Math Facts for the Second Welfare Theorem

Hanzhe Zhang

Tuesday, December 3, 2012

Definition 1. Minkowski sumset of $S \in \mathbb{R}^L$ and $T \in \mathbb{R}^L$ is defined as

$$S+T \equiv \{s+t : s \in S, t \in T\}$$

Example 2. If S = [0, 1] and T = (5, 6), then S + T = (5, 7).

Theorem 3. *S* and *T* convex \Rightarrow *S*+*T* convex.

Proof. Take
$$s_i, t_i \in S, T, \alpha (s_1 + t_1) + (1 - \alpha) (s_2 + t_2) = \alpha s_1 + (1 - \alpha) s_2 + \alpha t_1 + (1 - \alpha) t_2 \in S + T$$
.

Theorem 4. $\overline{S} + \overline{T} \subset \overline{S+T}$ where \overline{X} is the closure of X including all the elements and limit points of X.

Proof. If $s \in S$ and $t \in T$, it is trivial to show that $s + t \in S + T$. If $s^* \notin S$ but there exist $\{s_n\} \in S$ such that $s_n \to s^*$ then for $t \in T$, $s_n + t \to s^* + t$ and $s^* + t \in \overline{S+T}$. Similarly for $t^* \in \overline{T}$, $s + t^* \in \overline{S+T}$ for $s^* \in \overline{S}$. \Box

Remark 5. The converse $(\overline{S} + \overline{T} \supset \overline{S + T})$ may not be true.

Theorem 6 (Separating Hyperplane Theorem). *Given two disjoint convex sets S and T*, $\exists \mathbf{p} \neq 0$ *such that*

$$\mathbf{p} \cdot s \ge \mathbf{p} \cdot t \quad \forall s \in S, t \in T.$$

We prove the Theorem through two lemmas.

Lemma 7 (Simple Separating Hyperplane Theorem). *Given a closed and convex set* S *and* $t \notin S$, $\exists \mathbf{p} \neq 0$ *and a value* $c \in \mathbb{R}$ *such that* $\mathbf{p} \cdot t > c$ *and* $\mathbf{p} \cdot s < c$ *for every* $s \in S$.

Proof. Denote the point closest to t by $s \in S$. Let $\mathbf{p} = t - s$ and $c' = \mathbf{p} \cdot s$. First,

$$\mathbf{p} \cdot t - c' = \mathbf{p} \cdot t - \mathbf{p} \cdot s = \mathbf{p} \cdot (t - s) = ||t - s||^2 > 0.$$

Second, for any $s' \in S$, s' - s cannot make an acute angle with t - s, that is

$$(s'-s)\cdot(t-s) = \|s'-s\|\|t-s\|\cos\theta \le 0,$$

that is

$$\mathbf{p} \cdot s' - \mathbf{p} \cdot s = \mathbf{p} \cdot s' - c' \le 0.$$

Now take $c = c' + \varepsilon$ such that $\mathbf{p} \cdot t > c$, and $\mathbf{p} \cdot t > c > \mathbf{p} \cdot s$.

Lemma 8 (Simple Supporting Hyperplane Theorem). Suppose *S* is convex and *t* is not an element of the interior of *S*. Then there exists $\mathbf{p} \neq 0$ such that $\mathbf{p} \cdot t \ge \mathbf{p} \cdot s$ for every $s \in S$.

Proof. Take a sequence of $\{t^m\}$ such that each $t^m \notin \overline{S}$, by the simple Separating Hyperplane Theorem, there is some $\mathbf{p}^m \neq 0$ and c^m such that

$$\mathbf{p}^m \cdot t^m > c^m \ge \mathbf{p}^m \cdot s \quad \forall s \in S.$$

By taking the limit, since $t^m \rightarrow t$ and $c^m \rightarrow c$,

$$\mathbf{p} \cdot t \ge c \ge \mathbf{p} \cdot s.$$

The proof is broken down into two cases in each a lemma is used.

Proof to Theorem 6. Define X = S - T, and take the closure \overline{X} . There are two cases.

1. $0 \notin \overline{X}$. Then by the Simple Separating Hyperplane Theorem, there is some **p** such that

$$\mathbf{p}\cdot(s-t)\geq\mathbf{p}\cdot\mathbf{0}=0,$$

or $\mathbf{p} \cdot s \geq \mathbf{p} \cdot t \ \forall s \in S, \forall t \in T$.

2. $0 \in \overline{X}$, but it cannot be an interior point of \overline{X} as *S* and *T* are disjoint. Then by the Simple Supporting Hyperplane Theorem, there is $\mathbf{p} \neq 0$ such that $\mathbf{p} \cdot (s-t) \ge \mathbf{p} \cdot 0 = 0$.

Definition 9. \succeq on X is **continuous** if it is preserved under limits: for any sequence of pairs $\{x^n, y^n\}_{n=1}^{\infty}$ for all $n, x = \lim_{n \to \infty} x^n$ and $y = \lim_{n \to \infty} y^n$, we have $x \succeq y$.

Definition 10. \succeq satisfies local non-satiation (l.n.s.) on consumption set *X* if for every $x \in X$ and every $\varepsilon > 0$, there is an $x' \in X$ such that $||x' - x|| \le \varepsilon$ and $x' \succ x$.

Theorem 11. If \succeq is continuous, then $\succeq (x) \supset \overline{\succ (x)}$. If \succeq satisfies local non-satiation, then $\succeq (x) \subset \overline{\succ (x)}$. *Proof.* If $y \succ x$, then $y \succeq x$ by definition. If $y \not\succ x$ but there exists $y^n \succ x$ and $y^n \rightarrow y$, then by continuity of \succeq , let $x^n = x$ for all n, then $y^n \succeq x^n$ implies that $y = \lim_n y^n \succeq \lim_n x^n = x$.

If $y \succ x$, then it is trivial. If $y \sim x$, then by l.n.s., for each *n*, there is some $y^n \succ y$ for $||y^n - y|| < 1/n$, and $y^n \rightarrow y$. Since $y^n \succ x, y \in \overline{\succ(x)}$.

Definition 12. For some $S \in \mathbb{R}^L$, **convex hull** of *S* is the smallest convex set containing *S*, or the intersection of all convex sets that contain *S*,

$$\operatorname{Co}(S) = \cap \{C_{\alpha} : \operatorname{convex} C_{\alpha} \supset S\}.$$

Or equivalently,

Co
$$(S) = \left\{ \sum_{j} \alpha_{j} x_{j} : x_{j} \in S \forall j, \alpha_{j} \ge 0 \forall j, \sum \alpha_{j} = 1 \right\}.$$

Proposition 13. ¹*If* S_1, S_2, S_3 are convex and open, then

Co
$$(\cup_i S_i) = \left\{ \sum_j \alpha_j s_j : s_j \in S_j, \alpha_j \ge 0, \sum \alpha_j = 1 \right\}.$$

Gerard Debreu and Herbert Scarf. A limit theorem on the core of an economy. *International Economic Review*, 4(3):235–246, 1963.

¹useful for Debreu and Scarf [1963].