
3. $z \cdot M z=(z \cdot M z)^{\prime}=z \cdot M^{\prime} z=z \cdot M M^{-1} M^{\prime} z=M^{\prime} z \cdot M^{-1} M^{\prime} z$.
4. $z \cdot\left(M+M^{\prime}\right) z=2 z \cdot M z$.

2 Concave Functions

Definition 4. On a convex set $A \subset \mathbb{R}^{N}$, a function $f: A \rightarrow \mathbb{R}$ is concave (convex) if $\forall x, x^{\prime} \in A$ and $\alpha \in(0,1]$,

$$
f\left(\alpha x^{\prime}+(1-\alpha) x\right) \geq(\leq) \alpha f\left(x^{\prime}\right)+(1-\alpha) f(x) .
$$

If the inequality is strict for all $x \neq x^{\prime}$ and all $\alpha(0,1)$, then the function is strictly concave (strictly convex).
Proposition 5. Equivalently, a function is concave if $\forall x_{1}, \cdots, x_{k} \in A$,

$$
f\left(\alpha_{1} x_{1}+\cdots+\alpha_{k} x_{k}\right) \geq \alpha_{1} f\left(x_{1}\right)+\cdots+\alpha_{k} f\left(x_{k}\right)
$$

such that $\alpha_{1}+\cdots+\alpha_{k}=1$.
Proof. Since A is convex, if $f\left(\alpha_{1} x_{1}+\left(1-\alpha_{1}\right) x_{1}^{\prime}\right) \geq \alpha_{1} f\left(x_{1}\right)+\left(1-\alpha_{1}\right) f\left(x_{1}^{\prime}\right)$,

$$
\begin{aligned}
& f\left(\alpha_{1} x_{1}+\left(1-\alpha_{1}\right)\left(\frac{\alpha_{2}}{1-\alpha_{1}} x_{2}+\cdots+\frac{\alpha_{k}}{1-\alpha_{1}} x_{k}\right)\right) \\
\geq & \alpha_{1} f\left(x_{1}\right)+\left(1-\alpha_{1}\right) f\left(\frac{\alpha_{2}}{1-\alpha_{1}} x_{2}+\cdots+\frac{\alpha_{k}}{1-\alpha_{1}} x_{k}\right) \\
\geq & \alpha_{1} f\left(x_{1}\right)+\left(1-\alpha_{1}\right) \frac{\alpha_{2}}{1-\alpha_{1}} f\left(x_{2}\right)+\left(1-\alpha_{1}-\alpha_{2}\right) f\left(\frac{\alpha_{3}}{1-\alpha_{2}} x_{3}+\cdots+\frac{\alpha_{k}}{1-\alpha_{2}} x_{k}\right)
\end{aligned}
$$

In essence, $f\left(\sum \alpha_{i} x_{i}\right) \geq \sum \alpha_{i} f\left(x_{i}\right)$ with $\sum_{i} \alpha_{i}=1$. If we think α_{i} as probability weight, in general,
Proposition 6 (Jensen's Inequality). If $f: \mathbb{R} \rightarrow \mathbb{R}$ is concave, $f\left(\int x d F\right) \geq \int f(x) d F$.
The second characterization of concave function is by the condition that any tangent to the graph of a concave function must lie (weakly) above the graph of $f(\cdot)$.

Proposition 7. The (continuously differentiable) function $f: A \rightarrow \mathbb{R}$ is concave if and only if

$$
f(x+z) \leq f(x)+\nabla f(x) \cdot z
$$

for all $x \in A$ and $z \in \mathbb{R}^{N}$ (with $x+z \in A$).
Proof. Take x and $x+z$, for given α,

$$
\begin{aligned}
f(\alpha(x+z)+(1-\alpha) x) & \geq \alpha f(x+z)+(1-\alpha) f(x) \\
f(x+\alpha z)-f(x) & \geq \alpha(f(x+z)-f(x)) \\
f(x)+\frac{f(x+\alpha z)-f(x)}{\alpha} & \geq f(x+z)
\end{aligned}
$$

Take $\alpha \rightarrow 0$, then we have the desired inequality.

3 Connections between Concavity and NSD

Proposition 8. The (twice continuously differentiable) function $f: A \rightarrow \mathbb{R}$ is concave if and only if $D^{2} f(x)$ is NSD for every $x \in A$. If $D^{2} f(x)$ is $N D$, then the function is strictly concave.

Proof. We first show that concavity implies Hessian matrix is NSD. Suppose f is concave. Fix some $x \in A$, with some $z \neq 0$, take second-order Taylor expansion,

$$
\begin{equation*}
f(x+\alpha z)=f(x)+\nabla f(x) \cdot(\alpha z)+\frac{\alpha^{2}}{2} z \cdot D^{2} f(x+\beta z) z \tag{1}
\end{equation*}
$$

By Proposition 7,

$$
\frac{\alpha^{2}}{2} z \cdot D^{2} f(x+\beta z) z \leq 0
$$

Take α arbitrarily small, then β is arbitrarily small, so

$$
\begin{equation*}
z \cdot D^{2} f(x) z \leq 0 . \tag{2}
\end{equation*}
$$

And we can show sufficiency by the same equation 1 coupled with the condition in equation 2 .
Proposition 9 (Checking for ND and NSD). Let M be a symmetric $N \times N$ matrix.

