Math Facts for the Second Welfare Theorem

Hanzhe Zhang

Tuesday, December 3, 2012

Definition 1. Minkowski sumset of $S \in \mathbb{R}^{L}$ and $T \in \mathbb{R}^{L}$ is defined as

$$
S+T \equiv\{s+t: s \in S, t \in T\}
$$

Example 2. If $S=[0,1]$ and $T=(5,6)$, then $S+T=(5,7)$.
Theorem 3. S and T convex $\Rightarrow S+T$ convex.
Proof. Take $s_{i}, t_{i} \in S, T, \alpha\left(s_{1}+t_{1}\right)+(1-\alpha)\left(s_{2}+t_{2}\right)=\alpha s_{1}+(1-\alpha) s_{2}+\alpha t_{1}+(1-\alpha) t_{2} \in S+T$.
Theorem 4. $\bar{S}+\bar{T} \subset \overline{S+T}$ where \bar{X} is the closure of X including all the elements and limit points of X.
Proof. If $s \in S$ and $t \in T$, it is trivial to show that $s+t \in S+T$. If $s^{*} \notin S$ but there exist $\left\{s_{n}\right\} \in S$ such that $s_{n} \rightarrow s^{*}$ then for $t \in T, s_{n}+t \rightarrow s^{*}+t$ and $s^{*}+t \in \overline{S+T}$. Similarly for $t^{*} \in \bar{T}, s+t^{*} \in \overline{S+T}$ for $s^{*} \in \bar{S}$.

Remark 5. The converse ($\bar{S}+\bar{T} \supset \overline{S+T}$) may not be true.
Theorem 6 (Separating Hyperplane Theorem). Given two disjoint convex sets S and $T, \exists \mathbf{p} \neq 0$ such that

$$
\mathbf{p} \cdot s \geq \mathbf{p} \cdot t \quad \forall s \in S, t \in T
$$

We prove the Theorem through two lemmas.
Lemma 7 (Simple Separating Hyperplane Theorem). Given a closed and convex set S and $t \notin S, \exists \mathbf{p} \neq 0$ and a value $c \in \mathbb{R}$ such that $\mathbf{p} \cdot t>c$ and $\mathbf{p} \cdot s<c$ for every $s \in S$.

Proof. Denote the point closest to t by $s \in S$. Let $\mathbf{p}=t-s$ and $c^{\prime}=\mathbf{p} \cdot s$. First,

$$
\mathbf{p} \cdot t-c^{\prime}=\mathbf{p} \cdot t-\mathbf{p} \cdot s=\mathbf{p} \cdot(t-s)=\|t-s\|^{2}>0 .
$$

Second, for any $s^{\prime} \in S, s^{\prime}-s$ cannot make an acute angle with $t-s$, that is

$$
\left(s^{\prime}-s\right) \cdot(t-s)=\left\|s^{\prime}-s\right\|\|t-s\| \cos \theta \leq 0,
$$

that is

$$
\mathbf{p} \cdot s^{\prime}-\mathbf{p} \cdot s=\mathbf{p} \cdot s^{\prime}-c^{\prime} \leq 0
$$

Now take $c=c^{\prime}+\varepsilon$ such that $\mathbf{p} \cdot t>c$, and $\mathbf{p} \cdot t>c>\mathbf{p} \cdot s$.
Lemma 8 (Simple Supporting Hyperplane Theorem). Suppose S is convex and t is not an element of the interior of S. Then there exists $\mathbf{p} \neq 0$ such that $\mathbf{p} \cdot t \geq \mathbf{p} \cdot s$ for every $s \in S$.

Proof. Take a sequence of $\left\{t^{m}\right\}$ such that each $t^{m} \notin \bar{S}$, by the simple Separating Hyperplane Theorem, there is some $\mathbf{p}^{m} \neq 0$ and c^{m} such that

$$
\mathbf{p}^{m} \cdot t^{m}>c^{m} \geq \mathbf{p}^{m} \cdot s \quad \forall s \in S .
$$

By taking the limit, since $t^{m} \rightarrow t$ and $c^{m} \rightarrow c$,

$$
\mathbf{p} \cdot t \geq c \geq \mathbf{p} \cdot s
$$

The proof is broken down into two cases in each a lemma is used.
Proof to Theorem 6. Define $X=S-T$, and take the closure \bar{X}. There are two cases.

1. $0 \notin \bar{X}$. Then by the Simple Separating Hyperplane Theorem, there is some \mathbf{p} such that

$$
\mathbf{p} \cdot(s-t) \geq \mathbf{p} \cdot 0=0,
$$

or $\mathbf{p} \cdot s \geq \mathbf{p} \cdot t \forall s \in S, \forall t \in T$.
2. $0 \in \bar{X}$, but it cannot be an interior point of \bar{X} as S and T are disjoint. Then by the Simple Supporting Hyperplane Theorem, there is $\mathbf{p} \neq 0$ such that $\mathbf{p} \cdot(s-t) \geq \mathbf{p} \cdot 0=0$.

Definition 9. \succeq on X is continuous if it is preserved under limits: for any sequence of pairs $\left\{x^{n}, y^{n}\right\}_{n=1}^{\infty}$ for all $n, x=\lim _{n \rightarrow \infty} x^{n}$ and $y=\lim _{n \rightarrow \infty} y^{n}$, we have $x \succeq y$.
Definition 10. \succeq satisfies local non-satiation (l.n.s.) on consumption set X if for every $x \in X$ and every $\varepsilon>0$, there is an $x^{\prime} \in X$ such that $\left\|x^{\prime}-x\right\| \leq \varepsilon$ and $x^{\prime} \succ x$.
Theorem 11. If \succeq is continuous, then $\succeq(x) \supset \overline{\succ(x)}$. If \succeq satisfies local non-satiation, then $\succeq(x) \subset \overline{\succ(x)}$.
Proof. If $y \succ x$, then $y \succeq x$ by definition. If $y \nsucc x$ but there exists $y^{n} \succ x$ and $y^{n} \rightarrow y$, then by continuity of \succeq, let $x^{n}=x$ for all n, then $y^{n} \succeq x^{n}$ implies that $y=\lim _{n} y^{n} \succeq \lim _{n} x^{n}=x$.

If $y \succ x$, then it is trivial. If $y \sim x$, then by l.n.s., for each n, there is some $y^{n} \succ y$ for $\left\|y^{n}-y\right\|<1 / n$, and $y^{n} \rightarrow y$. Since $y^{n} \succ x, y \in \overline{\succ(x)}$.

Definition 12. For some $S \in \mathbb{R}^{L}$, convex hull of S is the smallest convex set containing S, or the intersection of all convex sets that contain S,

$$
\text { Co }(S)=\cap\left\{C_{\alpha}: \text { convex } C_{\alpha} \supset S\right\} .
$$

Or equivalently,

$$
\operatorname{Co}(S)=\left\{\sum_{j} \alpha_{j} x_{j}: x_{j} \in S \forall j, \alpha_{j} \geq 0 \forall j, \sum \alpha_{j}=1\right\} .
$$

Proposition 13. ${ }^{1}$ If S_{1}, S_{2}, S_{3} are convex and open, then

$$
\operatorname{Co}\left(\cup_{i} S_{i}\right)=\left\{\sum_{j} \alpha_{j} s_{j}: s_{j} \in S_{j}, \alpha_{j} \geq 0, \sum \alpha_{j}=1\right\}
$$

Gerard Debreu and Herbert Scarf. A limit theorem on the core of an economy. International Economic Review, 4(3):235-246, 1963.

[^0]
[^0]: ${ }^{1}$ useful for Debreu and Scarf [1963].