1. M is $N D$ if and only if $(-1)^{r} \operatorname{det}\left({ }_{r} M_{r}\right)>0$ for every $r=1, \cdots, N$, where ${ }_{t} M_{s}$ denotes the matrix of M with the first t rows and first s columns.
2. M is NSD if and only if $(-1)^{r} \operatorname{det}\left({ }_{r} M_{r}\right) \geq 0$ for every $r=1, \cdots, N$, and for every permutation π of the indices $\{1, \cdots, N\}$.
3. M is $P D$ if and only if $\operatorname{det}\left({ }_{r} M_{r}\right)>0$ for every $r=1, \cdots, N$.
4. M is PSD if and only if $\operatorname{det}\left({ }_{r} M_{r}\right) \geq 0$ for every $r=1, \cdots, N$, and for every permutation π of the indices $\{1, \cdots, N\}$.

Example 10. Check if $f\left(x_{1}, x_{2}\right)$ is concave by checking the definiteness of the Hessian matrix,

$$
D^{2} f\left(x_{1}, x_{2}\right)=\left[\begin{array}{ll}
f_{11}\left(x_{1}, x_{2}\right) & f_{12}\left(x_{1}, x_{2}\right) \\
f_{21}\left(x_{1}, x_{2}\right) & f_{22}\left(x_{1}, x_{2}\right)
\end{array}\right] .
$$

To see if the function is strictly concave, we check for ND, and we need that, by Proposition 9 ,

$$
\operatorname{det}\left(f_{11}\right)<0, \operatorname{det} D^{2} f\left(x_{1}, x_{2}\right)>0,
$$

or $f_{11}<0$ and $f_{11} f_{22}-f_{12}^{2}>0$.
To check for concavity of the function, we check for NSD of Hessian matrix, i.e.,

$$
\operatorname{det}\left(f_{11}\right) \leq 0, \operatorname{det} D^{2} f\left(x_{1}, x_{2}\right) \geq 0,
$$

and permutating,

$$
\operatorname{det}\left(f_{22}\right) \leq 0, \operatorname{det}\left|\begin{array}{ll}
f_{22} & f_{21} \\
f_{12} & f_{11}
\end{array}\right| \geq 0
$$

In summary, check $f_{11}, f_{22}, f_{12}^{2}-f_{11} f_{12} \leq 0$.

4 Quasiconcave Functions

Definition 11. The function $f: A \rightarrow \mathbb{R}$ is quasiconcave (quasiconvex) if its upper (lower) contour sets $\{x \in A: f\{x\} \geq t\}$ are convex sets; that is, if $\forall t \in \mathbb{R}, x, x^{\prime} \in A$, and $\alpha \in[0,1]$

$$
f(x), f\left(x^{\prime}\right) \geq(\leq) t \Rightarrow f\left(\alpha x+(1-\alpha) x^{\prime}\right) \geq(\leq) t
$$

If the inequality is strict whenever $x \neq x^{\prime}$ and $\alpha \in(0,1)$, then f is strictly quasiconcave (strictly quasiconvex).

Remark 12. It follows that $f(\cdot)$ is quasiconcave if and only if $\forall x, x^{\prime} \in A$ and $\alpha \in[0,1]$,

$$
f\left(\alpha x+(1-\alpha) x^{\prime}\right) \geq \min \left\{f(x), f\left(x^{\prime}\right)\right\} .
$$

Thus, a concave function is automatically a quasiconcave function. However, the converse is not true: for example, all increasing functions of one variable are quasiconcave but they are not necessarily concave.

More importantly, a concave function is not preserved under an increasing transformation of $f(\cdot)$, for example, $(\sqrt{x})^{4}$. However, quasiconcavity is preserved under the transformation. Therefore, concavity is a "cardinal" property, but quasiconcavity is "ordinal" property.

Proposition 13. The (twice continuously differentiable) function $f: A \rightarrow \mathbb{R}$ is quasiconcave if and only if for every $x \in A$, the Hessian matrix $D^{2} f(x)$ is NSD in the subspace $\left\{z \in \mathbb{R}^{N}: \nabla f(x) \cdot z=0\right\}$.

The proof is the same to that of Proposition 8 and follows from the following lemma.
Lemma 14. The (continuously differentiable) function $f: A \rightarrow \mathbb{R}$ is quasiconcave if and only if $\forall x, x^{\prime} \in A$ such that $f\left(x^{\prime}\right) \geq f(x)$,

$$
\nabla f(x) \cdot\left(x^{\prime}-x\right) \geq 0
$$

5 Extended Reading

The notes are extracted from pps 930-940, Mas-Colell, Whinston, and Green (1995). For an equally superior and more detailed treatment of the materials, please refer to Chapter 21, pp 505-543 of Simon and Blume (1994) on concave and quasiconcave functions, and to Chapter 16, pp 375-393 of Simon and Blume (1994) for detailed discussions of semidefinite matrices in optimization.

Mas-Colell, A., M. D. Whinston, and J. R. Green (1995): Microeconomic Theory. Oxford University Press.

Simon, C., and L. Blume (1994): Mathematics for Economists. WW Norton New York.

